1
|
Fan S, Cai Y, Wei Y, Yang J, Gao J, Yang Y. Sarcopenic obesity and osteoporosis: Research progress and hot spots. Exp Gerontol 2024; 195:112544. [PMID: 39147076 DOI: 10.1016/j.exger.2024.112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Sarcopenic obesity (SO) and osteoporosis (OP) are associated with aging and obesity. The pathogenesis of SO is complex, including glucolipid and skeletal muscle metabolic disorders caused by inflammation, insulin resistance, and other factors. Growing evidence links muscle damage to bone loss. Muscle-lipid metabolism disorders of SO disrupt the balance between bone formation and bone resorption, increasing the risk of OP. Conversely, bones also play a role in fat and muscle metabolism. In the context of aging and obesity, the comprehensive review focuses on the effects of mechanical stimulation, mesenchymal stem cells (MSCs), chronic inflammation, myokines, and adipokines on musculoskeletal, at the same time, the impact of osteokines on muscle-lipid metabolism were also analyzed. So far, exercise combined with diet therapy is the most effective strategy for increasing musculoskeletal mass. A holistic treatment of musculoskeletal diseases is still in the preliminary exploration stage. Therefore, this article aims to improve the understanding of musculoskeletal -fat interactions in SO and OP, explores targets that can provide holistic treatment for SO combined with OP, and discusses current limitations and challenges. We hope to provide relevant ideas for developing specific therapies and improving disease prognosis in the future.
Collapse
Affiliation(s)
- Shangheng Fan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yunqin Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China.
| | - Yan Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Cianni L, Di Gialleonardo E, Coppola D, Capece G, Libutti E, Nannerini M, Maccauro G, Vitiello R. Current Evidence Using Pulsed Electromagnetic Fields in Osteoarthritis: A Systematic Review. J Clin Med 2024; 13:1959. [PMID: 38610722 PMCID: PMC11012419 DOI: 10.3390/jcm13071959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Background: Osteoarthritis (OA) significantly impacts patients' quality of life and negatively affects public healthcare costs. The aim of this systematic review is to identify the effectiveness of pulsed electromagnetic fields (PEMFs) in OA treatment across different anatomical districts, determining pain reduction and overall improvement in the patient's quality of life. (2) Methods: In this systematic review following PRISMA guidelines, PubMed and Google Scholar were searched for randomized controlled trials involving patients with osteoarthritis undergoing PEMF therapy. Seventeen studies (1197 patients) were included. (3) Results: PEMF therapy demonstrated positive outcomes across various anatomical districts, primarily in knee osteoarthritis. Pain reduction, assessed through VAS and WOMAC scores, showed significant improvement (60% decrease in VAS, 42% improvement in WOMAC). The treatment duration varied (15 to 90 days), with diverse PEMF devices used. Secondary outcomes included improvements in quality of life, reduced medication usage, and enhanced physical function. (4) Conclusions: Diverse PEMF applications revealed promising results, emphasizing pain reduction and improvement in the quality of life of patients. The variability in the treatment duration and device types calls for further investigation. This review informs future research directions and potential advancements in optimizing PEMF therapies for diverse osteoarthritic manifestations.
Collapse
Affiliation(s)
- Luigi Cianni
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emidio Di Gialleonardo
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
| | - Donato Coppola
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
| | - Giacomo Capece
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
| | | | | | - Giulio Maccauro
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaele Vitiello
- Orthopaedics and Trauma Surgery Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.C.); (E.D.G.); (D.C.); (G.M.); (R.V.)
