1
|
Wang H, Gao S, Dissanayaka WL. Circ_0003764 Regulates the Osteogenic Differentiation of Periodontal Ligament Stem Cells. Int Dent J 2024; 74:1110-1119. [PMID: 38553328 DOI: 10.1016/j.identj.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 03/06/2024] [Indexed: 09/20/2024] Open
Abstract
INTRODUCTION AND AIMS Specific circular RNAs (circRNAs) have been proven to play crucial roles in osteogenesis in vitro and in vivo. This study aims to identify a certain circRNA involved in the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and explore its regulatory role. METHODS The expression of 5 candidate circRNAs (circ_0026344, circ_ACAP2, circ_0003764, circ_0008259, and circ_0060731) was detected by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) after PDLSCs were cultured in the osteogenic induction medium or medium supplemented with tumour necrosis factor-α (TNF-α, 10 ng/mL) for 3 and 7 days. The circRNA significantly decreased in both 3 and 7 days of osteogenic induction in PDLSCs and markedly increased in TNF-α-induced PDLSCs for 3 and 7 days screened. Identified circRNA was knocked down or overexpressed, and the effect on the osteogenic differentiation of PDLSCs was investigated by qRT-PCR, western blot, alkaline phosphatase (ALP) staining, and alizarin red S (ARS) staining. Cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were applied to detect the effect of the circRNA on the proliferation of PDLSCs. RESULTS qRT-PCR results showed that the expression of circ_0003764 was significantly decreased when PDLSCs were cultured in the osteogenic induction medium for 3 or 7 days, whereas it was dramatically increased in TNF-α-induced PDLSCs. Knockdown of circ_0003764 promoted the expression of the osteogenesis-related genes (RUNX2, ALP, OCN) and proteins (RUNX2, OCN), enhanced the ALP activity, and elevated the mineralization by PDLSCs, as shown by ARS staining. However, with the overexpression of circ_0003764, the osteogenic differentiation capacity of PDLSCs was significantly reduced. The CCK-8 and EdU results indicated that circ_0003764 could inhibit the proliferation of PDLSCs. CONCLUSION Circ_0003764 is involved in the osteogenesis process and inhibits the osteogenic differentiation and proliferation of PDLSCs. CLINICAL RELEVANCE This study indicates that circ_0003764 can serve as a diagnostic and therapeutic target in bone regeneration-related diseases treated by PDLSCs-based tissue engineering.
Collapse
Affiliation(s)
- Hong Wang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR; Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Shuting Gao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR.
| |
Collapse
|
2
|
Valenti MT, Zerlotin R, Cominacini M, Bolognin S, Grano M, Dalle Carbonare L. Exploring the Role of Circular RNA in Bone Biology: A Comprehensive Review. Cells 2024; 13:999. [PMID: 38920630 PMCID: PMC11201515 DOI: 10.3390/cells13120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression with diverse roles in various biological processes. In recent years, research into circRNAs' involvement in bone biology has gained significant attention, unveiling their potential as novel regulators and biomarkers in bone-related disorders and diseases. CircRNAs, characterized by their closed-loop structure, exhibit stability and resistance to degradation, underscoring their functional significance. In bone tissue, circRNAs are involved in critical processes such as osteogenic differentiation, osteoclastogenesis, and bone remodeling through intricate molecular mechanisms including microRNA regulation. Dysregulated circRNAs are associated with various bone disorders, suggesting their potential as diagnostic and prognostic biomarkers. The therapeutic targeting of these circRNAs holds promise for addressing bone-related conditions, offering new perspectives for precision medicine. Thus, circRNAs constitute integral components of bone regulatory networks, impacting both physiological bone homeostasis and pathological conditions. This review provides a comprehensive overview of circRNAs in bone biology, emphasizing their regulatory mechanisms, functional implications, and therapeutic potential.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (M.C.); (L.D.C.)
| | - Silvia Bolognin
- MERLN Institute, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands;
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (M.C.); (L.D.C.)
