1
|
Lv M, Feng Y, Zeng S, Zhang Y, Shen W, Guan W, E X, Zeng H, Zhao R, Yu J. Network pharmacology in combination with bibliometrics analysis on the mechanism of compound Kushen injection in the treatment of radiation pneumonia and lung cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9789-9809. [PMID: 38918234 DOI: 10.1007/s00210-024-03238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Radiation pneumonia is a common adverse reaction during radiotherapy in lung cancer patients, which negatively impacts the quality of life and survival of patients. Recent studies have shown that compound Kushen injection (CKI), a traditional Chinese medicine (TCM), has great anti-inflammatory and anticancer potential, but the mechanism is still unclear. We used CiteSpace, the R package "bibliometrix," and VOSviewers to perform a bibliometrics analysis of 162 articles included from the Web of Science core collection. A network pharmacology-based approach was used to screen effective compounds, screen and predict target genes, analyze biological functions and pathways, and construct regulatory networks and protein interaction networks. Molecular docking experiments were used to identify the affinity of key compounds and core target. The literature metrology analysis revealed that over 90% of the CKI-related studies were conducted by Chinese scholars and institutions, with a predominant focus on tumors, while research on radiation pneumonia remained limited. Our investigation identified 60 active ingredients of CKI, 292 genes associated with radiation pneumonia, 533 genes linked to lung cancer, and 37 common targets of CKI in the treatment of both radiation pneumonia and lung cancer. These core potential targets were found to be significantly associated with the OS of lung cancer patients, and the key compounds exhibited a good docking affinity with these targets. Additionally, GO and KEGG enrichment analysis highlighted that the bioinformatics annotation of these common genes mainly involved ubiquitin protein ligase binding, cytokine receptor binding, and the PI3K/Akt signaling pathway. Our study revealed that the main active components of CKI, primarily quercetin, luteolin, and naringin, might act on major core targets, including AKT1, PTGS2, and PPARG, and further regulated key signaling pathways such as the PI3K/Akt pathway, thereby playing a crucial role in the treatment of radiation pneumonia and lung cancer. Moreover, this study had a certain promotional effect on further clinical application and provided a theoretical basis for subsequent experimental research.
Collapse
Affiliation(s)
- Minghe Lv
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Yue Feng
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Su Zeng
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Yang Zhang
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Wenhao Shen
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Wenhui Guan
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Xiangyu E
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China
| | - Hongwei Zeng
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China.
| | - Ruping Zhao
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China.
| | - Jingping Yu
- Department of Radiotherapy, Shuguang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Zhang Heng Road, Pudong New Area, Shanghai, 201203, China.
| |
Collapse
|
2
|
Zhang S, Wang J, Zhang H. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Taxus chinensis against non-small cell lung cancer. Medicine (Baltimore) 2023; 102:e35826. [PMID: 37933017 PMCID: PMC10627628 DOI: 10.1097/md.0000000000035826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Taxus chinensis (TC) has tremendous therapeutic potential in alleviating non-small cell lung cancer (NSCLC), but the mechanism of action of TC remains unclear. Integrated bioinformatics and network pharmacology were employed in this study to explore the potential targets and molecular mechanism of TC against NSCLC. Data obtained from public databases were combined with appropriate bioinformatics tools to identify the common targets for TC and NSCLC. Common targets were uploaded to the Metascape database for gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway analyses. A protein-protein interaction network was established, and topological analysis was performed to obtain hub genes. The expression of the hub genes in NSCLC tissues and their consequent effects on the prognosis of patients with NSCLC were confirmed using the Human Protein Atlas database and appropriate bioinformatics tools. Molecular docking was used to verify the binding affinity between the active ingredients and hub targets. We found 401 common targets that were significantly enriched in the cancer, MAPK signaling, and PI3K/Akt signaling pathways. Proto-oncogene tyrosine-protein kinase Src (SRC), mitogen-activated protein kinase 1, phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1), AKT serine/threonine kinase 1 (AKT1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and lymphocyte-specific protein tyrosine kinase were identified as the hub genes. Immunohistochemical results confirmed that the expression of SRC, mitogen-activated protein kinase 1, PIK3R1, AKT1, and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha was upregulated in the NSCLC tissues, while survival analysis revealed the expression of SRC, AKT1, PIK3R1, and lymphocyte-specific protein tyrosine kinase was closely related to the prognosis of patients with NSCLC. Molecular docking results confirmed all bioactive ingredients present in TC strongly bound to hub targets. We concluded that TC exhibits an anti-NSCLC role through multi-target combination and multi-pathway cooperation.