- Department of Ageing, Neurosciences, Head-Neck and Orthopedics Sciences, Orthopedics and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
Wang L, Pan Y, Liu M, Sun J, Yun L, Tu P, Wu C, Yu Z, Han Z, Li M, Guo Y, Ma Y. Wen-Shen-Tong-Luo-Zhi-Tong Decoction regulates bone-fat balance in osteoporosis by adipocyte-derived exosomes. PHARMACEUTICAL BIOLOGY 2023; 61:568-580. [PMID: 36999351 PMCID: PMC10071966 DOI: 10.1080/13880209.2023.2190773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Wen-Shen-Tong-Luo-Zhi-Tong (WSTLZT) Decoction is a Chinese prescription with antiosteoporosis effects, especially in patients with abnormal lipid metabolism. OBJECTIVE To explore the effect and mechanism of WSTLZT on osteoporosis (OP) through adipocyte-derived exosomes. MATERIALS AND METHODS Adipocyte-derived exosomes with or without WSTLZT treated were identified by transmission electron microscopy, nanoparticle tracking analysis (NTA) and western blotting (WB). Co-culture experiments for bone marrow mesenchymal stem cells (BMSCs) and exosomes were performed to examine the uptake and effect of exosome in osteogenesis and adipogenic differentiation of BMSC. MicroRNA profiles, luciferase and IP were used for exploring specific mechanisms of exosome on BMSC. In vivo, 80 Balb/c mice were randomly divided into four groups: Sham, Ovx, Exo (30 μg exosomes), Exo-WSTLZT (30 μg WSTLZT-exosomes), tail vein injection every week. After 12 weeks, the bone microstructure and marrow fat distribution were analysed by micro-CT. RESULTS ALP, Alizarin red and Oil red staining showed that WSTLZT-induced exosomes from adipocyte can regulate osteoblastic and adipogenic differentiation of BMSC. MicroRNA profiles observed that WSTLZT treatment resulted in 87 differentially expressed miRNAs (p < 0.05). MiR-122-5p with the greatest difference was screened by q-PCR (p < 0.01). The target relationship between miR-122-5p and SPRY2 was tested by luciferase and IP. MiR-122-5p negatively regulated SPRY2 and elevated the activity of MAPK signalling pathway, thereby regulating the osteoblastic and adipogenic differentiation of BMSC. In vivo, exosomes can not only improve bone microarchitecture but also significantly reduce accumulation of bone marrow adipose. CONCLUSIONS WSTLZT can exert anti-OP effect through SPRY2 via the MAKP signalling by miR-122-5p carried by adipocyte-derived exosomes.
Collapse
Affiliation(s)
- Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University and Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- TCM Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengmig Liu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Yun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziceng Yu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhitao Han
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Hu H, Yang W, Zeng Q, Chen W, Zhu Y, Liu W, Wang S, Wang B, Shao Z, Zhang Y. Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders. Biomed Pharmacother 2020; 131:110767. [PMID: 33152929 DOI: 10.1016/j.biopha.2020.110767] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that an exogenous electromagnetic field might be involved in many biologic processes which are of great importance for therapeutic interventions. Pulsed electromagnetic fields (PEMFs) are known to be a noninvasive, safe and effective therapy agent without apparent side effects. Numerous studies have shown that PEMFs possess the potential to become a stand-alone or adjunctive treatment modality for treating musculoskeletal disorders. However, several issues remain unresolved. Prior to their widely clinical application, further researches from well-designed, high-quality studies are still required to standardize the treatment parameters and derive the optimal protocol for health-care decision making. In this review, we aim to provide current evidence on the mechanism of action, clinical applications, and controversies of PEMFs in musculoskeletal disorders.
Collapse
Affiliation(s)
- Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qianwen Zeng
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - YanBin Zhu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingze Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| |
Collapse
|
5
|
Abstract
Osteoarthritis (OA) is a degenerative disease of the articular cartilage with subchondral bone lesions. Osteoarthritis etiologies are mainly related to age, obesity, strain, trauma, joint congenital anomalies, joint deformities, and other factors. Osteoarthritis seriously affects the quality of life; however, there is no effective way to cure osteoarthritis. Aerobic exercise refers to a dynamic rhythmic exercise involving the large muscle groups of the body with aerobic metabolism. More and more evidence shows that exercise has become a useful tool for the treatment of osteoarthritis. This chapter will discuss the role of exercise in the prevention and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang T, Yang L, Jiang J, Liu Y, Fan Z, Zhong C, He C. Pulsed electromagnetic fields: promising treatment for osteoporosis. Osteoporos Int 2019; 30:267-276. [PMID: 30603841 DOI: 10.1007/s00198-018-04822-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
Osteoporosis (OP) is considered to be a well-defined disease which results in high morbidity and mortality. In patients diagnosed with OP, low bone mass and fragile bone strength have been demonstrated to significantly increase risk of fragility fractures. To date, various anabolic and antiresorptive therapies have been applied to maintain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs) are employed to treat patients suffering from delayed fracture healing and nonunions. Although PEMFs stimulate osteoblastogenesis, suppress osteoclastogenesis, and influence the activity of bone marrow mesenchymal stem cells (BMSCs) and osteocytes, ultimately leading to retention of bone mass and strength. However, whether PEMFs could be taken into clinical use to treat OP is still unknown. Furthermore, the deeper signaling pathways underlying the way in which PEMFs influence OP remain unclear.