| |
Collapse
|
3
|
Guo J, Yang Y, Xiang Y, Guo X, Zhang S. Pluronic F127 hydrogel-loaded extracellular vesicles from adipose-derived mesenchymal stem cells promote tracheal cartilage regeneration via SCNN1B delivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 58:102748. [PMID: 38663789 DOI: 10.1016/j.nano.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (AMSC-EVs) have been highlighted as a cell-free therapy due to their regenerative capability to enhance tissue and organ regeneration. Herein, we aimed to examine the mechanism of PF127-hydrogel@AMSC-EVs in promoting tracheal cartilage defect repair. Based on bioinformatics methods, SCNN1B was identified as a key gene for the osteogenic differentiation of AMSCs induced by AMSC-EVs. EVs were isolated from rat AMSCs and then loaded onto thermo-sensitive PF-127 hydrogel to develop PF127-hydrogel@AMSC-EVs. It was established that PF127-hydrogel@AMSC-EVs could effectively deliver SCNN1B into AMSCs, where SCNN1B promoted AMSC osteogenic differentiation. The promotive effect was evidenced by enhanced ALP activity, extracellular matrix mineralization, and expression of s-glycosaminoglycan, RUNX2, OCN, collagen II, PERK, and ATF4. Furthermore, the in vivo experiments revealed that PF127-hydrogel@AMSC-SCNN1B-EVs stimulated tracheal cartilage regeneration in rats through PERK/ATF4 signaling axis activation. Therefore, PF127-hydrogel@AMSC-SCNN1B-EVs may be a novel cell-free biomaterial to facilitate tracheal cartilage regeneration and cartilage injury repair.
Collapse
Affiliation(s)
- Juncheng Guo
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Yijun Yang
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Yang Xiang
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xueyi Guo
- Central South University, Changsha 410083, PR China.
| | - Shufang Zhang
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
4
|
Daks A, Parfenyev S, Shuvalov O, Fedorova O, Nazarov A, Melino G, Barlev NA. Lysine-specific methyltransferase Set7/9 in stemness, differentiation, and development. Biol Direct 2024; 19:41. [PMID: 38812048 PMCID: PMC11137904 DOI: 10.1186/s13062-024-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Alexander Nazarov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 001000, Astana, Kazakhstan.
| |
Collapse
|
5
|
Saranya I, Akshaya R, Gomathi K, Mohanapriya R, He Z, Partridge N, Selvamurugan N. Circ_ST6GAL1-mediated competing endogenous RNA network regulates TGF-β1-stimulated matrix Metalloproteinase-13 expression via Runx2 acetylation in osteoblasts. Noncoding RNA Res 2024; 9:153-164. [PMID: 38035043 PMCID: PMC10686813 DOI: 10.1016/j.ncrna.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) stimulates matrix metalloproteinase-13 (MMP-13, a bone-remodeling gene) expression, and this effect requires p300-mediated Runx2 (Runt-related transcription factor 2) acetylation in osteoblasts. p300 and Runx2 are transcriptional coactivator and bone transcription factor, respectively, which play key roles in the regulation of bone-remodeling genes. Non-coding ribonucleic acids (ncRNAs), such as long ncRNAs (lncRNAs) and microRNAs (miRNAs), have been linked to both physiological and pathological bone states. In this study, we proposed that TGF-β1-mediated stimulation of MMP-13 expression is due to the downregulation of p300 targeting miRNAs in osteoblasts. We identified miR-130b-5p as one of the miRNAs downregulated by TGF-β1 in osteoblasts. Forced expression of miR-130b-5p decreased p300 expression, Runx2 acetylation, and MMP-13 expression in these cells. Furthermore, TGF-β1 upregulated circ_ST6GAL1, (a circular lncRNA) in osteoblasts; circRNA directly targeted miR-130b-5p. Antisense-mediated knockdown of circ_ST6GAL1 restored the function of miR-130b-5p, resulting in downregulation of p300, Runx2, and MMP-13 in these cells. Hence, our results suggest that TGF-β1 influences circ_ST6GAL1 to sponge and degrade miR-130b-5p, thereby promoting p300-mediated Runx2 acetylation for MMP-13 expression in osteoblasts. Thus, the circ_ST6GAL1/miR-130b-5p/p300 axis has potential significance in the treatment of bone and bone-related disorders.
