1
|
He W, Li X, Qian Q, Shang L. The developments and prospects of plant super-pangenomes: Demands, approaches, and applications. PLANT COMMUNICATIONS 2025; 6:101230. [PMID: 39722458 DOI: 10.1016/j.xplc.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
By integrating genomes from different accessions, pangenomes provide a more comprehensive and reference-bias-free representation of genetic information within a population compared to a single reference genome. With the rapid accumulation of genomic sequencing data and the expanding scope of plant research, plant pangenomics has gradually evolved from single-species to multi-species studies. This shift has given rise to the concept of a super-pangenome that covers all genomic sequences within a genus-level taxonomic group. By incorporating both cultivated and wild species, the super-pangenome has greatly enhanced the resolution of research in various areas such as plant genetic diversity, evolution, domestication, and molecular breeding. In this review, we present a comprehensive overview of the plant super-pangenome, emphasizing its development requirements, construction strategies, potential applications, and notable achievements. We also highlight the distinctive advantages and promising prospects of super-pangenomes while addressing current challenges and future directions.
Collapse
Affiliation(s)
- Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - XiaoXia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, Sanya 572024, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, Sanya 572024, China; Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
2
|
Guo W, Schreiber M, Marosi VB, Bagnaresi P, Jørgensen ME, Braune KB, Chalmers K, Chapman B, Dang V, Dockter C, Fiebig A, Fincher GB, Fricano A, Fuller J, Haaning A, Haberer G, Himmelbach A, Jayakodi M, Jia Y, Kamal N, Langridge P, Li C, Lu Q, Lux T, Mascher M, Mayer KFX, McCallum N, Milne L, Muehlbauer GJ, Nielsen MTS, Padmarasu S, Pedas PR, Pillen K, Pozniak C, Rasmussen MW, Sato K, Schmutzer T, Scholz U, Schüler D, Šimková H, Skadhauge B, Stein N, Thomsen NW, Voss C, Wang P, Wonneberger R, Zhang XQ, Zhang G, Cattivelli L, Spannagl M, Bayer M, Simpson C, Zhang R, Waugh R. A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity. Nat Genet 2025; 57:441-450. [PMID: 39901014 PMCID: PMC11821519 DOI: 10.1038/s41588-024-02069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/20/2024] [Indexed: 02/05/2025]
Abstract
A pan-transcriptome describes the transcriptional and post-transcriptional consequences of genome diversity from multiple individuals within a species. We developed a barley pan-transcriptome using 20 inbred genotypes representing domesticated barley diversity by generating and analyzing short- and long-read RNA-sequencing datasets from multiple tissues. To overcome single reference bias in transcript quantification, we constructed genotype-specific reference transcript datasets (RTDs) and integrated these into a linear pan-genome framework to create a pan-RTD, allowing transcript categorization as core, shell or cloud. Focusing on the core (expressed in all genotypes), we observed significant transcript abundance variation among tissues and between genotypes driven partly by RNA processing, gene copy number, structural rearrangements and conservation of promotor motifs. Network analyses revealed conserved co-expression module::tissue correlations and frequent functional diversification. To complement the pan-transcriptome, we constructed a comprehensive cultivar (cv.) Morex gene-expression atlas and illustrate how these combined datasets can be used to guide biological inquiry.
Collapse
Affiliation(s)
- Wenbin Guo
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
- Higentec Breeding Innovation (ZheJiang) Co., Ltd., Lishui, China
| | - Miriam Schreiber
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
| | - Vanda B Marosi
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Paolo Bagnaresi
- Council for Agriculture Research and Economics (CREA) Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- CREA Research Centre for Olive, Fruit and Citrus Crops, Forlì, Italy
| | | | | | - Ken Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Brett Chapman
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Viet Dang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Agostino Fricano
- Council for Agriculture Research and Economics (CREA) Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - John Fuller
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
| | - Allison Haaning
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, USA
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Yong Jia
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Nadia Kamal
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
- Department of Molecular Life Sciences, Computational Plant Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- College of Agriculture, Yangtze University, Jinzhou, China
- Department of Primary Industry and Regional Development Western Australia, South Perth, Western Australia, Australia
| | - Qiongxian Lu
- Carlsberg Research Laboratory (CRL), Copenhagen, Denmark
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
| | - Nicola McCallum
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
| | - Linda Milne
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Pai Rosager Pedas
- Carlsberg Research Laboratory (CRL), Copenhagen, Denmark
- DLF, Roskilde, Denmark
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Curtis Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan (USASK), Saskatoon, Saskatchewan, Canada
| | | | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Kazusa DNA Research Institute, Kisarazu, Japan
| | - Thomas Schmutzer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Danuta Schüler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Chair of Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Nina W Thomsen
- Carlsberg Research Laboratory (CRL), Copenhagen, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory (CRL), Copenhagen, Denmark
| | - Penghao Wang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Ronja Wonneberger
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Guoping Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Luigi Cattivelli
- Council for Agriculture Research and Economics (CREA) Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
| | - Micha Bayer
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland.
| | - Craig Simpson
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland.
| | - Runxuan Zhang
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland.
| | - Robbie Waugh
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia.
- School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
3
|
Dong J, Zhang S, Hu H, Wang J, Li R, Wu J, Chen J, Zhou L, Ma Y, Li W, Nie S, Wang S, Zhang G, Liu B, Zhao J, Yang T. Natural variation in CTF1 conferring cold tolerance at the flowering stage in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 39887866 DOI: 10.1111/pbi.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Improving cold tolerance at the flowering stage (CTF) in rice is crucial for minimising yield loss, making the identification and application of cold-tolerant genes and QTLs imperative for effective molecular breeding. The long lead time, dependence on cold treatment conditions, and the inherent complexity of the trait make studying the genetic basis of CTF in rice challenging. To date, the fine-mapping or cloning of QTLs specific to CTF has not yet been achieved. In this study, single segment substitution lines (SSSLs) were constructed using HJX74 as the recipient and IR58025B, known for good CTF, as the donor. This approach led to the identification of two cold tolerance QTLs, qCTF3 and qCTF6, in rice. qCTF6 has promising breeding potential. Further, we identified the causal gene CTF1 underlying qCTF6 through map-based cloning. CTF1 which encodes a conserved putative protein, has two SNPs within its coding sequence that influence CTF in rice. Additionally, genetic variations in the promoter of CTF1 also contributes to CTF. Thirteen variant sites of CTF1 in the four cold tolerance SSSLs are consistent with the IR58025B. Moreover, we analysed 307 accessions to characterise haplotypes based on the 13 variation sites, identifying five distinct haplotypes. The selection and evolutionary analysis indicate that the cold-tolerant haplotype of CTF1 is a newly generated mutation that has undergone selection in japonica during domestication. This study not only provides a novel favourable gene for molecular breeding of CTF but also highlights the potential of CTF1 in advancing rice breeding.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haifei Hu
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian Wang
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Risheng Li
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Jing Wu
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yamei Ma
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenhui Li
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Nie
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaokui Wang
- South China Agricultural University, Guangzhou, China
| | - Guiquan Zhang
- South China Agricultural University, Guangzhou, China
| | - Bin Liu
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tifeng Yang
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Hu H, Zhao J, Thomas WJW, Batley J, Edwards D. The role of pangenomics in orphan crop improvement. Nat Commun 2025; 16:118. [PMID: 39746989 PMCID: PMC11696220 DOI: 10.1038/s41467-024-55260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Global food security depends heavily on a few staple crops, while orphan crops, despite being less studied, offer the potential benefits of environmental adaptation and enhanced nutritional traits, especially in a changing climate. Major crops have benefited from genomics-based breeding, initially using single genomes and later pangenomes. Recent advances in DNA sequencing have enabled pangenome construction for several orphan crops, offering a more comprehensive understanding of genetic diversity. Orphan crop research has now entered the pangenomics era and applying these pangenomes with advanced selection methods and genome editing technologies can transform these neglected species into crops of broader agricultural significance.