Collapse
Affiliation(s)
- T Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - L Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - J Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Y Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Z Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - C Zhong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - C He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Xi J, Li Q, Luo X, Li J, Guo L, Xue H, Wu G. Epigallocatechin‑3‑gallate protects against secondary osteoporosis in a mouse model via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2018; 18:4555-4562. [PMID: 30221714 DOI: 10.3892/mmr.2018.9437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG) is a polyphenolic compound extracted and isolated from green tea, which has a variety of important biological activities in vitro and in vivo, including anti‑tumor, anti‑oxidation, anti‑inflammation and lowering blood pressure. The aim of the present study was to investigate the protective effect of EGCG against secondary osteoporosis in a mouse model via the Wnt/β‑catenin signaling pathway. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting were used to analyze runt‑related transcription factor 2 and osterix mRNA expression, and the protein expression of cyclin D1, Wnt and β‑catenin, and suppressed peroxisome proliferator‑activated receptor γ protein expression. The protective effect of EGCG against secondary osteoporosis was examined and its potential mechanism was analyzed. Treatment with EGCG significantly decreased serum calcium, urinary calcium, body weight and body fat, and increased leptin levels in mice with secondary osteoporosis. In addition, EGCG treatment significantly inhibited the structure score of articular cartilage and cancellous bone in proximal tibia metaphysis in mice with secondary osteoporosis. Treatment also significantly decreased alkaline phosphatase activity, runt‑related transcription factor 2 and osterix mRNA expression. EGCG also significantly induced the protein expression of cyclin D1, Wnt and β‑catenin, and suppressed peroxisome proliferator‑activated receptor γ protein expression in mice with secondary osteoporosis. Taken together, these results suggest that EGCG may be a possible new drug in clinical settings.
Collapse
Affiliation(s)
- Jiancheng Xi
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Qinggui Li
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaobo Luo
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Jinlong Li
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Lixin Guo
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Haibin Xue
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Guangsen Wu
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
8
|
Jia X, Jiang C, Tao J, Li Y, Zhou Y, Chen LD. Effects of core strength training combined with Tai Chi Chuan for the musculoskeletal system and cardiopulmonary function in older adults: A study protocol for a randomized controlled trial. Medicine (Baltimore) 2018; 97:e12024. [PMID: 30170410 PMCID: PMC6392686 DOI: 10.1097/md.0000000000012024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND According to the national census, China has gradually become an aging society; moreover, aging has become an irreversible worldwide trend in the twenty-first century. Aging can lead to decreased physical function, mobility, cardiopulmonary function and quality of life (QOL). The feasibility and benefits of core strength training (CST) and Tai Chi Chuan (TCC) in older adults (including improving cardiovascular, musculoskeletal, and mental health outcomes) have been confirmed in previous studies. To date, these exercise programmes have not been systematically compared, and the potential benefits of their combined use have not been tested. The primary objective of this study protocol is to evaluate the effects of CST compared to those of TCC on the function of the musculoskeletal system and the cardiopulmonary system in older adults.The second objective is to test the effectiveness of combined physical training that incorporates CST and TCC. METHODS A randomized, single-blind, parallel-controlled trial will be conducted. Three hundred eighty-four participants who meet the eligibility criteria will be randomly allocated into a control group, a CST group, a TCC group, and a combined group in a 1:1:1:1 ratio. Participants in the CST group and the TCC group will respectively receive CST and TCC training at a frequency of 1 hour per day, 5 days per week, totally 12 weeks. Participants in the combined group will receive 30 minutes CST and 30 minutes TCC training per day, 5 days per week, totally 12 weeks. No specific exercises will be required of the participants in the control group. Both musculoskeletal and cardiopulmonary function outcomes, including bone density detection, balance and coordination ability, walking ability, pain visual analogue scale (VAS) score, fall risk assessment, activities of daily living, pulmonary function tests, color sonography and electrocardiogram, will be evaluated by blinded operators at baseline, 13 weeks and 25 weeks (follow-up period). DISCUSSION The results of this study protocol are expected to clarify the synergistic effect of CST and TCC training on musculoskeletal and cardiopulmonary function in older adults. Furthermore, these findings will confirm whether combined or exclusive CST and TCC training, is more effective at improving functional outcomes in the elderly. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR-IOR-17010769. Registration date: March 3, 2017.
