1
|
Khan YA, De Pace R, Jungreis I, Carancini G, Mudge JM, Wang J, Kellis M, Atkins JF, Baranov PV, Firth AE, Bonifacino JS, Loughran G. Programmed ribosomal frameshifting during PLEKHM2 mRNA decoding generates a constitutively active mediator of kinesin-1-dependent lysosome transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610563. [PMID: 39372779 PMCID: PMC11451614 DOI: 10.1101/2024.08.30.610563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Programmed ribosomal frameshifting is a translational recoding phenomenon in which a proportion of ribosomes are stimulated to slip backwards or forwards on an mRNA1, rephasing the ribosome relative to the mRNA. While frameshifting is often employed by viruses2, very few phylogenetically conserved examples are known in vertebrate genes and the evidence for some of these is controversial3,4. Here we report a +1 frameshifting signal in the coding sequence of the human gene PLEKHM2, encoding the ARL8-dependent, lysosome-kinesin-1 adaptor protein PLEKHM25. This +1 frameshifting signal, UCC_UUU_CGG, is highly conserved in vertebrates and exhibits an influenza virus-like frameshift motif with similar efficiency6,7. Purification and mass spectrometry of GFP-tagged trans-frame protein from cells confirms frameshifting. Structure prediction shows that the new C-terminal domain generated by this frameshift forms an alpha-helix. This additional domain relieves PLEKHM2 from autoinhibition, allowing it to move to the tips of cells via association with kinesin-1 without requiring activation by ARL8. Thus, the frameshift proteoform generates a constitutively active adaptor of kinesin-1.
Collapse
Affiliation(s)
- Yousuf A. Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan M. Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridge, UK
| | - Ji Wang
- Department of Pathology, University of Cambridge, Cambridge, UK
- Current affiliation: Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Republic of China
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Besedina E, Supek F. Copy number losses of oncogenes and gains of tumor suppressor genes generate common driver mutations. Nat Commun 2024; 15:6139. [PMID: 39033140 PMCID: PMC11271286 DOI: 10.1038/s41467-024-50552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cancer driver genes can undergo positive selection for various types of genetic alterations, including gain-of-function or loss-of-function mutations and copy number alterations (CNA). We investigated the landscape of different types of alterations affecting driver genes in 17,644 cancer exomes and genomes. We find that oncogenes may simultaneously exhibit signatures of positive selection and also negative selection in different gene segments, suggesting a method to identify additional tumor types where an oncogene is a driver or a vulnerability. Next, we characterize the landscape of CNA-dependent selection effects, revealing a general trend of increased positive selection on oncogene mutations not only upon CNA gains but also upon CNA deletions. Similarly, we observe a positive interaction between mutations and CNA gains in tumor suppressor genes. Thus, two-hit events involving point mutations and CNA are universally observed regardless of the type of CNA and may signal new therapeutic opportunities. An analysis with focus on the somatic CNA two-hit events can help identify additional driver genes relevant to a tumor type. By a global inference of point mutation and CNA selection signatures and interactions thereof across genes and tissues, we identify 9 evolutionary archetypes of driver genes, representing different mechanisms of (in)activation by genetic alterations.
Collapse
Affiliation(s)
- Elizaveta Besedina
- Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. Nontriplet feature of genetic code in Euplotes ciliates is a result of neutral evolution. Proc Natl Acad Sci U S A 2023; 120:e2221683120. [PMID: 37216548 PMCID: PMC10235951 DOI: 10.1073/pnas.2221683120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.
Collapse
Affiliation(s)
- Sofya A. Gaydukova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow199911, Russia
| | - Mikhail A. Moldovan
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino62032, Italy
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT84112
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| |
Collapse
|
4
|
Skitchenko R, Dinikina Y, Smirnov S, Krapivin M, Smirnova A, Morgacheva D, Artomov M. Case report: Somatic mutations in microtubule dynamics-associated genes in patients with WNT-medulloblastoma tumors. Front Oncol 2023; 12:1085947. [PMID: 36713498 PMCID: PMC9877404 DOI: 10.3389/fonc.2022.1085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor which accounts for about 20% of all pediatric brain tumors and 63% of intracranial embryonal tumors. MB is considered to arise from precursor cell populations present during an early brain development. Most cases (~70%) of MB occur at the age of 1-4 and 5-9, but are also infrequently found in adults. Total annual frequency of pediatric tumors is about 5 cases per 1 million children. WNT-subtype of MB is characterized by a high probability of remission, with a long-term survival rate of about 90%. However, in some rare cases there may be increased metastatic activity, which dramatically reduces the likelihood of a favorable outcome. Here we report two cases of MB with a histological pattern consistent with desmoplastic/nodular (DP) and classic MB, and genetically classified as WNT-MB. Both cases showed putative causal somatic protein truncating mutations identified in microtubule-associated genes: ARID2, TUBB4A, and ANK3.