Collapse
Affiliation(s)
- Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of Rice Science and Technology, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of Rice Science and Technology, Guangzhou, China
| | - William J W Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
5
|
Hong UVT, Tamiru-Oli M, Hurgobin B, Lewsey MG. Genomic and cell-specific regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:35-51. [PMID: 39046316 PMCID: PMC11659185 DOI: 10.1093/jxb/erae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Opium poppy is a crop of great commercial value as a source of several opium alkaloids for the pharmaceutical industries including morphine, codeine, thebaine, noscapine, and papaverine. Most enzymes involved in benzylisoquinoline alkaloid (BIA) biosynthesis in opium poppy have been functionally characterized, and opium poppy currently serves as a model system to study BIA metabolism in plants. BIA biosynthesis in opium poppy involves two biosynthetic gene clusters associated respectively with the morphine and noscapine branches. Recent reports have shown that genes in the same cluster are co-expressed, suggesting they might also be co-regulated. However, the transcriptional regulation of opium poppy BIA biosynthesis is not well studied. Opium poppy BIA biosynthesis involves three cell types associated with the phloem system: companion cells, sieve elements, and laticifers. The transcripts and enzymes associated with BIA biosynthesis are distributed across cell types, requiring the translocation of key enzymes and pathway intermediates between cell types. Together, these suggest that the regulation of BIA biosynthesis in opium poppy is multilayered and complex, involving biochemical, genomic, and physiological mechanisms. In this review, we highlight recent advances in genome sequencing and single cell and spatial transcriptomics with a focus on how these efforts can improve our understanding of the genomic and cell-specific regulation of BIA biosynthesis. Such knowledge is vital for opium poppy genetic improvement and metabolic engineering efforts targeting the modulation of alkaloid yield and composition.
Collapse
Affiliation(s)
- Uyen Vu Thuy Hong
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Muluneh Tamiru-Oli
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Bhavna Hurgobin
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Mathew G Lewsey
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence in Plants for Space, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
6
|
Wilkinson MJ, McLay K, Kainer D, Elphinstone C, Dillon NL, Webb M, Wijesundara UK, Ali A, Bally ISE, Munyengwa N, Furtado A, Henry RJ, Hardner CM, Ortiz-Barrientos D. Centromeres are hotspots for chromosomal inversions and breeding traits in mango. THE NEW PHYTOLOGIST 2025; 245:899-913. [PMID: 39548673 DOI: 10.1111/nph.20252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024]
Abstract
Chromosomal inversions can preserve combinations of favorable alleles by suppressing recombination. Simultaneously, they reduce the effectiveness of purifying selection enabling deleterious alleles to accumulate. This study explores how areas of low recombination, including centromeric regions and chromosomal inversions, contribute to the accumulation of deleterious and favorable loci in 225 Mangifera indica genomes from the Australian Mango Breeding Program. Here, we identify 17 chromosomal inversions that cover 7.7% (29.7 Mb) of the M. indica genome: eight pericentric (inversion includes the centromere) and nine paracentric (inversion is on one arm of the chromosome). Our results show that these large pericentric inversions are accumulating deleterious loci, while the paracentric inversions show deleterious levels above and below the genome wide average. We find that despite their deleterious load, chromosomal inversions contain small effect loci linked to variation in crucial breeding traits. These results indicate that chromosomal inversions have likely facilitated the evolution of key mango breeding traits. Our study has important implications for selective breeding of favorable combinations of alleles in regions of low recombination.
Collapse
Affiliation(s)
- Melanie J Wilkinson
- School of the Environment, The University of Queensland, Brisbane, Qld, 4072, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld, 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Kathleen McLay
- School of the Environment, The University of Queensland, Brisbane, Qld, 4072, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David Kainer
- School of the Environment, The University of Queensland, Brisbane, Qld, 4072, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Natalie L Dillon
- Queensland Department of Agriculture and Fisheries, Mareeba, Qld, 4880, Australia
| | - Matthew Webb
- Queensland Department of Agriculture and Fisheries, Brisbane, Qld, 4001, Australia
| | - Upendra K Wijesundara
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Asjad Ali
- Queensland Department of Agriculture and Fisheries, Mareeba, Qld, 4880, Australia
| | - Ian S E Bally
- Queensland Department of Agriculture and Fisheries, Mareeba, Qld, 4880, Australia
| | - Norman Munyengwa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Robert J Henry
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld, 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Craig M Hardner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, Brisbane, Qld, 4072, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
7
|
Yang L, Qin W, Wei X, Liu R, Yang J, Wang Z, Yan Q, Zhang Y, Hu W, Han X, Gao C, Zhan J, Gao B, Ge X, Li F, Yang Z. Regulatory networks of coresident subgenomes during rapid fiber cell elongation in upland cotton. PLANT COMMUNICATIONS 2024; 5:101130. [PMID: 39257006 PMCID: PMC11671760 DOI: 10.1016/j.xplc.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Cotton, an intriguing plant species shaped by polyploidization, evolution, and domestication, holds particular interest due to the complex mechanisms governing fiber traits across its two subgenomes. However, the regulatory elements or transcriptional networks between subgenomes during fiber elongation remain to be fully clarified. Here, we analyzed 1462 cotton fiber samples to reconstruct the gene-expression regulatory networks that influence fiber cell elongation. Inter-subgenome expression quantitative trait loci (eQTLs) largely dictate gene transcription, with a notable tendency for the D subgenome to regulate A-subgenome eGenes. This regulation reveals synchronized homoeologous gene expression driven by co-localized eQTLs and divergent patterns that diminish genetic correlations, thus leading to preferential expression in the A and D subgenomes. Hotspot456 emerged as a key regulator of fiber initiation and elongation, and artificial selection of trans-eQTLs in hotspot456 that positively regulate KCS1 has facilitated cell elongation. Experiments designed to clarify the roles of trans-eQTLs in improved fiber breeding confirmed the inhibition of GhTOL9 by a specific trans-eQTL via GhWRKY28, which negatively affects fiber elongation. We propose a model in which the GhWRKY28-GhTOL9 module regulates this process through the ESCRT (endosomal sorting complex required for transport) pathway. This research significantly advances our understanding of cotton's evolutionary and domestication processes and the intricate regulatory mechanisms that underlie significant plant traits.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenqiang Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xi Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Rui Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jiaxiang Yang
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Zhi Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qingdi Yan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yihao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Wei Hu
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Xiao Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chenxu Gao
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China
| | - Jingjing Zhan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baibai Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyang Ge
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| | - Fuguang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| | - Zhaoen Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou Univeristy, Zhengzhou 450000, China.
| |
Collapse
|
8
|
Reynoso EC, Delgado-Suárez EJ, Hernández-Pérez CF, Chavarin-Pineda Y, Godoy-Lozano EE, Fierros-Zárate G, Aguilar-Vera OA, Castillo-Ramírez S, Gómez-Pedroso LDCS, Sánchez-Zamorano LM. Geography, Antimicrobial Resistance, and Genomics of Salmonella enterica (Serotypes Newport and Anatum) from Meat in Mexico (2021-2023). Microorganisms 2024; 12:2485. [PMID: 39770688 PMCID: PMC11727726 DOI: 10.3390/microorganisms12122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Salmonella enterica non-typhoidal is a major contributor to diarrheal diseases, with over 2600 serovars identified across diverse environments. In Mexico, serovars Newport and Anatum have shown a marked increase, especially in foodborne disease, posing a public health problem. We conducted a cross-sectional study from 2021 to 2023 using active epidemiological surveillance to assess contamination in ground beef and pork at butcher shops nationwide. It involved isolation, phenotypic antimicrobial resistance, comparative genomics, spatial distribution, antimicrobial-resistance genes, and pangenome analysis. A total of 402 non-typhoidal S. enterica strains were isolated, including 59 Newport and 50 Anatum. After curating for redundancy, 45 Newport and 32 Anatum strains remained. We found that 75% of Newport strains exhibited multidrug resistance (MDR), compared to 25% of Anatum strains. Salmonella Newport also showed a broader distribution and stronger antibiotic-resistance capacity, particularly due to genes such as mphA and ramA. Our pangenome analysis showed a predominance of cell maintenance and survival-process genes in the accessory genome of both serotypes. Considering unique genes, Salmonella Anatum and Newport showed a notorious abundance of genes with functions related to replication, recombination, and repair. The substantial rise of Anatum and Newport strains in meat samples for human consumption presents an epidemiological alert, highlighting the critical need for stringent surveillance programs to mitigate human and ecosystem health risks.