Collapse
Affiliation(s)
- I. Saranya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R.L. Akshaya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - K. Gomathi
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R. Mohanapriya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - Z. He
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N.C. Partridge
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N. Selvamurugan
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| |
Collapse
|
6
|
Wang T, Zhang C, Xu L, Li X. Roles of circular RNAs in osteogenic/osteoclastogenic differentiation. Biofactors 2024; 50:6-15. [PMID: 37534732 DOI: 10.1002/biof.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023]
Abstract
The process of bone remodeling occurs and is regulated through interactions between osteoclasts, which resorb bone, and osteoblasts, which generate bone tissue. When the homeostatic balance between these two cell types is dysregulated, this can contribute to abnormal bone remodeling resulting in a loss of bone mass as is observed in osteoporosis (OP) and other forms of degenerative bone metabolic diseases. At present, details of molecular mechanism underlying the development of bone metabolic diseases such as OP remain to be elucidated. Circular RNAs (circRNAs) are small non-coding RNA molecules with a closed-loop structure that can regulate the differentiation of osteoclasts and osteoblasts. The present review provides a systematic overview of recent literature on the processes through which circRNAs regulate the dynamic balance between osteoblasts and osteoclasts that ultimately preserve bone homeostasis. It will also give insight that can shape current understanding of the pathogenesis of OP and other bone metabolic diseases to better guide diagnostic and treatment strategies for affected patients.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Chao Zhang
- Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Lin Xu
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Xingnuan Li
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| |
Collapse
|
7
|
Jiang X, Li W, Ge L, Lu M. Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies. Aging Dis 2023; 14:1651-1676. [PMID: 37196126 PMCID: PMC10529739 DOI: 10.14336/ad.2023.0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 05/19/2023] Open
Abstract
In cell transplantation therapy, mesenchymal stem cells(MSCs)are ideal seed cells due to their easy acquisition and cultivation, strong regenerative capacity, multi-directional differentiation abilities, and immunomodulatory effects. Autologous MSCs are better applicable compared with allogeneic MSCs in clinical practice. The elderly are the main population for cell transplantation therapy, but as donor aging, MSCs in the tissue show aging-related changes. When the number of generations of in vitro expansion is increased, MSCs will also exhibit replicative senescence. The quantity and quality of MSCs decline during aging, which limits the efficacy of autologous MSCs transplantation therapy. In this review, we examine the changes in MSC senescence as a result of aging, discuss the progress of research on mechanisms and signalling pathways of MSC senescence, and discuss possible rejuvenation strategies of aged MSCs to combat senescence and enhance the health and therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Xinchen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China, Changsha
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| |
Collapse
|
8
|
Ding L, Hao K, Sang L, Shen X, Zhang C, Fu D, Qi X. ATF2-driven osteogenic activity of enoxaparin sodium-loaded polymethylmethacrylate bone cement in femoral defect regeneration. J Orthop Surg Res 2023; 18:646. [PMID: 37653390 PMCID: PMC10470168 DOI: 10.1186/s13018-023-04017-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Polymethylmethacrylate (PMMA) bone cement loaded with enoxaparin sodium (PMMA@ES) has been increasingly highlighted to affect the bone repair of bone defects, but the molecular mechanisms remain unclear. We addressed this issue by identifying possible molecular mechanisms of PMMA@ES involved in femoral defect regeneration based on bioinformatics analysis and network pharmacology analysis. METHODS The upregulated genes affecting the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were selected through bioinformatics analysis, followed by intersection with the genes of ES-induced differentiation of BMSCs identified by network pharmacology analysis. PMMA@ES was constructed. Rat primary BMSCs were isolated and cultured in vitro in the proliferation medium (PM) and osteogenic medium (OM) to measure alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and the expression of RUNX2 and OCN using gain- or loss-of-function experiments. A rat femoral bone defect model was constructed to detect the new bone formation in rats. RESULTS ATF2 may be a key gene in differentiating BMSCs into osteoblasts. In vitro cell assays showed that PMMA@ES promoted the osteogenic differentiation of BMSCs by increasing ALP activity, extracellular matrix mineralization, and RUNX2 and OCN expression in PM and OM. In addition, ATF2 activated the transcription of miR-335-5p to target ERK1/2 and downregulate the expression of ERK1/2. PMMA@ES induced femoral defect regeneration and the repair of femoral defects in rats by regulating the ATF2/miR-335-5p/ERK1/2 axis. CONCLUSION The evidence provided by our study highlighted the ATF2-mediated mechanism of PMMA@ES in the facilitation of the osteogenic differentiation of BMSCs and femoral defect regeneration.