Collapse
Affiliation(s)
- Rostislav Skitchenko
- Almazov National Medical Research Centre, St. Petersburg, Russia,Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
| | - Yulia Dinikina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Sergey Smirnov
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Mikhail Krapivin
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Anna Smirnova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Daria Morgacheva
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Mykyta Artomov
- Almazov National Medical Research Centre, St. Petersburg, Russia,Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia,The Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States,Department of Pediatrics, Ohio State University, Columbus, OH, United States,*Correspondence: Mykyta Artomov,
| |
Collapse
|
5
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
6
|
Genetic Background of Polycythemia Vera. Genes (Basel) 2022; 13:genes13040637. [PMID: 35456443 PMCID: PMC9027017 DOI: 10.3390/genes13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Polycythemia vera belongs to myeloproliferative neoplasms, essentially by affecting the erythroblastic lineage. JAK2 alterations have emerged as major driver mutations triggering PV-phenotype with the V617F mutation detected in nearly 98% of cases. That’s why JAK2 targeting therapeutic strategies have rapidly emerged to counter the aggravation of the disease. Over decades of research, to go further in the understanding of the disease and its evolution, a wide panel of genetic alterations affecting multiple genes has been highlighted. These are mainly involved in alternative splicing, epigenetic, miRNA regulation, intracellular signaling, and transcription factors expression. If JAK2 mutation, irrespective of the nature of the alteration, is known to be a crucial event for the disease to initiate, additional mutations seem to be markers of progression and poor prognosis. These discoveries have helped to characterize the complex genomic landscape of PV, resulting in potentially new adapted therapeutic strategies for patients concerning all the genetic interferences.
Collapse
|
7
|
Atkins JF, O’Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021; 13:1251. [PMID: 34199077 PMCID: PMC8310308 DOI: 10.3390/v13071251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.
Collapse
Affiliation(s)
- John F. Atkins
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Kate M. O’Connor
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Pramod R. Bhatt
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gary Loughran
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| |
Collapse
|
8
|
Bai J, Chen Z, Chen C, Zhang M, Zhang Y, Song J, Yuan J, Jiang X, Xing W, Yang J, Bai J, Zhou Y. Reducing hyperactivated BAP1 attenuates mutant ASXL1-driven myeloid malignancies in human haematopoietic cells. Cancer Lett 2021; 519:78-90. [PMID: 34186160 DOI: 10.1016/j.canlet.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
Additional sex combs-like 1 (ASXL1) is frequently mutated in a variety of myeloid malignancies, resulting in expression of a C-terminal-truncated ASXL1 protein that confers gain of function on the ASXL1-BAP1 deubiquitinase (DUB) complex. Several studies have reported that hyperactivity of BRCA-1-associated protein 1 (BAP1) in deubiquitinating mono-ubiquitinated histone H2AK119 is one of the critical molecular mechanisms in ASXL1 mutation-driven myeloid malignancies in mice. In this study, we found that human haematopoietic stem and progenitor cells (HSPCs) overexpressing truncated ASXL1 (ASXL1Y591X) developed an MDS-like phenotype similar to that induced by overexpression of BAP1. We then used shRNAs targeting BAP1 in ASXL1Y591X-overexpressing HSPCs and primary leukaemia cells with ASXL1 mutation, demonstrating that reduced BAP1 expression can partially rescue the pathological consequences. RNA sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses revealed that reduced BAP1 expression suppressed upregulation of the transcription factors AP-1 and EGR1/2, as well as myeloid dysplasia-associated genes, by retarding H2AK119Ub removal caused by ASXL1 mutation. This study indicates that targeting the hyperactive ASXL1-BAP1 DUB complex can attenuate mutant ASXL1-driven myeloid malignancies in human.
Collapse
Affiliation(s)
- Jiaojiao Bai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Chao Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Mingying Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuhui Zhang
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Junzhe Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jiajia Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiao Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jing Yang
- International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
9
|
Napthine S, Hill CH, Nugent HCM, Brierley I. Modulation of Viral Programmed Ribosomal Frameshifting and Stop Codon Readthrough by the Host Restriction Factor Shiftless. Viruses 2021; 13:v13071230. [PMID: 34202160 PMCID: PMC8310280 DOI: 10.3390/v13071230] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022] Open
Abstract
The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.
