1
|
Zhou S, Li H, Zhao C, Zhao W, Pan X, Jian W, Wang J. Single‑cell RNA sequencing reveals heterogeneity in ovarian cancer and constructs a prognostic signature for prognostic prediction and immunotherapy. Int Immunopharmacol 2024; 140:112855. [PMID: 39133955 DOI: 10.1016/j.intimp.2024.112855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the cancers with a high incidence at present, which poses a severe threat to women's health. This study focused on identifying the heterogeneity among malignant epithelial cell OC and constructing an effective prognostic signature to predict prognosis and immunotherapy according to a multidisciplinary study. METHODS The InterCNV algorithm was used to identify the heterogeneity of OC based on the scRNA-seq and bulk RNA-seq data. Six algorithms selected EMTscore. An effective prognostic signature was conducted using the COX and Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithms. The texting datasets were used to assess the accuracy of the prognostic signature. We evaluated different immune characteristics and immunotherapy response differences among other risk groups. RESULTS A prognostic signature including 14 genes was established. The patients in the high-risk group have poor survival outcomes. We also found that the patients in the low-risk group have higher immune cell infiltration, enrichment of immune checkpoints, and immunotherapy response, suggesting that the patients in the low-risk group may be more sensitive to immunotherapy. Finally, the laboratory test results showed that KREMEN2 was identified as a novel biomarker and therapeutic target for OC patients. CONCLUSIONS Our study established a GRG signature consisting of 16 genes based on the scRNA-seq and bulk RNA-seq data, which provides a new perspective on the prediction of prognosis and treatment strategy for OC.
Collapse
Affiliation(s)
- Shisi Zhou
- Department of Gynaecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Huiyan Li
- Department of Rheumatology and Immunology, The Fourth Affiliated Hospital, China Medical University, Shenyang 110000, China
| | - Chengzhi Zhao
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wancheng Zhao
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Pan
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weilan Jian
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Shanghai, China.
| | - Jieli Wang
- Department of Gynaecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China.
| |
Collapse
|
2
|
Zhao R, Guo Z, Lu K, Chen Q, Riaz F, Zhou Y, Yang L, Cheng X, Wu L, Cheng K, Feng L, Liu S, Wu X, Zheng M, Yin C, Li D. Hepatocyte-specific NR5A2 deficiency induces pyroptosis and exacerbates non-alcoholic steatohepatitis by downregulating ALDH1B1 expression. Cell Death Dis 2024; 15:770. [PMID: 39438459 PMCID: PMC11496806 DOI: 10.1038/s41419-024-07151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is a prevalent chronic disease, yet its exact mechanisms and effective treatments remain elusive. Nuclear receptor subfamily 5 group A member 2 (NR5A2), a transcription factor closely associated with cholesterol metabolism in the liver, has been hindered from comprehensive investigation due to the lethality of NR5A2 loss in cell lines and animal models. To elucidate the role of NR5A2 in NASH, we generated hepatocyte-specific knockout mice for Nr5a2 (Nr5a2HKO) and examined their liver morphology across different age groups under a regular diet. Furthermore, we established cell lines expressing haploid levels of NR5A2 and subsequently reintroduced various isoforms of NR5A2. In the liver of Nr5a2HKO mice, inflammation and fibrosis spontaneously emerged from an early age, independent of lipid accumulation. Pyroptosis occurred in NR5A2-deficient cell lines, and different isoforms of NR5A2 reversed this form of cell death. Our findings unveiled that inhibition of NR5A2 triggers pyroptosis, a proinflammatory mode of cell death primarily mediated by the activation of the NF-κB pathway induced by reactive oxygen species (ROS). As a transcriptionally regulated molecule of NR5A2, aldehyde dehydrogenase 1 family member B1 (ALDH1B1) participates in pyroptosis through modulation of ROS level. In conclusion, the diverse isoforms of NR5A2 exert hepatoprotective effects against NASH by maintaining a finely tuned balance of ROS, which is contingent upon the activity of ALDH1B1.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Qian Chen
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yimeng Zhou
- Department of Planned Immunization, Xi'an Center for Disease Control and Prevention, No. 599 Xiying Road, Yanta District, Xi'an, Shaanxi, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Xiaona Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Kexin Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Lina Feng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Sitong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Xiaodan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Dongmin Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
- Department of Biochemistry and Molecular Biology & Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, P.R. China.