Collapse
Affiliation(s)
- Luobin Ding
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Orthopedic Surgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People's Republic of China
| | - Kangning Hao
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Linchao Sang
- Department of Orthopedic Surgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ce Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, People's Republic of China.
| | - Xiangbei Qi
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
9
|
Hjazi A, Sukmana BI, Ali SS, Alsaab HO, Gupta J, Ullah MI, Romero-Parra RM, Alawadi AHR, Alazbjee AAA, Mustafa YF. Functional role of circRNAs in osteogenesis: A review. Int Immunopharmacol 2023; 121:110455. [PMID: 37290324 DOI: 10.1016/j.intimp.2023.110455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The extracellular matrixes (ECM), as well as the microenvironmental signals, play an essential role in osteogenesis by regulating intercellular pathways. Recently, it has been demonstrated that a newly identified RNA, circular RNA, contributes to the osteogenesis process. Circular RNA (circRNA), the most recently identified RNA, is involved in the regulation of gene expression at transcription to translation levels. The dysregulation of circRNAs has been observed in several tumors and diseases. Also, various studies have shown that circRNAs expression is changed during osteogenic differentiation of progenitor cells. Therefore, understanding the role of circRNAs in osteogenesis might help the diagnosis as well as treatment of bone diseases such as bone defects and osteoporosis. In this review, circRNA functions and the related pathways in osteogenesis have been discussed.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Bayu Indra Sukmana
- Department of Oral Biology, Faculty of Dentistry, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Sally Saad Ali
- College of Dentistry, Al-Bayan University, Baghdad, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406 U.P., India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Ahmed H R Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| |
Collapse
|
10
|
Yang X, Wang Y, Rovella V, Candi E, Jia W, Bernassola F, Bove P, Piacentini M, Scimeca M, Sica G, Tisone G, Mauriello A, Wei L, Melino G, Shi Y. Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies. Biol Direct 2023; 18:40. [PMID: 37464416 PMCID: PMC10353240 DOI: 10.1186/s13062-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Ying Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233 China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
11
|
Luo J, Tian Z, Zhou Y, Xiao Z, Park SY, Sun H, Zhuang T, Wang Y, Li P, Zhao X. CircABCA13 acts as a miR-4429 sponge to facilitate esophageal squamous cell carcinoma development by stabilizing SRXN1. Cancer Sci 2023; 114:2835-2847. [PMID: 37017121 PMCID: PMC10323080 DOI: 10.1111/cas.15807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Circular RNAs (circRNAs) play a pivotal role in the tumorigenesis and progression of various cancers. However, the role and mechanisms of circABCA13 in esophageal squamous cell carcinoma (ESCC) are largely unknown. Here, we reported that circABCA13, a novel circular RNA generated by back-splicing of the intron of the ABCA13 gene, is highly expressed in ESCC tumor tissues and cell lines. Upregulation of circABCA13 correlated with TNM stage and a poor prognosis in ESCC patients. While knockdown of circABCA13 in ESCC cells significantly reduced cell proliferation, migration, invasion, and anchorage-independent growth, overexpression of circABCA13 facilitated tumor growth both in vitro and in vivo. In addition, circABCA13 directly binds to miR-4429 and sequesters miR-4429 from its endogenous target, SRXN1 mRNA, which subsequently upregulates SRXN1 and promotes ESCC progression. Consistently, overexpression of miR-4429 or knockdown of SRXN1 abolished malignant behavior promotion of ESCC results from circABCA13 overexpression in vitro and in vivo. Collectively, our study uncovered the oncogenic role of circABCA13 and its mechanism in ESCC, suggesting that circABCA13 could be a potential therapeutic target and a predictive biomarker for ESCC patients.