Collapse
Affiliation(s)
- Xiaofei Jia
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Cai Jiang
- Fujian Provincial Hospital, Fuzhou, China
| | - Jing Tao
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yinyan Li
- Outpatient Department of the Affiliated Medical Hall of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Zhou
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Li-dian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
9
|
Yin Y, Chen P, Yu Q, Peng Y, Zhu Z, Tian J. The Effects of a Pulsed Electromagnetic Field on the Proliferation and Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Med Sci Monit 2018; 24:3274-3282. [PMID: 29775452 PMCID: PMC5987610 DOI: 10.12659/msm.907815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background A low frequency pulsed electromagnetic field (PEMF) has been confirmed to play an important role in promoting the osteogenic differentiation of human bone marrow stem cells (BMSCs). Adipose-derived stem cells (ASCs) possess some attractive characteristics for clinical application compared to BMSCs, such as abundant stem cells from lipoaspirates, faster growth, less discomfort and morbidity during surgery. ASCs can become adipocytes, osteoblasts, chondrocytes, myocytes, neurocytes, and other cell types. Thus, ASCs might be a good alternative in clinical work involving treatment with PEMF. Material/Methods Human ASCs (hASCs)were divided into a control group (without PEMF exposure) and an experimental group (PEMF for two hours per day). We examined the effect of PEMF on promoting cell proliferation and osteogenic differentiation from several aspects: CCK-8 proliferation assay, RNA extraction, qRT-PCR detection, western blotting, and immunofluorescence staining experiments. Results PEMF could promote cell proliferation of human ASCs (hASCs) at an early stage as determined by CCK-8 assay. A specific intensity (1 mT) and frequency (50 Hz) of PEMF promoted osteogenic differentiation in hASCs in alkaline phosphatase (ALP) staining experiments. In addition, bone-related gene expression increased after two weeks of PEMF exposure, the protein expression of OPN, OCN, and RUNX-2 also increased after a longer period (three weeks) of PEMF treatment as determined by western blotting and immunofluorescence staining. Conclusions We found for the first time that PMEF has a role in stimulating cell proliferation of hASCs at an early period, subsequently promoting bone-related gene expression and inducing the expression of related proteins to stimulate osteogenic differentiation.
Collapse
Affiliation(s)
- Yukun Yin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Ping Chen
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Qiang Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Yan Peng
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - ZeHao Zhu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital,Southern Medical University, Haizhu, Guangzhou, China (mainland)
| |
Collapse
|
10
|
Lei Y, Su J, Xu H, Yu Q, Zhao M, Tian J. Pulsed electromagnetic fields inhibit osteoclast differentiation in RAW264.7 macrophages via suppression of the protein kinase B/mammalian target of rapamycin signaling pathway. Mol Med Rep 2018; 18:447-454. [PMID: 29749519 DOI: 10.3892/mmr.2018.8999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
When bone resorption, aided by the activity of osteoclasts, exceeds bone formation induced by osteoblasts, bone metabolism loses equilibration, which results in the development of bone diseases, including osteoporosis. Pulsed electromagnetic fields (PEMFs) are known to be involved in various biological processes, including cell proliferation, differentiation and apoptosis. However, the exact mechanism of action of osteoclasts remains poorly understood. In the present study, the effects of PEMFs on osteoclast differentiation and associated signaling pathways were systematically investigated in RAW264.7 macrophages. RAW264.7 cells were induced by receptor activator of nuclear factor‑κB ligand (RANKL) to obtain osteoclasts in vitro. The results of the present study demonstrated that PEMF exposure decreased osteoclast formation, limited tartrate‑resistant acid phosphatase activity, contracted bone resorption area and inhibited osteoclastic specific gene and protein expression. Furthermore, western blot analysis indicated that PEMFs distinctly abolished the upregulation of phosphorylated‑protein kinase B (Akt), ‑mammalian target of rapamycin (mTOR) and ‑ribosome S6 protein kinase (p70S6K) induced by RANKL, which was consistent with the effects of pharmacological inhibitor perifosine and rapamycin. Therefore, the present study suggested that PEMFs reduced osteoclast formation from RAW264.7 macrophages via inhibition of the Akt/mTOR signaling pathway. These findings provided novel insight into the mechanisms through which PEMFs suppress osteoclast differentiation.