| |
Collapse
|
3
|
Chen Y, Zhuo R, Sun L, Tao Y, Li G, Zhu F, Xu Y, Wang J, Li Z, Yu J, Yin H, Wu D, Li X, Fang F, Xie Y, Hu Y, Wang H, Yang C, Shi L, Wang X, Zhang Z, Pan J. Super-enhancer-driven IRF2BP2 enhances ALK activity and promotes neuroblastoma cell proliferation. Neuro Oncol 2024; 26:1878-1894. [PMID: 38864832 PMCID: PMC11449008 DOI: 10.1093/neuonc/noae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Super-enhancers (SEs) typically govern the expression of critical oncogenes and play a fundamental role in the initiation and progression of cancer. Focusing on genes that are abnormally regulated by SE in cancer may be a new strategy for understanding pathogenesis. In the context of this investigation, we have identified a previously unreported SE-driven gene IRF2BP2 in neuroblastoma (NB). METHODS The expression and prognostic value of IRF2BP2 were detected in public databases and clinical samples. The effect of IRF2BP2 on NB cell growth and apoptosis was evaluated through in vivo and in vitro functional loss experiments. The molecular mechanism of IRF2BP2 was investigated by the study of chromatin regulatory regions and transcriptome sequencing. RESULTS The sustained high expression of IRF2BP2 results from the activation of a novel SE established by NB master transcription factors MYCN, MEIS2, and HAND2, and they form a new complex that regulates the gene network associated with the proliferation of NB cell populations. We also observed a significant enrichment of the AP-1 family at the binding sites of IRF2BP2. Remarkably, within NB cells, AP-1 plays a pivotal role in shaping the chromatin accessibility landscape, thereby exposing the binding site for IRF2BP2. This orchestrated action enables AP-1 and IRF2BP2 to collaboratively stimulate the expression of the NB susceptibility gene ALK, thereby upholding the highly proliferative phenotype characteristic of NB. CONCLUSIONS Our findings indicate that SE-driven IRF2BP2 can bind to AP-1 to maintain the survival of tumor cells via regulating chromatin accessibility of the NB susceptibility gene ALK.
Collapse
Affiliation(s)
- Yanling Chen
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lichao Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Frank Zhu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yunyun Xu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Hongli Yin
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Di Wu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hairong Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Lei Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Wang
- Department of Orthopedics, Children’s Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Kearly A, Saelee P, Bard J, Sinha S, Satterthwaite A, Garrett-Sinha LA. Sequences within and upstream of the mouse Ets1 gene drive high level expression in B cells, but are not sufficient for consistent expression in T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606433. [PMID: 39149372 PMCID: PMC11326187 DOI: 10.1101/2024.08.02.606433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The levels of transcription factor Ets1 are high in resting B and T cells, but are downregulated by signaling through antigen receptors and Toll-like receptors (TLRs). Loss of Ets1 in mice leads to excessive immune cell activation and development of an autoimmune syndrome and reduced Ets1 expression has been observed in human PBMCs in the context of autoimmune diseases. In B cells, Ets1 serves to prevent premature activation and differentiation to antibody-secreting cells. Given these important roles for Ets1 in the immune response, stringent control of Ets1 gene expression levels is required for homeostasis. However, the genetic regulatory elements that control expression of the Ets1 gene remain relatively unknown. Here we identify a topologically-associating domain (TAD) in the chromatin of B cells that includes the mouse Ets1 gene locus and describe an interaction hub that extends over 100 kb upstream and into the gene body. Additionally, we compile epigenetic datasets to find several putative regulatory elements within the interaction hub by identifying regions of high DNA accessibility and enrichment of active enhancer histone marks. Using reporter constructs, we determine that DNA sequences within this interaction hub are sufficient to direct reporter gene expression in lymphoid tissues of transgenic mice. Further analysis indicates that the reporter construct drives faithful expression of the reporter gene in mouse B cells, but variegated expression in T cells, suggesting the existence of T cell regulatory elements outside this region. To investigate how the downregulation of Ets1 transcription is associated with alterations in the epigenetic landscape of stimulated B cells, we performed ATAC-seq in resting and BCR-stimulated primary B cells and identified four regions within and upstream of the Ets1 locus that undergo changes in chromatin accessibility that correlate to Ets1 gene expression. Interestingly, functional analysis of several putative Ets1 regulatory elements using luciferase constructs suggested a high level of functional redundancy. Taken together our studies reveal a complex network of regulatory elements and transcription factors that coordinate the B cell-specific expression of Ets1.