Collapse
Affiliation(s)
- Eduardo Canek Reynoso
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública (INSP), Morelos 62100, Mexico; (E.C.R.); (G.F.-Z.)
| | - Enrique Jesús Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (E.J.D.-S.); (L.d.C.S.G.-P.)
| | - Cindy Fabiola Hernández-Pérez
- Centro Nacional de Referencia de Inocuidad y Bioseguridad Agroalimentaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Tecámac 55740, Mexico;
| | - Yaselda Chavarin-Pineda
- Centro de Investigación en Ciencias Agrícolas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | | | - Geny Fierros-Zárate
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública (INSP), Morelos 62100, Mexico; (E.C.R.); (G.F.-Z.)
| | - Omar Alejandro Aguilar-Vera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Morelos 62210, Mexico; (O.A.A.-V.); (S.C.-R.)
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Morelos 62210, Mexico; (O.A.A.-V.); (S.C.-R.)
| | - Luz del Carmen Sierra Gómez-Pedroso
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (E.J.D.-S.); (L.d.C.S.G.-P.)
| | - Luisa María Sánchez-Zamorano
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública (INSP), Morelos 62100, Mexico; (E.C.R.); (G.F.-Z.)
| |
Collapse
|
9
|
Nikhil S, Mohideen HS, Sella RN. Unveiling the Genomic Symphony: Identification Cultivar-Specific Genes and Enhanced Insights on Sweet Sorghum Genomes Through Comprehensive superTranscriptomic Analysis. J Mol Evol 2024; 92:720-743. [PMID: 39261311 DOI: 10.1007/s00239-024-10198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a multipurpose crop grown for food, fodder, and bioenergy production. Its cultivated varieties, along with their wild counterparts, contribute to the core genetic pool. Despite the availability of several re-sequenced sorghum genomes, a variable portion of sorghum genomes is not reported during reference genome assembly and annotation. The present analysis used 223 publicly available RNA-seq datasets from seven sweet sorghum cultivars to construct superTranscriptome. This approach yielded 45,864 Representative Transcript Assemblies (RTAs) that showcased intriguing Presence/Absence Variation (PAV) across 15 published sorghum genomes. We found 301 superTranscripts were exclusive to sweet sorghum, including 58 de novo genes encoded core and linker histones, zinc finger domains, glucosyl transferases, cellulose synthase, etc. The superTranscriptome added 2,802 new protein-coding genes to the Sweet Sorghum Reference Genome (SSRG), of which 559 code for different transcription factors (TFs). Our analysis revealed that MULE-like transposases were abundant in the sweet sorghum genome and could play a hidden role in the evolution of sweet sorghum. We observed large deletions in the D locus and terminal deletions in four other NAC encoding loci in the SSRG compared to its wild progenitor (353) suggesting non-functional NAC genes contributed to trait development in sweet sorghum. Moreover, superTranscript-based methods for Differential Exon Usage (DEU) and Differential Gene Expression (DGE) analyses were more accurate than those based on the SSRG. This study demonstrates that the superTranscriptome can enhance our understanding of fundamental sorghum mechanisms, improve genome annotations, and potentially even replace the reference genome.
Collapse
Affiliation(s)
- Shinde Nikhil
- Membrane Protein Interaction Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Habeeb Shaikh Mohideen
- Entomoinformatics Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Raja Natesan Sella
- Membrane Protein Interaction Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
10
|
Aziz T, Naveed M, Shabbir MA, Sarwar A, Naseeb J, Zhao L, Yang Z, Cui H, Lin L, Albekairi TH. Unveiling the whole genomic features and potential probiotic characteristics of novel Lactiplantibacillus plantarum HMX2. Front Microbiol 2024; 15:1504625. [PMID: 39611087 PMCID: PMC11602494 DOI: 10.3389/fmicb.2024.1504625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
This study investigates the genomic features and probiotic potential of Lactiplantibacillus plantarum HMX2, isolated from Chinese Sauerkraut, using whole-genome sequencing (WGS) and bioinformatics for the first time. This study also aims to find genetic diversity, antibiotic resistance genes, and functional capabilities to help us better understand its food safety applications and potential as a probiotic. L. plantarum HMX2 was cultured, and DNA was extracted for WGS. Genomic analysis comprised average nucleotide identity (ANI) prediction, genome annotation, pangenome, and synteny analysis. Bioinformatics techniques were used to identify CoDing Sequences (CDSs), transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, and antibiotic resistance genes, as well as to conduct phylogenetic analysis to establish genetic diversity and evolution. The study found a significant genetic similarity (99.17% ANI) between L. plantarum HMX2 and the reference strain. Genome annotation revealed 3,242 coding sequences, 65 tRNA genes, and 16 rRNA genes. Significant genetic variety was found, including 25 antibiotic resistance genes. A phylogenetic study placed L. plantarum HMX2 among closely related bacteria, emphasizing its potential for probiotic and food safety applications. The genomic investigation of L. plantarum showed essential genes, including plnJK and plnEF, which contribute to antibacterial action against foodborne pathogens. Furthermore, genes such as MurA, Alr, and MprF improve food safety and probiotic potential by promoting bacterial survival under stress conditions in food and the gastrointestinal tract. This study introduces the new genomic features of L. plantarum HMX2 about specific genetics and its possibility of relevant uses in food security and technologies. These findings of specific genes involved in antimicrobial activity provide fresh possibilities for exploiting this strain in forming probiotic preparations and food preservation methods. The future research should focus on the experimental validation of antibiotic resistance genes, comparative genomics to investigate functional diversity, and the development of novel antimicrobial therapies that take advantage of L. plantarum's capabilities.
Collapse
Affiliation(s)
- Tariq Aziz
- Department of Food Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Biological Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Abid Sarwar
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jasra Naseeb
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Liqing Zhao
- Department of Food Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Dowell JA, Bowsher AW, Jamshad A, Shah R, Burke JM, Donovan LA, Mason CM. Historic breeding practices contribute to germplasm divergence in leaf specialized metabolism and ecophysiology in cultivated sunflower (Helianthus annuus). AMERICAN JOURNAL OF BOTANY 2024; 111:e16420. [PMID: 39483110 DOI: 10.1002/ajb2.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 11/03/2024]
Abstract
PREMISE The use of hybrid breeding systems to increase crop yields has been the cornerstone of modern agriculture and is exemplified in the breeding and improvement of cultivated sunflower (Helianthus annuus). However, it is poorly understood what effect supporting separate breeding pools in such systems, combined with continued selection for yield, may have on leaf ecophysiology and specialized metabolite variation. METHODS We analyzed 288 lines of cultivated H. annuus to examine the genomic basis of several specialized metabolites and agronomically important traits across major heterotic groups. RESULTS Heterotic group identity supports phenotypic divergences between fertility restoring and cytoplasmic male-sterility maintainer lines in leaf ecophysiology and specialized metabolism. However, the divergence is not associated with physical linkage to nuclear genes that support current hybrid breeding practices in cultivated H. annuus. Additionally, we identified four genomic regions associated with leaf ecophysiology and specialized metabolism that colocalize with previously identified QTLs for quantitative self-compatibility traits and with S-protein homolog (SPH) proteins, a recently discovered family of proteins associated with self-incompatibility and self/nonself recognition in Papaver rhoeas (common poppy) with suggested conserved downstream mechanisms among eudicots. CONCLUSIONS Further work is necessary to confirm the self-incompatibility mechanisms in cultivated H. annuus and their relationship to the integrative and polygenic architecture of leaf ecophysiology and specialized metabolism in cultivated sunflower. However, because self-compatibility is a derived quantitative trait in cultivated H. annuus, trait linkage to divergent phenotypic traits may have partially arisen as a potential unintended consequence of historical breeding practices and selection for yield.