Collapse
Affiliation(s)
| | | | | | - Ian Brierley
- Correspondence: ; Tel.: +44-12-2333-6914; Fax: +44-12-2333-6926
| |
Collapse
|
10
|
Cui R, Yang L, Wang Y, Zhong M, Yu M, Chen B. Elevated Expression of ASXL2 is Associated with Poor Prognosis in Colorectal Cancer by Enhancing Tumorigenesis and Inducing Cell Proliferation. Cancer Manag Res 2020; 12:10221-10228. [PMID: 33116876 PMCID: PMC7585280 DOI: 10.2147/cmar.s266083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Colorectal cancer is one of the most common malignant tumors worldwide. ASXL2 is an enhancer of the trithorax and polycomb genes, which have been proven to act in many tumor types. The role of ASXL2 in the occurrence and development of tumors has been extensively studied in recent years. However, the relationship between ASXL2 and the prognosis of CRC is still unclear. Materials and Methods In this study, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot analysis and immunohistochemistry (IHC) were used to examine the expression of ASXL2 in CRC tissues. Cells were transfected with siRNAs or lentivirus to regulate the expression of ASXL2. The effects of ASXL2 on the proliferation of CRC cells were determined by CCK8 assay. Results This study demonstrated that ASXL2 was significantly more highly expressed in CRC specimens than in normal adjacent tissues. The upregulation of ASXL2 was related to advanced clinical stage. Patients who exhibited high expression levels of ASXL2 had poorer overall survival, whereas those with low expression of ASXL2 survived longer. Multivariate Cox regression analysis revealed that ASXL2 expression could be considered an independent prognostic factor for CRC. Inhibition or overexpression of ASXL2 markedly influenced the proliferation of CRC cells. Conclusion These results showed that ASXL2 could induce cell proliferation, which was associated with poor prognosis of CRC patients, suggesting that ASXL2 might be a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Ran Cui
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated Tongji University, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Ludi Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yiwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, East Hospital Affiliated Tongji University, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| |
Collapse
|
11
|
Reddington CJ, Fellner M, Burgess AE, Mace PD. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Int J Mol Sci 2020; 21:ijms21217837. [PMID: 33105797 PMCID: PMC7660087 DOI: 10.3390/ijms21217837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modification of histone proteins plays a major role in histone–DNA packaging and ultimately gene expression. Attachment of ubiquitin to the C-terminal tail of histone H2A (H2AK119Ub in mammals) is particularly relevant to the repression of gene transcription, and is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here, we outline recent advances in the understanding of PR-DUB regulation, which have come through structural studies of the Drosophila melanogaster PR-DUB, biochemical investigation of the human PR-DUB, and functional studies of proteins that associate with the PR-DUB. In humans, mutations in components of the PR-DUB frequently give rise to malignant mesothelioma, melanomas, and renal cell carcinoma, and increase disease risk from carcinogens. Diverse mechanisms may underlie disruption of the PR-DUB across this spectrum of disease. Comparing and contrasting the PR-DUB in mammals and Drosophila reiterates the importance of H2AK119Ub through evolution, provides clues as to how the PR-DUB is dysregulated in disease, and may enable new treatment approaches in cancers where the PR-DUB is disrupted.
Collapse
|
12
|
Zhang P, Xu M, Yang FC. The Role of ASXL1/2 and Their Associated Proteins in Malignant Hematopoiesis. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Francisco-Velilla R, Azman EB, Martinez-Salas E. Impact of RNA-Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5. Bioessays 2019; 41:e1800241. [PMID: 30919488 DOI: 10.1002/bies.201800241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA-binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA-protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin-1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure-dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Embarc-Buh Azman
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
14
|
Li Y, Firth AE, Brierley I, Cai Y, Napthine S, Wang T, Yan X, Kuhn JH, Fang Y. Programmed -2/-1 Ribosomal Frameshifting in Simarteriviruses: an Evolutionarily Conserved Mechanism. J Virol 2019; 93:e00370-19. [PMID: 31167906 PMCID: PMC6675879 DOI: 10.1128/jvi.00370-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
The -2/-1 programmed ribosomal frameshifting (-2/-1 PRF) mechanism in porcine reproductive and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nonstructural protein 2TF (nsp2TF) and nsp2N. This -2/-1 PRF mechanism is transactivated by a viral protein, nsp1β, and cellular poly(rC) binding proteins (PCBPs). Critical elements for -2/-1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in 11 simarteriviruses. However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven simarteriviruses can only facilitate -2 PRF to generate nsp2TF. The nsp1β of simian hemorrhagic fever virus (SHFV) was identified as a key factor that transactivates both -2 and -1 PRF, and the universally conserved Tyr111 and Arg114 in nsp1β are essential for this activity. In vitro translation experiments demonstrated the involvement of PCBPs in simarterivirus -2/-1 PRF. Using SHFV reverse genetics, we confirmed critical roles of nsp1β, slippery sequence, and C-rich motif in -2/-1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence analysis showed that key elements of -2/-1 PRF are highly conserved in all known arteriviruses except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, -2/-1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1βs of all non-EAV arteriviruses tested. Taken together, these data suggest that -2/-1 PRF is an evolutionarily conserved mechanism employed in non-EAV/-WPDV arteriviruses for the expression of additional viral proteins that are important for viral replication.IMPORTANCE Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species, and some of them cause lethal hemorrhagic fever disease, this group of viruses has been undercharacterized. Since wild nonhuman primates are historically important sources or reservoirs of human pathogens, there is concern that simarteriviruses may be preemergent zoonotic pathogens. Thus, molecular characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by simarteriviruses and other distantly related arteriviruses for the expression of additional viral proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of ribosome function in all living systems, the potential impact of the in-depth characterization of this novel mechanism reaches beyond the field of virology.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Sawsan Napthine
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Tao Wang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
- Yangzhou University, Yangzhou, People's Republic of China
| | - Xingyu Yan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|