Collapse
Affiliation(s)
- Alyssa Kearly
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Prontip Saelee
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jonathan Bard
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| |
Collapse
|
5
|
Chen Y, Ye X, Zhong Y, Kang X, Tang Y, Zhu H, Pang C, Ning S, Liang S, Zhang F, Li C, Li J, Gu C, Cheng Y, Kuang Z, Qiu J, Jin J, Luo H, Fu M, Hui HX, Li L, Ruan D, Liu P, Chen X, Sun L, Ai S, Gao X. SP6 controls human cytotrophoblast fate decisions and trophoblast stem cell establishment by targeting MSX2 regulatory elements. Dev Cell 2024; 59:1506-1522.e11. [PMID: 38582082 DOI: 10.1016/j.devcel.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.
Collapse
Affiliation(s)
- Yanglin Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianhua Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yanqing Tang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haoyun Zhu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Changmiao Pang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaoqiang Ning
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqing Liang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feifan Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengtao Gu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Zhanpeng Kuang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyang Qiu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haisi Luo
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingyu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510515, China
| | - Degong Ruan
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xuefei Gao
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China; Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
7
|
Nisar H, Sanchidrián González PM, Labonté FM, Schmitz C, Roggan MD, Kronenberg J, Konda B, Chevalier F, Hellweg CE. NF-κB in the Radiation Response of A549 Non-Small Cell Lung Cancer Cells to X-rays and Carbon Ions under Hypoxia. Int J Mol Sci 2024; 25:4495. [PMID: 38674080 PMCID: PMC11050661 DOI: 10.3390/ijms25084495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Paulina Mercedes Sanchidrián González
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Frederik M. Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France;
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| |
Collapse
|
8
|
Balijepalli P, Yue G, Prasad B, Meier KE. Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1. Int J Mol Sci 2024; 25:2067. [PMID: 38396744 PMCID: PMC10889543 DOI: 10.3390/ijms25042067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Cysteine-rich angiogenic factor 61 (CCN1/Cyr61) is a matricellular protein that is induced and secreted in response to growth factors. Our previous work showed that 18:1-lysophosphatidic acid (LPA), which activates the G protein-coupled receptor LPAR1, induces CCN1 between 2-4 h in PC-3 human prostate cancer cells in a manner than enhances cell-substrate adhesion. While the time course of induction suggests that CCN1 contributes to intermediate events in LPA action, the roles of CCN1 in LPA-mediated signal transduction have not been fully elucidated. This study utilized a comprehensive global proteomics approach to identify proteins up- or down-regulated in response to treatment of PC-3 cells with LPA for three hours, during the time of peak CCN1 levels. In addition, the effects of siRNA-mediated CCN1 knockdown on LPA responses were analyzed. The results show that, in addition to CCN1, LPA increased the levels of multiple proteins. Proteins up-regulated by LPA included metastasis-associated in colon cancer protein 1 (MACC1) and thrombospondin-1 (TSP1/THBS1); both MACC1 and TSP1 regulated cancer cell adhesion and motility. LPA down-regulated thioredoxin interacting protein (TXNIP). CCN1 knockdown suppressed the LPA-induced up-regulation of 30 proteins; these included MACC1 and TSP1, as confirmed by immunoblotting. Gene ontology and STRING analyses revealed multiple pathways impacted by LPA and CCN1. These results indicate that CCN1 contributes to LPA signaling cascades that occur during the intermediate phase after the initial stimulus. The study provides a rationale for the development of interventions to disrupt the LPA-CCN1 axis.