Collapse
Affiliation(s)
- Jordan A Dowell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70802, LA, USA
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
| | - Alan W Bowsher
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Amna Jamshad
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Rahul Shah
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- The Plant Center, University of Georgia, Athens, 30602, GA, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- Department of Biology, University of British Columbia Okanagan, Kelowna, B.C. 9 V1V1V7, Canada
| |
Collapse
|
12
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
13
|
Roberts M, Josephs EB. Previously unmeasured genetic diversity explains part of Lewontin's paradox in a k -mer-based meta-analysis of 112 plant species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594778. [PMID: 38798362 PMCID: PMC11118579 DOI: 10.1101/2024.05.17.594778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the molecular level, most evolution is expected to be neutral. A key prediction of this expectation is that the level of genetic diversity in a population should scale with population size. However, as was noted by Richard Lewontin in 1974 and reaffirmed by later studies, the slope of the population size-diversity relationship in nature is much weaker than expected under neutral theory. We hypothesize that one contributor to this paradox is that current methods relying on single nucleotide polymorphisms (SNPs) called from aligning short reads to a reference genome underestimate levels of genetic diversity in many species. To test this idea, we calculated nucleotide diversity ( π ) and k -mer-based metrics of genetic diversity across 112 plant species, amounting to over 205 terabases of DNA sequencing data from 27,488 individual plants. We then compared how these different metrics correlated with proxies of population size that account for both range size and population density variation across species. We found that our population size proxies scaled anywhere from about 3 to over 20 times faster with k -mer diversity than nucleotide diversity after adjusting for evolutionary history, mating system, life cycle habit, cultivation status, and invasiveness. The relationship between k -mer diversity and population size proxies also remains significant after correcting for genome size, whereas the analogous relationship for nucleotide diversity does not. These results suggest that variation not captured by common SNP-based analyses explains part of Lewontin's paradox in plants.
Collapse
Affiliation(s)
- Miles Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing MI
| | - Emily B. Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI
- Plant Resilience Institute, Michigan State University, East Lansing, MI
| |
Collapse
|
14
|
Li J, Wang LY, Huang HC, Yang W, Dai GY, Fang ZQ, Zhao JL, Xia KF, Zeng X, He ML, Yao N, Zhang MY. Endoplasmic reticulum stress response modulator OsbZIP39 regulates cadmium accumulation via activating the expression of defensin-like gene OsCAL2 in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135007. [PMID: 38944994 DOI: 10.1016/j.jhazmat.2024.135007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Accumulation of cadmium (Cd) in rice is not only harmful to the growth of plants but also poses a threat to human health. Exposure to Cd triggers unfolded protein response (UPR) within cells, a process that is still not completely understood. The study demonstrated that the lack of OsbZIP39, an essential endoplasmic reticulum (ER)-resident regulator of the UPR, resulted in decreased Cd intake and reduced Cd levels in the roots, stems, and grains of rice. Upon exposure to Cd stress, GFP-OsbZIP39 translocated from ER to nucleus, initiating UPR. Further investigation revealed that Cd treatment caused changes in sphingolipid levels in the membrane, influencing the localization and activation of OsbZIP39. Yeast one-hybrid and dual-LUC assays were conducted to validate the interaction between activated OsbZIP39 and the promoter of the defensin-like gene OsCAL2, resulting in an increase in its expression. Different variations were identified in the coding region of OsbZIP39, which may explain the varying levels of Cd accumulation observed in the indica and japonica subspecies. Under Cd treatment, OsbZIP39ind exhibited a more significant enhancement in the transcription of OsCAL2 compared to OsbZIP39jap. Our data suggest that OsbZIP39 positively regulates Cd uptake in rice, offering an encouraging objective for the cultivation of low-Cd rice.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Ling-Yan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Huan-Chao Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Guang-Yi Dai
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Zhi-Qiang Fang
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jun-Liang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Kuai-Fei Xia
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Xuan Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Meng-Ling He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ming-Yong Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
15
|
Mangal V, Verma LK, Singh SK, Saxena K, Roy A, Karn A, Rohit R, Kashyap S, Bhatt A, Sood S. Triumphs of genomic-assisted breeding in crop improvement. Heliyon 2024; 10:e35513. [PMID: 39170454 PMCID: PMC11336775 DOI: 10.1016/j.heliyon.2024.e35513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Conventional breeding approaches have played a significant role in meeting the food demand remarkably well until now. However, the increasing population, yield plateaus in certain crops, and limited recombination necessitate using genomic resources for genomics-assisted crop improvement programs. As a result of advancements in the next-generation sequence technology, GABs have developed dramatically to characterize allelic variants and facilitate their rapid and efficient incorporation in crop improvement programs. Genomics-assisted breeding (GAB) has played an important role in harnessing the potential of modern genomic tools, exploiting allelic variation from genetic resources and developing cultivars over the past decade. The availability of pangenomes for major crops has been a significant development, albeit with varying degrees of completeness. Even though adopting these technologies is essentially determined on economic grounds and cost-effective assays, which create a wealth of information that can be successfully used to exploit the latent potential of crops. GAB has been instrumental in harnessing the potential of modern genomic resources and exploiting allelic variation for genetic enhancement and cultivar development. GAB strategies will be indispensable for designing future crops and are expected to play a crucial role in breeding climate-smart crop cultivars with higher nutritional value.
Collapse
Affiliation(s)
- Vikas Mangal
- ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh, 171001, India
| | | | - Sandeep Kumar Singh
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Kanak Saxena
- Department of Genetics and Plant Breeding, Rabindranath Tagore University, Raisen, Madhya Pradesh, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Narendrapur, Kolkata, 700103, India
| | - Anandi Karn
- Plant Breeding & Graduate Program, IFAS - University of Florida, Gainesville, USA
| | - Rohit Rohit
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Shruti Kashyap
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Ashish Bhatt
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Salej Sood
- ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
16
|
Yang T, Dong J, Xiong X, Zhang L, Wang J, Hu H, Zhou L, Yang W, Ma Y, Fu H, Chen J, Li W, Nie S, Liu Z, Liu B, Wang F, Zhao J, Zhang S. A Novel Function of GW5 on Controlling the Early Growth Vigor and its Haplotype Effect on Shoot Dry Weight and Grain Size in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2024; 17:49. [PMID: 39126552 DOI: 10.1186/s12284-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Strong early growth vigor is an essential target in both direct seeded rice breeding and high-yielding rice breeding for rice varieties with relatively short growth duration in the double-cropping region. Shoot dry weight (SDW) is one of the important traits associated with early growth vigor, and breeders have been working to improve this trait. Finding stable QTLs or functional genes for SDW is crucial for improving the early growth vigor by implementing molecular breeding in rice. Here, a genome-wide association analysis revealed that the QTL for SDW, qSDW-5, was stably detected in the three cultivation methods commonly used in production practice. Through gene-based haplotype analysis of the annotated genes within the putative region of qSDW-5, and validated by gene expression and knockout transgenic experiments, LOC_Os05g09520, which is identical to the reported GW5/GSE5 controlling grain width (GW) and thousand grain weight (TGW) was identified as the causal gene for qSDW-5. Five main haplotypes of LOC_Os05g09520 were identified in the diverse international rice collection used in this study and their effects on SDW, GW and TGW were analyzed. Phenotypic comparisons of the major haplotypes of LOC_Os05g09520 in the three subpopulations (indica, japonica and aus) revealed the same patterns of wider GW and higher TGW along with higher SDW. Furtherly, the haplotype analysis of 138 rice varieties/lines widely used in southern China showed that 97.8% of the cultivars/lines carry Hap2LOC_Os05g09520. These results not only provide a promising gene source for the molecular breeding of rice varieties with strong early growth vigor, but also elucidate the effect of the LOC_Os05g09520 haplotypes on SDW, GW, and TGW in rice. Importantly, this study provides direct genetic evidence that these three traits are significantly correlated, and suggests a breeding strategy for developing high-yielding and slender grain-shaped indica cultivars with strong early growth vigor.