Collapse
Affiliation(s)
- Shujuan Zhang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jun Wang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hailong Zhang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Huang Z, Wu C, Zhou W, Lu S, Tan Y, Wu Z, You R, Stalin A, Guo F, Zhang J, Liu P, Wang W, Duan X, You L, Wu J. Compound Kushen Injection inhibits epithelial-mesenchymal transition of gastric carcinoma by regulating VCAM1 induced by the TNF signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154984. [PMID: 37487253 DOI: 10.1016/j.phymed.2023.154984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Gastric carcinoma (GC) treatment needs to be developed rapidly. Compound Kushen Injection (CKI), a formula from traditional Chinese medicine, has been used clinically in combination with chemotherapy to treat GC with satisfactory results. However, the molecular mechanism by which CKI acts to cure GC is still unclear. METHODS In the present study, in vivo and in vitro experiments were used to assess the efficacy of CKI. Using ceRNA microarray and TMT technologies, the molecular mechanism of CKI was further investigated at the transcriptional and protein levels, and a bioinformatics approach was employed to investigate and functionally validate key CKI targets in GC. RESULTS When combined with cisplatin (DDP), CKI significantly increased its efficacy in preventing the proliferation and metastasis of GC cells and malignant-looking tumors in mice. High-throughput sequencing data and bioinformatics analysis showed that CKI regulated the TNF signaling pathway, epithelial-mesenchymal transition (EMT), with VCAM1 as a key target. The transcription factors CEBPB, JUN, RELA, NFKB1, the EMT mesenchymal-like cell markers N-cadherin and vimentin, as well as the expression of VCAM1 and its upstream signaling driver TNF, were all downregulated by CKI. In contrast, the expression of the EMT epithelial-like cell marker E-cadherin was upregulated. CONCLUSION CKI can effectively inhibit GC growth and metastasis, improve body's immunity, and protect normal tissues from damage. The molecular mechanism by which CKI inhibits metastasis of GC is by regulating VCAM1 induced by the TNF signaling pathway to inhibit EMT of GC. Our results provide an important clue to clarify precisely the multi-scale molecular mechanism of CKI in the treatment of GC.
Collapse
Affiliation(s)
- Zhihong Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Zhou
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shan Lu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingying Tan
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhishan Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongli You
- Shanxi Zhendong Pharmaceutical Co., Ltd., Shanxi 47100, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fengying Guo
- School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengyun Liu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Shanxi Zhendong Pharmaceutical Co., Ltd., Shanxi 47100, China
| | - Xiaoxia Duan
- Beijing Zestbridge Medical Technology Co., Ltd., Beijing, 100176, China.
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Liu X, Bai M, Li H, Ye P, Duan X, Wu C, Huang Z, Lu S, Zhang J, Zhao Z, Guo F, You R, Qin W, Wang W, Han A, Shen L, Wang Y, Zhao Z, Luo H, Wu J. Single-cell RNA-sequencing uncovers compound kushen injection synergistically improves the efficacy of chemotherapy by modulating the tumor environment of breast cancer. Front Immunol 2022; 13:965342. [DOI: 10.3389/fimmu.2022.965342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDue to lack of enough specific targets and the immunosuppressive tumor microenvironment (TME) of triple-negative breast cancer (TNBC), TNBC patients often cannot benefit from a single treatment option. This study aims to explore the regulatory effects of Compound kushen injection (CKI) plus chemotherapy on the TME of TNBC from a single cell level.MethodsA mouse TNBC model in BALB/c mice was established to evaluate the antitumor efficacy and toxicity of CKI combined with chemotherapy. Flow cytometry was used to observe the influence of CKI on the lymphocyte populations in the tumor bearing mice. Both bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) were applied to portray the modulation of CKI combined with chemotherapy on the TME of TNBC mice.ResultsCKI significantly enhanced the anticancer activity of chemotherapy in vivo with no obvious side effects. Flow cytometry results revealed a significantly higher activation of CD8+ T lymphocytes in the spleens and tumors of the mice with combination therapy. Bulk RNA-seq indicated that CKI could promote the cytotoxic immune cell infiltrating into tumor tissues. Meanwhile, scRNA-seq further revealed that CKI combined with chemotherapy could enhance the percentage of tumor-infiltrating CD8+ T cells, inhibit tumor-promoting signaling pathways, and promote T cell activation and positive regulation of immune response. In addition, CKI showed obvious anticancer activity against MDA-MB-231 breast tumor cells in vitro.ConclusionsThe combination of CKI and chemotherapy might provide a higher efficiency and lower toxicity strategy than a single chemotherapy drug for TNBC. CKI potentiates the anti-TNBC effects of chemotherapy by activating anti-tumor immune response in mice.