Collapse
Affiliation(s)
- Junwen Luo
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Zhongxian Tian
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
- Key Laboratory of Chest CancerShandong University, The Second Hospital of Shandong UniversityJinanChina
| | - Yongjia Zhou
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Zhaohua Xiao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Sun Young Park
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkUSA
| | - Hong Sun
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkUSA
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory MedicineXinxiang Medical UniversityXinxiangChina
| | - Yongjie Wang
- Department of Thoracic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Peiwei Li
- Institute of Medical SciencesThe Second Hospital of Shandong UniversityJinanChina
| | - Xiaogang Zhao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
- Key Laboratory of Chest CancerShandong University, The Second Hospital of Shandong UniversityJinanChina
| |
Collapse
|
12
|
He L, Zhou Q, Zhang H, Zhao N, Liao L. PF127 Hydrogel-Based Delivery of Exosomal CTNNB1 from Mesenchymal Stem Cells Induces Osteogenic Differentiation during the Repair of Alveolar Bone Defects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1083. [PMID: 36985977 PMCID: PMC10058633 DOI: 10.3390/nano13061083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Pluronic F127 (PF127) hydrogel has been highlighted as a promising biomaterial for bone regeneration, but the specific molecular mechanism remains largely unknown. Herein, we addressed this issue in a temperature-responsive PF127 hydrogel loaded with bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (Exos) (PF127 hydrogel@BMSC-Exos) during alveolar bone regeneration. Genes enriched in BMSC-Exos and upregulated during the osteogenic differentiation of BMSCs and their downstream regulators were predicted by bioinformatics analyses. CTNNB1 was predicted to be the key gene of BMSC-Exos in the osteogenic differentiation of BMSCs, during which miR-146a-5p, IRAK1, and TRAF6 might be the downstream factors. Osteogenic differentiation was induced in BMSCs, in which ectopic expression of CTNNB1 was introduced and from which Exos were isolated. The CTNNB1-enriched PF127 hydrogel@BMSC-Exos were constructed and implanted into in vivo rat models of alveolar bone defects. In vitro experiment data showed that PF127 hydrogel@BMSC-Exos efficiently delivered CTNNB1 to BMSCs, which subsequently promoted the osteogenic differentiation of BMSCs, as evidenced by enhanced ALP staining intensity and activity, extracellular matrix mineralization (p < 0.05), and upregulated RUNX2 and OCN expression (p < 0.05). Functional experiments were conducted to examine the relationships among CTNNB1, microRNA (miR)-146a-5p, and IRAK1 and TRAF6. Mechanistically, CTNNB1 activated miR-146a-5p transcription to downregulate IRAK1 and TRAF6 (p < 0.05), which induced the osteogenic differentiation of BMSCs and facilitated alveolar bone regeneration in rats (increased new bone formation and elevated BV/TV ratio and BMD, all with p < 0.05). Collectively, CTNNB1-containing PF127 hydrogel@BMSC-Exos promote the osteogenic differentiation of BMSCs by regulating the miR-146a-5p/IRAK1/TRAF6 axis, thus inducing the repair of alveolar bone defects in rats.
Collapse
Affiliation(s)
- Longlong He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Implant Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Qin Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Implant Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Hengwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Implant Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Lifan Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Implant Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
13
|
An F, Meng X, Yuan L, Niu Y, Deng J, Li Z, Liu Y, Xia R, Liu S, Yan C. Network regulatory mechanism of ncRNA on the Wnt signaling pathway in osteoporosis. Cell Div 2023; 18:3. [PMID: 36879309 PMCID: PMC9990358 DOI: 10.1186/s13008-023-00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Non-coding RNA (ncRNA) is a type of non-protein-coding RNA molecule transcribed from the genome which performs broad regulation of a variety of biological functions in human cells. The Wnt signaling pathway is highly conserved in multicellular organisms, playing an important role in their growth and development. Increasing evidence suggests that ncRNA can regulate cell biological function, enhance bone metabolism, and maintain normal bone homeostasis by interacting with the Wnt pathway. Studies have also demonstrated that the association of ncRNA with the Wnt pathway may be a potential biomarker for the diagnosis, evaluation of prognosis, and treatment of osteoporosis. The interaction of ncRNA with Wnt also performs an important regulatory role in the occurrence and development of osteoporosis. Targeted therapy of the ncRNA/Wnt axis may ultimately be the preferred choice for the treatment of osteoporosis in the future. The current article reviews the mechanism of the ncRNA/Wnt axis in osteoporosis and reveals the relationship between ncRNA and Wnt, thereby exploring novel molecular targets for the treatment of osteoporosis and providing theoretical scientific guidance for its clinical treatment.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Xiangrui Meng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yanqiang Niu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Deng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhaohui Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Shiqing Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