Collapse
Affiliation(s)
- Tifeng Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Xijuan Xiong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Longting Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Wu Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Hua Fu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Ziqiang Liu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Liu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Feng Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| | - Junliang Zhao
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
17
|
Satyawan D, Nugroho K, Terryana RT, Fitrahtunnisa, Kirana R, Priyatno TP, Lestari P, Syukur M, Sobir, Faizal A, Mulya K. Surviving mutations: how an Indonesian Capsicum frutescens L. cultivar maintains capsaicin biosynthesis despite disruptive mutations. GENETIC RESOURCES AND CROP EVOLUTION 2024; 71:2949-2963. [DOI: 10.1007/s10722-023-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2025]
|
18
|
Zhang F, Liu Q, Gong P, Wang Y, Shi C, Zhu L, Zhao J, Yao W, Luo J. Genome-wide association study provided insights into the polled phenotype and polled intersex syndrome (PIS) in goats. BMC Genomics 2024; 25:661. [PMID: 38956513 PMCID: PMC11218382 DOI: 10.1186/s12864-024-10568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Breeding polled goats is a welfare-friendly approach for horn removal in comparison to invasive methods. To gain a comprehensive understanding of the genetic basis underlying polledness in goats, we conducted whole-genome sequencing of 106 Xinong Saanen dairy goats, including 33 horned individuals, 70 polled individuals, and 3 polled intersexuality syndrome (PIS) individuals. METHODS The present study employed a genome-wide association study (GWAS) and linkage disequilibrium (LD) analysis to precisely map the genetic locus underlying the polled phenotype in goats. RESULTS The analysis conducted in our study revealed a total of 320 genome-wide significant single nucleotide polymorphisms (SNPs) associated with the horned/polled phenotype in goats. These SNPs exhibited two distinct peaks on chromosome 1, spanning from 128,817,052 to 133,005,441 bp and from 150,336,143 to 150,808,639 bp. The present study identified three genome-wide significant SNPs, namely Chr1:129789816, Chr1:129791507, and Chr1:129791577, as potential markers of PIS-affected goats. The results of our LD analysis suggested a potential association between MRPS22 and infertile intersex individuals, as well as a potential association between ERG and the polled trait in goats. CONCLUSION We have successfully identified three marker SNPs closely linked to PIS, as well as several candidate genes associated with the polled trait in goats. These results may contribute to the development of SNP chips for early prediction of PIS in goats, thereby facilitating breeding programs aimed at producing fertile herds with polled traits.
Collapse
Affiliation(s)
- Fuhong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Qingqing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumchi, 830000, P. R. China
| | - Yaling Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Chenbo Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Lu Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Jianqing Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Weiwei Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| |
Collapse
|
19
|
Nie S, Chen L, Zheng M, Dong J, Ma Y, Zhou L, Wang J, Chen J, Hu H, Yang T, Zhao J, Zhang S, Yang W. GWAS and Transcriptomic Analysis Identify OsRING315 as a New Candidate Gene Controlling Amylose Content and Gel Consistency in Rice. RICE (NEW YORK, N.Y.) 2024; 17:38. [PMID: 38849622 PMCID: PMC11161452 DOI: 10.1186/s12284-024-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
Cooking quality is the main factor determining the market value of rice. Although several major genes and a certain number of QTLs controlling cooking quality have been identified, the genetic complexity and environmental susceptibility limit the further improvement for cooking quality by molecular breeding. This research conducted a genome-wide association study to elucidate the QTLs related to cooking quality including amylose content (AC), gel consistency (GC) and alkali spreading value (ASV) by using 450 rice accessions consisting of 300 indica and 150 japonica accessions in two distinct environments. A total of 54 QTLs were identified, including 25 QTLs for AC, 12 QTLs for GC and 17 QTLs for ASV. Among them, 10 QTLs were consistently observed by the same population in both environments. Six QTLs were co-localized with the reported QTLs or cloned genes. The Wx gene for AC and GC, and the ALK gene for ASV were identified in every population across the two environments. The qAC9-2 for AC and the qGC9-2 for GC were defined to the same interval. The OsRING315 gene, encoding an E3 ubiquitin ligase, was considered as the candidate gene for both qAC9-2 and qGC9-2. The higher expression of OsRING315 corresponded to the lower AC and higher GC. Three haplotypes of OsRING315 were identified. The Hap 1 mainly existed in the japonica accessions and had lower AC. The Hap 2 and Hap 3 were predominantly present in the indica accessions, associated with higher AC. Meanwhile, the GC of accessions harboring Hap 1 was higher than that of accessions harboring Hap 3. In addition, the distribution of the three haplotypes in several rice-growing regions was unbalanced. The three traits of cooking quality are controlled by both major and minor genes and susceptible to environmental factors. The expression level of OsRING315 is related to both AC and GC, and this gene can be a promising target in quality improvement by using the gene editing method. Moreover, the haplotypes of OsRING315 differentiate between indica and japonica, and reveal the differences in GC and AC between indica and japonica rice.
Collapse
Affiliation(s)
- Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Minhua Zheng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, P.R. China.
| |
Collapse
|
20
|
Wade KJ, Suseno R, Kizer K, Williams J, Boquett J, Caillier S, Pollock NR, Renschen A, Santaniello A, Oksenberg JR, Norman PJ, Augusto DG, Hollenbach JA. MHConstructor: A high-throughput, haplotype-informed solution to the MHC assembly challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595060. [PMID: 38826378 PMCID: PMC11142050 DOI: 10.1101/2024.05.20.595060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The extremely high levels of genetic polymorphism within the human major histocompatibility complex (MHC) limit the usefulness of reference-based alignment methods for sequence assembly. We incorporate a short read de novo assembly algorithm into a workflow for novel application to the MHC. MHConstructor is a containerized pipeline designed for high-throughput, haplotype-informed, reproducible assembly of both whole genome sequencing and target-capture short read data in large, population cohorts. To-date, no other self-contained tool exists for the generation of de novo MHC assemblies from short read data. MHConstructor facilitates wide-spread access to high quality, alignment-free MHC sequence analysis.