Collapse
|
5
|
Xu PL, Cheng CS, Jiao JY, Chen H, Chen Z, Li P. Matrine injection inhibits pancreatic cancer growth via modulating carbonic anhydrases- a network pharmacology-based study with in vitro validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114691. [PMID: 34597654 DOI: 10.1016/j.jep.2021.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Matrine injection is a complex mixture of plant bioactive substances extracted from Sophora flavescens Aiton and Smilax glabra Roxb. Since its approval by the Chinese Food and Drug Administration (CFDA) in 1995, Matrine injection has been clinically used as a complementary and alternative treatment for various cancers; however, the underlying mechanism of pancreatic cancer treatment is yet to be elucidated. AIM OF THE STUDY The present study explores the potential mechanism of matrine injection on pancreatic cancer through network pharmacology technique and in vitro experimental validation. MATERIALS AND METHODS Genes differentially expressed in pancreatic cancer were obtained from the Gene Expression Omnibus (GEO) database (GSE101448). The potential active components of matrine injection were selected following a literature search, and target prediction was performed by the SwissTarget Prediction database. Overlapping genes associated with survival were screened by the Gene Expression Profiling Interactive Analysis (GEPIA) database. In vitro experimental validation was performed with cell counting kit-8 (CCK-8) assay, apoptosis detection, cell cycle analysis, immunoblotting, and co-immunoprecipitation of the identified proteins. RESULTS One thousand seven hundred genes differentially expressed among pancreatic tumor and non-tumor tissues were screened out. Sixteen active components and 226 predicted target genes were identified in matrine injection. A total of 25 potential target genes of matrine injection for the treatment of pancreatic cancer were obtained. Among them, the prognostic target genes carbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) based on the GEPIA database are differently expressed in tumors compared to adjacent normal tissue. In vitro experiments, the results of CCK-8 assay, apoptosis and cell cycle analysis, immunoblotting, and co-immunoprecipitation showed that matrine injection inhibited Capan-1 and Mia paca-2 proliferation, arrested the cell cycle at the S phase, and induced apoptosis through up-regulated CA12 and down-regulated CA9. CONCLUSIONS In this study, bioinformatics and network pharmacology were applied to explore the treatment mechanism on pancreatic cancer with matrine injection. This study demonstrated that matrine injection inhibited proliferation, arrested the cell cycle, and induced apoptosis of pancreatic cancer cells. The mechanism may be related to the induction of CA12 over-expression, and CA9 reduced expression. As novel targets for pancreatic cancer treatment, Carbonic anhydrases require further study.
Collapse
Affiliation(s)
- Pan-Ling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
6
|
Liu X, Wu Y, Zhang Y, Bu D, Wu C, Lu S, Huang Z, Song Y, Zhao Y, Guo F, Ye P, Fu C, Shen L, Zhang J, Wang H, Duan X, Wu J. High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer. Front Oncol 2021; 11:747300. [PMID: 34604090 PMCID: PMC8484800 DOI: 10.3389/fonc.2021.747300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background Although notable therapeutic and prognostic benefits of compound kushen injection (CKI) have been found when it was used alone or in combination with chemotherapy or radiotherapy for triple-negative breast cancer (TNBC) treatment, the effects of CKI on TNBC microenvironment remain largely unclear. This study aims to construct and validate a predictive immunotherapy signature of CKI on TNBC. Methods The UPLC-Q-TOF-MS technology was firstly used to investigate major constituents of CKI. RNA sequencing data of CKI-perturbed TNBC cells were analyzed to detect differential expression genes (DEGs), and the GSVA algorithm was applied to explore significantly changed pathways regulated by CKI. Additionally, the ssGSEA algorithm was used to quantify immune cell abundance in TNBC patients, and these patients were classified into distinct immune infiltration subgroups by unsupervised clustering. Then, prognosis-related genes were screened from DEGs among these subgroups and were further overlapped with the DEGs regulated by CKI. Finally, a predictive immunotherapy signature of CKI on TNBC was constructed based on the LASSO regression algorithm to predict mortality risks of TNBC patients, and the signature was also validated in another TNBC cohort. Results Twenty-three chemical components in CKI were identified by UPLC-Q-TOF-MS analysis. A total of 3692 DEGs were detected in CKI-treated versus control groups, and CKI significantly activated biological processes associated with activation of T, natural killer and natural killer T cells. Three immune cell infiltration subgroups with 1593 DEGs were identified in TNBC patients. Then, two genes that can be down-regulated by CKI with hazard ratio (HR) > 1 and 26 genes that can be up-regulated by CKI with HR < 1 were selected as key immune- and prognosis-related genes regulated by CKI. Lastly, a five-gene prognostic signature comprising two risky genes (MARVELD2 and DYNC2I2) that can be down-regulated by CKI and three protective genes (RASSF2, FERMT3 and RASSF5) that can be up-regulated by CKI was developed, and it showed a good performance in both training and test sets. Conclusions This study proposes a predictive immunotherapy signature of CKI on TNBC, which would provide more evidence for survival prediction and treatment guidance in TNBC as well as a paradigm for exploring immunotherapy biomarkers in compound medicines.