14
|
Marini F, Giusti F, Palmini G, Brandi ML. Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int 2023; 34:213-238. [PMID: 35982318 DOI: 10.1007/s00198-022-06523-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
UNLABELLED Wnt signaling and its bone tissue-specific inhibitor sclerostin are key regulators of bone homeostasis. The therapeutic potential of anti-sclerostin antibodies (Scl-Abs), for bone mass recovery and fragility fracture prevention in low bone mass phenotypes, has been supported by animal studies. The Scl-Ab romosozumab is currently used for osteoporosis treatment. INTRODUCTION Wnt signaling is a key regulator of skeletal development and homeostasis; germinal mutations affecting genes encoding components, inhibitors, and enhancers of the Wnt pathways were shown to be responsible for the development of rare congenital metabolic bone disorders. Sclerostin is a bone tissue-specific inhibitor of the Wnt/β-catenin pathway, secreted by osteocytes, negatively regulating osteogenic differentiation and bone formation, and promoting osteoclastogenesis and bone resorption. PURPOSE AND METHODS Here, we reviewed current knowledge on the role of sclerostin and Wnt pathways in bone metabolism and skeletal disorders, and on the state of the art of therapy with sclerostin-neutralizing antibodies in low-bone-mass diseases. RESULTS Various in vivo studies on animal models of human low-bone-mass diseases showed that targeting sclerostin to recover bone mass, restore bone strength, and prevent fragility fracture was safe and effective in osteoporosis, osteogenesis imperfecta, and osteoporosis pseudoglioma. Currently, only treatment with romosozumab, a humanized monoclonal anti-sclerostin antibody, has been approved in human clinical practice for the treatment of osteoporosis, showing a valuable capability to increase BMD at various skeletal sites and reduce the occurrence of new vertebral, non-vertebral, and hip fragility fractures in treated male and female osteoporotic patients. CONCLUSIONS Preclinical studies demonstrated safety and efficacy of therapy with anti-sclerostin monoclonal antibodies in the preservation/restoration of bone mass and prevention of fragility fractures in low-bone-mass clinical phenotypes, other than osteoporosis, to be validated by clinical studies for their approved translation into prevalent clinical practice.
Collapse
Affiliation(s)
- Francesca Marini
- Fondazione FIRMO Onlus, Italian Foundation for the Research on Bone Diseases, Via San Gallo 123, 50129, Florence, Italy
| | - Francesca Giusti
- Donatello Bone Clinic, Villa Donatello Hospital, Sesto Fiorentino, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione FIRMO Onlus, Italian Foundation for the Research on Bone Diseases, Via San Gallo 123, 50129, Florence, Italy.
- Donatello Bone Clinic, Villa Donatello Hospital, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
15
|
Saranya I, Akshaya R, Selvamurugan N. Regulation of Wnt signaling by non-coding RNAs during osteoblast differentiation. Differentiation 2022; 128:57-66. [DOI: 10.1016/j.diff.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
16
|
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that widely exist in eukaryotes. As a new focus in the field of molecular regulation, circRNAs have attracted much attention in recent years. Previous studies have confirmed that circRNAs are associated with many physiological and pathological processes. CircRNAs also participate in the regulation of stem cells. Stem cells have the properties of self-renewal and differentiation, which make stem cell therapy popular. CircRNAs may serve as new targets in stem cell therapy due to their regulation in stem cells. However, the underlying relationships between circRNAs and stem cells are still being explored. In this review, we briefly summarize the effects of circRNAs on stem cells, in the context of biological activities, aging and apoptosis, and aberrant changes. Moreover, we also examine the biological roles of stem cell-derived exosomal circRNAs. We believe our review will provide insights into the effects of circRNAs on stem cells.
Collapse
|
17
|
lncRNA FGD5-AS1 Regulates Bone Marrow Stem Cell Proliferation and Apoptosis by Affecting miR-296-5p/STAT3 Axis in Steroid-Induced Osteonecrosis of the Femoral Head. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9364467. [PMID: 35190765 PMCID: PMC8858055 DOI: 10.1155/2022/9364467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/27/2022]
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a common hip joint disease, which is more harmful and seriously affects the lives of patients. This study aims to clarify the regulatory mechanism of lncRNA FGD5-AS1 in ONFH. Methods The expression of the protein and mRNA was detected by RT-qPCR and Western blot assay. The regulatory mechanism of lncRNA FGD5-AS1 was detected by the dual-luciferase reporter assay, CCK-8 assay, and flow cytometry assay. Results Dex can inhibit cell proliferation and differentiation and induce apoptosis in hBMSCs in a dose-dependent manner. Overexpression of lncRNA FGD5-AS1 promoted cell proliferation and restrained apoptosis in Dex-treated hBMSCs. In addition, lncRNA FGD5-AS1 acts as a sponge for miR-296-5p. Also, miR-296-5p directly targets STAT3. More importantly, miR-296-5p and STAT3 can affect the function of lncRNA FGD5-AS1 in Dex-treated hBMSCs. Conclusion lncRNA FGD5-AS1 promotes cell proliferation and inhibits apoptosis in steroid-induced ONFH through acting as a sponge for miR-296-5p and upregulation of STAT3.
Collapse
|