Collapse
Affiliation(s)
- Kristen J. Wade
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Rayo Suseno
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Kerry Kizer
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Jacqueline Williams
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Juliano Boquett
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Stacy Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Nicholas R. Pollock
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Adam Renschen
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Adam Santaniello
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Paul J. Norman
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Danillo G. Augusto
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, United States
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Yang X, Yu S, Yan S, Wang H, Fang W, Chen Y, Ma X, Han L. Progress in Rice Breeding Based on Genomic Research. Genes (Basel) 2024; 15:564. [PMID: 38790193 PMCID: PMC11121554 DOI: 10.3390/genes15050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The role of rice genomics in breeding progress is becoming increasingly important. Deeper research into the rice genome will contribute to the identification and utilization of outstanding functional genes, enriching the diversity and genetic basis of breeding materials and meeting the diverse demands for various improvements. Here, we review the significant contributions of rice genomics research to breeding progress over the last 25 years, discussing the profound impact of genomics on rice genome sequencing, functional gene exploration, and novel breeding methods, and we provide valuable insights for future research and breeding practices.
Collapse
Affiliation(s)
- Xingye Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Shicong Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Hao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Wei Fang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Yanqing Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Xiaoding Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Longzhi Han
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
22
|
Liu M, Zhang F, Lu H, Xue H, Dong X, Li Z, Xu J, Wang W, Wei C. PPanG: a precision pangenome browser enabling nucleotide-level analysis of genomic variations in individual genomes and their graph-based pangenome. BMC Genomics 2024; 25:405. [PMID: 38658835 PMCID: PMC11044437 DOI: 10.1186/s12864-024-10302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Graph-based pangenome is gaining more popularity than linear pangenome because it stores more comprehensive information of variations. However, traditional linear genome browser has its own advantages, especially the tremendous resources accumulated historically. With the fast-growing number of individual genomes and their annotations available, the demand for a genome browser to visualize genome annotation for many individuals together with a graph-based pangenome is getting higher and higher. Here we report a new pangenome browser PPanG, a precise pangenome browser enabling nucleotide-level comparison of individual genome annotations together with a graph-based pangenome. Nine rice genomes with annotations were provided by default as potential references, and any individual genome can be selected as the reference. Our pangenome browser provides unprecedented insights on genome variations at different levels from base to gene, and reveals how the structures of a gene could differ for individuals. PPanG can be applied to any species with multiple individual genomes available and it is available at https://cgm.sjtu.edu.cn/PPanG .
Collapse
Affiliation(s)
- Mingwei Liu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Huimin Lu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hongzhang Xue
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaorui Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhikang Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Chaochun Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
23
|
Wang J, Hu H, Jiang X, Zhang S, Yang W, Dong J, Yang T, Ma Y, Zhou L, Chen J, Nie S, Liu C, Ning Y, Zhu X, Liu B, Yang J, Zhao J. Pangenome-Wide Association Study and Transcriptome Analysis Reveal a Novel QTL and Candidate Genes Controlling both Panicle and Leaf Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:27. [PMID: 38607544 PMCID: PMC11014823 DOI: 10.1186/s12284-024-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.
Collapse
Affiliation(s)
- Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Sciences, Yangjiang, 529500, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyuan Zhu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jianyuan Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
24
|
Hu H, Li R, Zhao J, Batley J, Edwards D. Technological Development and Advances for Constructing and Analyzing Plant Pangenomes. Genome Biol Evol 2024; 16:evae081. [PMID: 38669452 PMCID: PMC11058698 DOI: 10.1093/gbe/evae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A pangenome captures the genomic diversity for a species, derived from a collection of genetic sequences of diverse populations. Advances in sequencing technologies have given rise to three primary methods for pangenome construction and analysis: de novo assembly and comparison, reference genome-based iterative assembly, and graph-based pangenome construction. Each method presents advantages and challenges in processing varying amounts and structures of DNA sequencing data. With the emergence of high-quality genome assemblies and advanced bioinformatic tools, the graph-based pangenome is emerging as an advanced reference for exploring the biological and functional implications of genetic variations.
Collapse
Affiliation(s)
- Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Risheng Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
25
|
Tan W, Zhou P, Huang X, Liao R, Wang X, Wu Y, Ni Z, Shi T, Yu X, Zhang H, Ma C, Gao F, Ma Y, Bai Y, Hayat F, Omondi OK, Coulibaly D, Gao Z. Haplotype-resolved genome of Prunus zhengheensis provides insight into its evolution and low temperature adaptation in apricot. HORTICULTURE RESEARCH 2024; 11:uhae103. [PMID: 38689698 PMCID: PMC11059810 DOI: 10.1093/hr/uhae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
Prunus zhengheensis, an extremely rare population of apricots, originated in warm South-East China and is an excellent material for genetic breeding. However, most apricots and two related species (P. sibirica, P. mandshurica) are found in the cold northern regions in China and the mechanism of their distribution is still unclear. In addition, the classification status of P. zhengheensis is controversial. Thus, we generated a high-quality haplotype-resolved genome for P. zhengheensis, exploring key genetic variations in its adaptation and the causes of phylogenetic incongruence. We found extensive phylogenetic discordances between the nuclear and organelle phylogenies of P. zhengheensis, which could be explained by incomplete lineage sorting. A 242.22-Mb pan-genome of the Armeniaca section was developed with 13 chromosomal genomes. Importantly, we identified a 566-bp insertion in the promoter of the HSFA1d gene in apricot and showed that the activity of the HSFA1d promoter increased under low temperatures. In addition, HSFA1d overexpression in Arabidopsis thaliana indicated that HSFA1d positively regulated plant growth under chilling. Therefore, we hypothesized that the insertion in the promoter of HSFA1d in apricot improved its low-temperature adaptation, allowing it to thrive in relatively cold locations. The findings help explain the weather adaptability of Armeniaca plants.
Collapse
Affiliation(s)
- Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyu Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyu Liao
- Institute of Fruit, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaoan Wang
- Institute of Fruit, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yaoyao Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiqin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengdong Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Faisal Hayat
- Department of Pomology, College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ouma Kenneth Omondi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, P.O. Box 536, Egerton 20115, Kenya
| | - Daouda Coulibaly
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Agricultural Sciences and Techniques-Horticulture, Rural Polytechnic Institute for Training and Applied Research (IPR/IFRA) of Katibougou, Koulikoro B.P.224, Mali
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Dong J, Ma Y, Hu H, Wang J, Yang W, Fu H, Zhang L, Chen J, Zhou L, Li W, Nie S, Liu Z, Zhao J, Liu B, Yang T, Zhang S. The Function of SD1 on Shoot Length and its Pyramiding Effect on Shoot Length and Plant Height in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2024; 17:21. [PMID: 38526756 DOI: 10.1186/s12284-024-00699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Strong seedling vigor is imperative to achieve stable seedling establishment and enhance the competitiveness against weeds in rice direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor in rice, but few genes for SL have been cloned so far. In the previous study, we identified two tightly linked and stably expressed QTLs for SL, qSL-1f and qSL-1d by genome-wide association study, and cloned the causal gene (LOC_Os01g68500) underlying qSL-1f. In the present study, we identify LOC_Os01g66100 (i.e. the semidwarf gene SD1), a well-known gene controlling plant height (PH) at the adult-plant stage, as the causal gene underlying qSL-1d through gene-based haplotype analysis and knockout transgenic verification. By measuring the phenotypes (SL and PH) of various haplotypes of the two genes and their knockout lines, we found SD1 and LOC_ Os01g68500 controlled both SL and PH, and worked in the same direction, which provided the directly genetic evidence for a positive correlation between SL and PH combined with the analysis of SL and PH in the diverse natural population. Moreover, the knockout transgenic experiments suggested that SD1 had a greater effect on PH compared with LOC_ Os01g68500, but no significant difference in the effect on SL. Further investigation of the pyramiding effects of SD1 and LOC_Os01g68500 based on their haplotype combinations suggested that SD1 may play a dominant role in controlling SL and PH when the two genes coexist. In this study, the effect of SD1 on SL at the seedling stage is validated. In total, two causal genes, SD1 and LOC_ Os01g68500, for SL are cloned in our studies, which controlled both SL and PH, and the suitable haplotypes of SD1 and LOC_ Os01g68500 are beneficial to achieve the desired SL and PH in different rice breeding objectives. These results provide a new clue to develop rice varieties for direct seeding and provide new genetic resources for molecular breeding of rice with suitable PH and strong seedling vigor.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Jian Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Wu Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Hua Fu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Longting Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Ziqiang Liu
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Bin Liu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China.