Collapse
Affiliation(s)
| | | | | | - Kathryn E. Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (P.B.); (G.Y.); (B.P.)
| |
Collapse
|
9
|
Tang S, Zhang F, Li J, Dong H, Yang Q, Liu J, Fu Y. The selective activator protein-1 inhibitor T-5224 regulates the IRF4/MYC axis and exerts cooperative antimyeloma activity with bortezomib. Chem Biol Interact 2023; 384:110687. [PMID: 37657595 DOI: 10.1016/j.cbi.2023.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The activating protein-1 (AP-1) transcription factors (TFs) have been associated with many different cancer types and are promising therapeutic targets in logical malignancies. However, the mechanisms of their role in multiple myeloma (MM) remain elusive. The present study determined and compared the mRNA and protein expression levels of the AP-1 family member JunB in CD138+ mononuclear cells from MM patients and healthy donors. Herein, we investigated the effect of T-5224, an inhibitor of JUN/AP-1, on MM. We found that the cytotoxicity of T-5224 toward myeloma is due to its ability to induce cell apoptosis, inhibit proliferation, and induce cell cycle arrest by increasing the levels of cleaved caspase3/7 and concomitantly inhibiting the IRF4/MYC axis. We also noticed that siJunB-mediated deletion of JunB/AP-1 enhanced MM cell apoptosis and affected cell proliferation. The software PROMO was used in the present study to predict the AP-1 TF that may bind the promoter region of IRF4. We confirmed the correlation between JunB/AP-1 and IRF4. Given that bortezomib (BTZ) facilitates IRF4 degradation in MM cells, we applied combination treatment of BTZ with T-5224. T-5224 and BTZ exerted synergistic effects, and T-5224 reversed the effect of BTZ on CD138+ primary resistance in MM cells, in part due to suppression of the IRF4/MYC axis. Our results suggest that targeting AP-1 TFs is a promising therapeutic strategy for MM. Additionally, targeting both AP-1 and IRF4 with T-5224 may be a synergistic therapeutic strategy for this clinically challenging subset of MM.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qin Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
10
|
Ramos RB, Martino N, Chuy D, Lu S, Zuo MXG, Balasubramanian U, Di John Portela I, Vincent PA, Adam AP. Shock drives a STAT3 and JunB-mediated coordinated transcriptional and DNA methylation response in the endothelium. J Cell Sci 2023; 136:jcs261323. [PMID: 37667913 PMCID: PMC10560554 DOI: 10.1242/jcs.261323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
Endothelial dysfunction is a crucial factor in promoting organ failure during septic shock. However, the underlying mechanisms are unknown. Here, we show that kidney injury after lipopolysaccharide (LPS) insult leads to strong endothelial transcriptional and epigenetic responses. Furthermore, SOCS3 loss leads to an aggravation of the responses, demonstrating a causal role for the STAT3-SOCS3 signaling axis in the acute endothelial response to LPS. Experiments in cultured endothelial cells demonstrate that IL-6 mediates this response. Furthermore, bioinformatics analysis of in vivo and in vitro transcriptomics and epigenetics suggests a role for STAT, AP1 and interferon regulatory family (IRF) transcription factors. Knockdown of STAT3 or the AP1 member JunB partially prevents the changes in gene expression, demonstrating a role for these transcription factors. In conclusion, endothelial cells respond with a coordinated response that depends on overactivated IL-6 signaling via STAT3, JunB and possibly other transcription factors. Our findings provide evidence for a critical role of IL-6 signaling in regulating shock-induced epigenetic changes and sustained endothelial activation, offering a new therapeutic target to limit vascular dysfunction.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Dareen Chuy
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Mei Xing G. Zuo
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Uma Balasubramanian
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Iria Di John Portela
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Alejandro P. Adam
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
- Department of Ophthalmology, Albany Medical Center, Albany, NY 12208, USA
| |
Collapse
|
11
|
Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol 2023; 13:1222265. [PMID: 37731821 PMCID: PMC10507257 DOI: 10.3389/fcimb.2023.1222265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Zhang S, Li P, Li J, Gao J, Qi Q, Dong G, Liu X, Jiao Q, Wang Y, Du L, Zhan H, Xu S, Wang C. Chromatin accessibility uncovers KRAS-driven FOSL2 promoting pancreatic ductal adenocarcinoma progression through up-regulation of CCL28. Br J Cancer 2023; 129:426-443. [PMID: 37380804 PMCID: PMC10403592 DOI: 10.1038/s41416-023-02313-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The epigenetic mechanisms involved in the progression of pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. This study aimed to identify key transcription factors (TFs) through multiomics sequencing to investigate the molecular mechanisms of TFs that play critical roles in PDAC. METHODS To characterise the epigenetic landscape of genetically engineered mouse models (GEMMs) of PDAC with or without KRAS and/or TP53 mutations, we employed ATAC-seq, H3K27ac ChIP-seq, and RNA-seq. The effect of Fos-like antigen 2 (FOSL2) on survival was assessed using the Kaplan-Meier method and multivariate Cox regression analysis for PDAC patients. To study the potential targets of FOSL2, we performed Cleavage Under Targets and Tagmentation (CUT&Tag). To explore the functions and underlying mechanisms of FOSL2 in PDAC progression, we employed several assays, including CCK8, transwell migration and invasion, RT-qPCR, Western blotting analysis, IHC, ChIP-qPCR, dual-luciferase reporter, and xenograft models. RESULTS Our findings indicated that epigenetic changes played a role in immunosuppressed signalling during PDAC progression. Moreover, we identified FOSL2 as a critical regulator that was up-regulated in PDAC and associated with poor prognosis in patients. FOSL2 promoted cell proliferation, migration, and invasion. Importantly, our research revealed that FOSL2 acted as a downstream target of the KRAS/MAPK pathway and recruited regulatory T (Treg) cells by transcriptionally activating C-C motif chemokine ligand 28 (CCL28). This discovery highlighted the role of an immunosuppressed regulatory axis involving KRAS/MAPK-FOSL2-CCL28-Treg cells in the development of PDAC. CONCLUSION Our study uncovered that KRAS-driven FOSL2 promoted PDAC progression by transcriptionally activating CCL28, revealing an immunosuppressive role for FOSL2 in PDAC.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Guoying Dong
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Qinlian Jiao
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, 15166 Century Avenue, 250101, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China.
| |
Collapse
|
13
|
Zhu R, Kennicott K, Liang Y. Benzo[a]pyrene Exposure Reduces Cell-Type Diversity and Stimulates Sex-Biased Damage Pathways in End Organs of Lupus-Prone Mice. Int J Mol Sci 2023; 24:6163. [PMID: 37047136 PMCID: PMC10093912 DOI: 10.3390/ijms24076163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Studies indicate that genetic factors only account for approximately thirty percent of all autoimmune diseases, while the rest of autoimmune pathogenesis is attributed to environmental factors including toxic chemicals. To understand if and how environmental pollutants trigger autoimmunity, we investigated the effect of benzo[a]pyrene (BaP) exposure on the development of autoimmune phenotypes in the lupus-prone MRL strain. The exposure of MRL mice to BaP over the course of 8 weeks before lupus onset resulted in total body weight loss in males, while marginal changes in anti-dsDNA levels occurred. Multi-organ analyses of BaP-treated and control MRL mice suggested that the kidney is a major organ directly affected by the metabolism of benzene-containing compounds, with increased expression of BaP-target genes including Cyp4b1 and Hao2. Intriguingly, spatial transcriptomic data showed that BaP caused a drastic reduction in cell-type diversity in both the kidneys and spleen of MRL mice. Further analysis of the molecular pathways affected suggested a sex-biased effect of BaP treatment, with the upregulated expression of angiogenesis genes in the lungs and an increased deposition of C3 in the kidneys of male mice. While SLE is more common in women, the disease is more severe in male patients, with an increased risk of disease progression to renal failure and lung cancer. Our results reveal sex-biased molecular pathways stimulated by BaP which may help explain the increased likelihood of end organ damage in males with lupus.