Collapse
Affiliation(s)
- Yutian Lei
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jinyu Su
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Xu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qiang Yu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ming Zhao
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Tian
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
11
|
Xiao Y, Li B, Liu J. MicroRNA‑148a inhibition protects against ovariectomy‑induced osteoporosis through PI3K/AKT signaling by estrogen receptor α. Mol Med Rep 2018; 17:7789-7796. [PMID: 29620276 DOI: 10.3892/mmr.2018.8845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/11/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effect of microRNA‑148a downregulation on osteoporosis by using an ovariectomized rat model. Reverse transcription‑quantitative polymerase chain reaction was used to analyze microRNA‑148a expression levels, MTT and flow cytometry assays were used to examine cytotoxicity and apoptosis, respectively. The gap‑associated proteins were quantified using western blotting. The expression of microRNA‑148a was significantly increased in osteoporosis rat following ovariectomy. Overexpression of microRNA‑148a significantly promoted apoptosis and inhibited cell growth, whereas downregulation of microRNA‑148a significantly reduced apoptosis and increased cell growth. Overexpression of microRNA‑148a significantly reduced estrogen receptor a (ERα) protein expression and suppressed phosphoinositide‑3‑kinase regulatory subunit 1 (PI3K) and phosphorylated‑protein kinase B (AKT) protein expression in osteoblasts in vitro. The inhibition of ERα increased the microRNA‑148a effect on apoptosis in osteoblasts in vitro. Subsequently, LY294002, an PI3K inhibitor, significantly increased the effect of microRNA‑148a on apoptosis in osteoblasts in vitro. The findings of the present study revealed that anti‑microRNA‑148a protected cells against ovariectomy‑induced osteoporosis through ERα by PI3K/AKT signaling.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Bing Li
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Jun Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
12
|
Zhu S, He H, Zhang C, Wang H, Gao C, Yu X, He C. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics 2017; 38:406-424. [PMID: 28665487 DOI: 10.1002/bem.22065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/05/2017] [Indexed: 02/05/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siyi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chi Zhang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Haiming Wang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengfei Gao
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
13
|
To assess differential features of marrow adiposity between postmenopausal women with osteoarthritis and osteoporosis using water/fat MRI. Menopause 2016; 24:105-111. [PMID: 27648658 DOI: 10.1097/gme.0000000000000732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess the differential features of marrow adiposity between osteoarthritis (OA) and osteoporosis (OP) in postmenopausal women using water/fat MRI. METHODS This cross-sectional study included 97 postmenopausal women (OA [n = 25], OA + osteopenia [n = 27], OA + OP [n = 23], and OP groups [n = 22]). Water/fat MRI, dual-energy x-ray absorptiometry and biochemical analysis were performed to assess vertebral marrow fat fraction, bone mineral density, and bone biomarkers, respectively. Harris Hip Score was recorded to evaluate hip function. RESULTS There were significant differences in marrow fat content among the OA, OA + osteopenia, and OA + OP groups, between OP and OA participants with normal bone mass or osteopenia (all P < 0.05); no significant difference was observed between OA + OP and OP groups. Serum levels of leptin and β-Crosslaps in OA with normal bone mass and osteopenic OA groups were higher than in OP group. Marrow fat fraction was inversely correlated with Harris Hip Score (r = -0.371, P = 0.013), bone mineral density (r = -0.554, P = 0.009) and leptin levels (r = -0.610, P < 0.001). In multivariate regression analysis, marrow fat fraction was found to have a consistent and unchanged inverse association with leptin levels (Sβ = -0.311, P = 0.002) and bone mineral density (Sβ = -0.265, P = 0.006) after adjusting for age, years since menopause, and body mass index. CONCLUSIONS Postmenopausal OA with OP have a phenotype with higher marrow adiposity. OA and OP could coexist, for the presence of a specific subgroup of OA with increased marrow fat accumulation and high risk of developing OP.
Collapse
|