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High -Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Hu H, Scheben A, Wang J, Li F, Li C, Edwards D, Zhao J. Unravelling inversions: Technological advances, challenges, and potential impact on crop breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:544-554. [PMID: 37961986 PMCID: PMC10893937 DOI: 10.1111/pbi.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Inversions, a type of chromosomal structural variation, significantly influence plant adaptation and gene functions by impacting gene expression and recombination rates. However, compared with other structural variations, their roles in functional biology and crop improvement remain largely unexplored. In this review, we highlight technological and methodological advancements that have allowed a comprehensive understanding of inversion variants through the pangenome framework and machine learning algorithms. Genome editing is an efficient method for inducing or reversing inversion mutations in plants, providing an effective mechanism to modify local recombination rates. Given the potential of inversions in crop breeding, we anticipate increasing attention on inversions from the scientific community in future research and breeding applications.
Collapse
Affiliation(s)
- Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Centre for Crop & Food Innovation, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - David Edwards
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Australia & Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| |
Collapse
|
28
|
Sowadan O, Xu S, Li Y, Muleke EM, Sitoe HM, Dang X, Jiang J, Dong H, Hong D. Genome-Wide Association Analysis Unravels New Quantitative Trait Loci (QTLs) for Eight Lodging Resistance Constituent Traits in Rice ( Oryza sativa L.). Genes (Basel) 2024; 15:105. [PMID: 38254994 PMCID: PMC10815206 DOI: 10.3390/genes15010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Lodging poses a significant challenge to rice yield, prompting the need to identify elite alleles for lodging resistance traits to improve cultivated rice varieties. In this study, a natural population of 518 rice accessions was examined to identify elite alleles associated with plant height (PH), stem diameter (SD), stem anti-thrust (AT/S), and various internode lengths (first (FirINL), second (SecINL), third (ThirINL), fourth (ForINL), and fifth (FifINL) internode lengths). A total of 262 SSR markers linked to these traits were uncovered through association mapping in two environmental conditions. Phenotypic evaluations revealed striking differences among cultivars, and genetic diversity assessments showed polymorphisms across the accessions. Favorable alleles were identified for PH, SD, AT/S, and one to five internode lengths, with specific alleles displaying considerable effects. Noteworthy alleles include RM6811-160 bp on chromosome 6 (which reduces PH) and RM161-145 bp on chromosome 5 (which increases SD). The study identified a total of 42 novel QTLs. Specifically, seven QTLs were identified for PH, four for SD, five for AT/S, five for FirINL, six for SecINL, five for ThirINL, six for ForINL, and four for FifINL. QTLs qAT/S-2, qPH2.1, qForINL2.1, and qFifINL exhibited the most significant phenotypic variance (PVE) of 3.99% for the stem lodging trait. AT/S, PH, ForINL, and FifINL had additive effects of 5.31 kPa, 5.42 cm, 4.27 cm, and 4.27 cm, respectively, offering insights into eight distinct cross-combinations for enhancing each trait. This research suggests the potential for crossbreeding superior parents based on stacked alleles, promising improved rice cultivars with enhanced lodging resistance to meet market demands.
Collapse
Affiliation(s)
- Ognigamal Sowadan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Shanbin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Yulong Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Institute of Crop Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Everlyne Mmbone Muleke
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Department of Agriculture and Land Use Management, School of Agriculture, Veterinary Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega P.O. Box 190-50100, Kenya
| | - Hélder Manuel Sitoe
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Faculty of Agronomy and Biological Sciences, Púngue University, P.O. Box 323, Manica 2202, Mozambique
| | - Xiaojing Dang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (X.D.); (J.J.)
| | - Jianhua Jiang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (X.D.); (J.J.)
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Delin Hong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| |
Collapse
|
29
|
Herwibawa B, Lekklar C, Chadchawan S, Buaboocha T. Association of a Specific OsCULLIN3c Haplotype with Salt Stress Responses in Local Thai Rice. Int J Mol Sci 2024; 25:1040. [PMID: 38256116 PMCID: PMC10815816 DOI: 10.3390/ijms25021040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
We previously found that OsCUL3c is involved in the salt stress response. However, there are no definitive reports on the diversity of OsCUL3c in local Thai rice. In this study, we showed that the CUL3 group was clearly separated from the other CUL groups; next, we focused on OsCUL3c, the third CUL3 of the CUL3 family in rice, which is absent in Arabidopsis. A total of 111 SNPs and 28 indels over the OsCUL3c region, representing 79 haplotypes (haps), were found. Haplotyping revealed that group I (hap A and hap C) and group II (hap B1 and hap D) were different mutated variants, which showed their association with phenotypes under salt stress. These results were supported by cis-regulatory elements (CREs) and transcription factor binding sites (TFBSs) analyses. We found that LTR, MYC, [AP2; ERF], and NF-YB, which are related to salt stress, drought stress, and the response to abscisic acid (ABA), have distinct positions and numbers in the haplotypes of group I and group II. An RNA Seq analysis of the two predominant haplotypes from each group showed that the OsCUL3c expression of the group I representative was upregulated and that of group II was downregulated, which was confirmed by RT-qPCR. Promoter changes might affect the transcriptional responses to salt stress, leading to different regulatory mechanisms for the expression of different haplotypes. We speculate that OsCUL3c influences the regulation of salt-related responses, and haplotype variations play a role in this regulation.
Collapse
Affiliation(s)
- Bagus Herwibawa
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chakkree Lekklar
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerapong Buaboocha
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
30
|
Yang T, Dong J, Zhao J, Zhang L, Zhou L, Yang W, Ma Y, Wang J, Fu H, Chen J, Li W, Hu H, Jiang X, Liu Z, Liu B, Zhang S. Genome-wide association mapping combined with gene-based haplotype analysis identify a novel gene for shoot length in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:251. [PMID: 37985474 PMCID: PMC10661777 DOI: 10.1007/s00122-023-04497-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
KEY MESSAGE Genome-wide association mapping revealed a novel QTL for shoot length across multiple environments. Its causal gene, LOC_Os01g68500, was identified firstly through gene-based haplotype analysis, gene expression and knockout transgenic verification. Strong seedling vigor is an important breeding target for rice varieties used in direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor characterized by rapid growth of seedling, which enhance seedling emergence. Therefore, mining genes for SL and conducting molecular breeding help to develop varieties for direct seeding. However, few QTLs for SL have been fine mapped or cloned so far. In this study, a genome-wide association study of SL was performed in a diverse rice collection consisting of 391 accessions in two years, using phenotypes generated by different cultivation methods according to the production practice, and a total of twenty-four QTLs for SL were identified. Among them, the novel QTL qSL-1f on chromosome 1 could be stably detected across all three cultivation methods in the whole population and indica subpopulation. Through gene-based haplotype analysis of the annotated genes within the putative region of qSL-1f, and validated by gene expression and knockout transgenic experiments, LOC_Os01g68500 (i.e., Os01g0913100 in RAP-DB) was identified as the causal gene for SL, which has a single-base variation (C-to-A transversion) in its CDS region, resulting in the significant difference in SL of rice. LOC_Os01g68500 encodes a DUF538 (Domain of unknown function) containing protein, and the function of DUF538 protein gene on rice seedling growth is firstly reported in this study. These results provide a new clue for exploring the molecular mechanism regulating SL, and promising gene source for the molecular breeding in rice.