Collapse
Affiliation(s)
- Runqi Zhu
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| | - Kameron Kennicott
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| | - Yun Liang
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
14
|
Martínez-Férriz A, Gandía C, Pardo-Sánchez JM, Fathinajafabadi A, Ferrando A, Farràs R. Eukaryotic Initiation Factor 5A2 localizes to actively translating ribosomes to promote cancer cell protrusions and invasive capacity. Cell Commun Signal 2023; 21:54. [PMID: 36915194 PMCID: PMC10009989 DOI: 10.1186/s12964-023-01076-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/11/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 5A (eIF-5A), an essential translation factor, is post-translationally activated by the polyamine spermidine. Two human genes encode eIF-5A, being eIF5-A1 constitutively expressed whereas eIF5-A2 is frequently found overexpressed in human tumours. The contribution of both isoforms with regard to cellular proliferation and invasion in non-small cell lung cancer remains to be characterized. METHODS We have evaluated the use of eIF-5A2 gene as prognosis marker in lung adenocarcinoma (LUAD) patients and validated in immunocompromised mice. We have used cell migration and cell proliferation assays in LUAD lines after silencing each eIF-5A isoform to monitor their contribution to both phenotypes. Cytoskeleton alterations were analysed in the same cells by rhodamine-phalloidin staining and fluorescence microscopy. Polysome profiles were used to monitor the effect of eIF-5A2 overexpression on translation. Western blotting was used to study the levels of eIF-5A2 client proteins involved in migration upon TGFB1 stimulation. Finally, we have co-localized eIF-5A2 with puromycin to visualize the subcellular pattern of actively translating ribosomes. RESULTS We describe the differential functions of both eIF-5A isoforms, to show that eIF5-A2 properties on cell proliferation and migration are coincident with its features as a poor prognosis marker. Silencing of eIF-5A2 leads to more dramatic consequences of cellular proliferation and migration compared to eIF-5A1. Overexpression of eIF-5A2 leads to enhanced global translation. We also show that TGFβ signalling enhances the expression and activity of eIF-5A2 which promotes the translation of polyproline rich proteins involved in cytoskeleton and motility features as it is the case of Fibronectin, SNAI1, Ezrin and FHOD1. With the use of puromycin labelling we have co-localized active ribosomes with eIF-5A2 not only in cytosol but also in areas of cellular protrusion. We have shown the bulk invasive capacity of cells overexpressing eIF-5A2 in mice. CONCLUSIONS We propose the existence of a coordinated temporal and positional interaction between TFGB and eIF-5A2 pathways to promote cell migration in NSCLC. We suggest that the co-localization of actively translating ribosomes with hypusinated eIF-5A2 facilitates the translation of key proteins not only in the cytosol but also in areas of cellular protrusion. Video Abstract.
Collapse
Affiliation(s)
| | | | | | | | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas. Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
15
|
Pérez-Benavente B, Fathinajafabadi A, de la Fuente L, Gandía C, Martínez-Férriz A, Pardo-Sánchez JM, Milián L, Conesa A, Romero OA, Carretero J, Matthiesen R, Jariel-Encontre I, Piechaczyk M, Farràs R. New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-β2. Genome Biol 2022; 23:252. [PMID: 36494864 PMCID: PMC9733061 DOI: 10.1186/s13059-022-02800-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND JUNB transcription factor contributes to the formation of the ubiquitous transcriptional complex AP-1 involved in the control of many physiological and disease-associated functions. The roles of JUNB in the control of cell division and tumorigenic processes are acknowledged but still unclear. RESULTS Here, we report the results of combined transcriptomic, genomic, and functional studies showing that JUNB promotes cell cycle progression via induction of cyclin E1 and repression of transforming growth factor (TGF)-β2 genes. We also show that high levels of JUNB switch the response of TGF-β2 stimulation from an antiproliferative to a pro-invasive one, induce endogenous TGF-β2 production by promoting TGF-β2 mRNA translation, and enhance tumor growth and metastasis in mice. Moreover, tumor genomic data indicate that JUNB amplification associates with poor prognosis in breast and ovarian cancer patients. CONCLUSIONS Our results reveal novel functions for JUNB in cell proliferation and tumor aggressiveness through regulation of cyclin E1 and TGF-β2 expression, which might be exploited for cancer prognosis and therapy.
Collapse
Affiliation(s)
| | | | - Lorena de la Fuente
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Present Address: PerkinElmer Informatics, Tres Cantos, Madrid, Spain
| | | | | | | | - Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia, Spain
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Julián Carretero
- Departament de Fisiologia, Facultat de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Present address: IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|