Collapse
Affiliation(s)
- Tifeng Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Longting Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wu Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jian Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hua Fu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Science, Yangjiang, 529500, China
| | - Ziqiang Liu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Liu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
31
|
Naithani S, Deng CH, Sahu SK, Jaiswal P. Exploring Pan-Genomes: An Overview of Resources and Tools for Unraveling Structure, Function, and Evolution of Crop Genes and Genomes. Biomolecules 2023; 13:1403. [PMID: 37759803 PMCID: PMC10527062 DOI: 10.3390/biom13091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The availability of multiple sequenced genomes from a single species made it possible to explore intra- and inter-specific genomic comparisons at higher resolution and build clade-specific pan-genomes of several crops. The pan-genomes of crops constructed from various cultivars, accessions, landraces, and wild ancestral species represent a compendium of genes and structural variations and allow researchers to search for the novel genes and alleles that were inadvertently lost in domesticated crops during the historical process of crop domestication or in the process of extensive plant breeding. Fortunately, many valuable genes and alleles associated with desirable traits like disease resistance, abiotic stress tolerance, plant architecture, and nutrition qualities exist in landraces, ancestral species, and crop wild relatives. The novel genes from the wild ancestors and landraces can be introduced back to high-yielding varieties of modern crops by implementing classical plant breeding, genomic selection, and transgenic/gene editing approaches. Thus, pan-genomic represents a great leap in plant research and offers new avenues for targeted breeding to mitigate the impact of global climate change. Here, we summarize the tools used for pan-genome assembly and annotations, web-portals hosting plant pan-genomes, etc. Furthermore, we highlight a few discoveries made in crops using the pan-genomic approach and future potential of this emerging field of study.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Cecilia H. Deng
- Molecular & Digital Breeing Group, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand;
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China;
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
32
|
Sinha D, Maurya AK, Abdi G, Majeed M, Agarwal R, Mukherjee R, Ganguly S, Aziz R, Bhatia M, Majgaonkar A, Seal S, Das M, Banerjee S, Chowdhury S, Adeyemi SB, Chen JT. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals. Genes (Basel) 2023; 14:1484. [PMID: 37510388 PMCID: PMC10380062 DOI: 10.3390/genes14071484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Rapidly rising population and climate changes are two critical issues that require immediate action to achieve sustainable development goals. The rising population is posing increased demand for food, thereby pushing for an acceleration in agricultural production. Furthermore, increased anthropogenic activities have resulted in environmental pollution such as water pollution and soil degradation as well as alterations in the composition and concentration of environmental gases. These changes are affecting not only biodiversity loss but also affecting the physio-biochemical processes of crop plants, resulting in a stress-induced decline in crop yield. To overcome such problems and ensure the supply of food material, consistent efforts are being made to develop strategies and techniques to increase crop yield and to enhance tolerance toward climate-induced stress. Plant breeding evolved after domestication and initially remained dependent on phenotype-based selection for crop improvement. But it has grown through cytological and biochemical methods, and the newer contemporary methods are based on DNA-marker-based strategies that help in the selection of agronomically useful traits. These are now supported by high-end molecular biology tools like PCR, high-throughput genotyping and phenotyping, data from crop morpho-physiology, statistical tools, bioinformatics, and machine learning. After establishing its worth in animal breeding, genomic selection (GS), an improved variant of marker-assisted selection (MAS), has made its way into crop-breeding programs as a powerful selection tool. To develop novel breeding programs as well as innovative marker-based models for genetic evaluation, GS makes use of molecular genetic markers. GS can amend complex traits like yield as well as shorten the breeding period, making it advantageous over pedigree breeding and marker-assisted selection (MAS). It reduces the time and resources that are required for plant breeding while allowing for an increased genetic gain of complex attributes. It has been taken to new heights by integrating innovative and advanced technologies such as speed breeding, machine learning, and environmental/weather data to further harness the GS potential, an approach known as integrated genomic selection (IGS). This review highlights the IGS strategies, procedures, integrated approaches, and associated emerging issues, with a special emphasis on cereal crops. In this domain, efforts have been taken to highlight the potential of this cutting-edge innovation to develop climate-smart crops that can endure abiotic stresses with the motive of keeping production and quality at par with the global food demand.
Collapse
Affiliation(s)
- Dwaipayan Sinha
- Department of Botany, Government General Degree College, Mohanpur 721436, India
| | - Arun Kumar Maurya
- Department of Botany, Multanimal Modi College, Modinagar, Ghaziabad 201204, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Muhammad Majeed
- Department of Botany, University of Gujrat, Punjab 50700, Pakistan
| | - Rachna Agarwal
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rashmi Mukherjee
- Research Center for Natural and Applied Sciences, Department of Botany (UG & PG), Raja Narendralal Khan Women's College, Gope Palace, Midnapur 721102, India
| | - Sharmistha Ganguly
- Department of Dravyaguna, Institute of Post Graduate Ayurvedic Education and Research, Kolkata 700009, India
| | - Robina Aziz
- Department of Botany, Government, College Women University, Sialkot 51310, Pakistan
| | - Manika Bhatia
- TERI School of Advanced Studies, New Delhi 110070, India
| | - Aqsa Majgaonkar
- Department of Botany, St. Xavier's College (Autonomous), Mumbai 400001, India
| | - Sanchita Seal
- Department of Botany, Polba Mahavidyalaya, Polba 712148, India
| | - Moumita Das
- V. Sivaram Research Foundation, Bangalore 560040, India
| | - Swastika Banerjee
- Department of Botany, Kairali College of +3 Science, Champua, Keonjhar 758041, India
| | - Shahana Chowdhury
- Department of Biotechnology, Faculty of Engineering Sciences, German University Bangladesh, TNT Road, Telipara, Chandona Chowrasta, Gazipur 1702, Bangladesh
| | - Sherif Babatunde Adeyemi
- Ethnobotany/Phytomedicine Laboratory, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin P.M.B 1515, Nigeria
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
33
|
Huo X, Wang J, Chen L, Fu H, Yang T, Dong J, Ma Y, Zhou L, Chen J, Liu D, Liu B, Zhao J, Zhang S, Yang W. Genome-wide association mapping and gene expression analysis reveal candidate genes for grain chalkiness in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1184276. [PMID: 37123865 PMCID: PMC10140506 DOI: 10.3389/fpls.2023.1184276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Grain chalkiness is the main factor determining the market value of rice. Reducing chalkiness is an important breeding goal for genetic improvement of high quality rice. Identification of QTLs or genes controlling chalkiness is the prerequisite for molecular breeding in rice. Here, we conducted a genome-wide association study to identify QTLs associated with grain chalkiness including percentage of grains with chalkiness (PGWC) and degree of endosperm chalkiness (DEC) in 450 rice accessions consisting of 300 indica and 150 japonica rice in two environments. A total of 34 QTLs were identified, including 14 QTLs for PGWC and 20 QTLs for DEC. Among them, seven QTLs were commonly identified in two environments, and eight QTLs were simultaneously related to two traits. Based on the haplotype analysis, LD decay analysis, RNA-sequencing, qRT-PCR confirmation and haplotype comparisons, four genes (LOC_Os10g36170, LOC_Os10g36260, LOC_Os10g36340 and LOC_Os10g36610) were considered as the candidate genes for qDEC-10c1w,2wj , which could be identified in both environments and had the most significant p-value among the newly identified QTLs. These results provided new insight into the genetic basis of grain chalkiness and gene resources for improving quality by molecular breeding in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Wu Yang
- *Correspondence: Shaohong Zhang, ; Wu Yang,
| |
Collapse
|