Collapse
Affiliation(s)
- Xinkui Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yingying Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The People's Liberation Army (PLA) Rocket Force Characteristic Medical Center, Beijing, China
| | - Dechao Bu
- Pervasive Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengying Guo
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Peizhi Ye
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liangliang Shen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jiarui Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Yang Y, Sun M, Li W, Liu C, Jiang Z, Gu P, Li J, Wang W, You R, Ba Q, Li X, Wang H. Rebalancing TGF-β/Smad7 signaling via Compound kushen injection in hepatic stellate cells protects against liver fibrosis and hepatocarcinogenesis. Clin Transl Med 2021; 11:e410. [PMID: 34323416 PMCID: PMC8255064 DOI: 10.1002/ctm2.410] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Liver fibrosis and fibrosis-related hepatocarcinogenesis are a rising cause for morbidity and death worldwide. Although transforming growth factor-β (TGF-β) is a critical mediator of chronic liver fibrosis, targeting TGF-β isoforms and receptors lead to unacceptable side effect. This study was designed to explore the antifibrotic effect of Compound kushen injection (CKI), an approved traditional Chinese medicine formula, via a therapeutic strategy of rebalancing TGF-β/Smad7 signaling. METHODS A meta-analysis was performed to evaluate CKI intervention on viral hepatitis-induced fibrosis or cirrhosis in clinical randomized controlled trials (RCTs). Mice were given carbon tetrachloride (CCl4 ) injection or methionine-choline deficient (MCD) diet to induce liver fibrosis, followed by CKI treatment. We examined the expression of TGF-β/Smad signaling and typical fibrosis-related genes in hepatic stellate cells (HSCs) and fibrotic liver tissues by qRT-PCR, Western blotting, RNA-seq, immunofluorescence, and immunohistochemistry. RESULTS Based on meta-analysis results, CKI improved the liver function and relieved liver fibrosis among patients. In our preclinical studies by using two mouse models, CKI treatment demonstrated promising antifibrotic effects and postponed hepatocarcinogenesis with improved liver function and histopathologic features. Mechanistically, we found that CKI inhibited HSCs activation by stabilizing the interaction of Smad7/TGF-βR1 to rebalance Smad2/Smad3 signaling, and subsequently decreased the extracellular matrix formation. Importantly, Smad7 depletion abolished the antifibrotic effect of CKI in vivo and in vitro. Moreover, matrine, oxymatrine, sophocarpine, and oxysophocarpine were identified as material basis responsible for the antifibrosis effect of CKI. CONCLUSIONS Our results unveil the approach of CKI in rebalancing TGF-β/Smad7 signaling in HSCs to protect against hepatic fibrosis and hepatocarcinogenesis in both preclinical and clinical studies. Our study suggests that CKI can be a candidate for treatment of hepatic fibrosis and related oncogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Mayu Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Weida Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaobao Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheshun Jiang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Pengfei Gu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Wang
- Beijing Zhendong Pharmaceutical Research Institute Co., Ltd.BeijingChina
| | - Rongli You
- Beijing Zhendong Pharmaceutical Research Institute Co., Ltd.BeijingChina
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
8
|
Yang Y, Sun M, Yao W, Wang F, Li X, Wang W, Li J, Gao Z, Qiu L, You R, Yang C, Ba Q, Wang H. Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib. J Immunother Cancer 2021; 8:jitc-2019-000317. [PMID: 32179631 PMCID: PMC7073790 DOI: 10.1136/jitc-2019-000317] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background There is an urgent need for effective treatments for hepatocellular carcinoma (HCC). Immunotherapy is promising especially when combined with traditional therapies. This study aimed to investigate the immunomodulatory function of an approved Chinese medicine formula, compound kushen injection (CKI), and its anti-HCC efficiency in combination with low-dose sorafenib. Methods Growth of two murine HCC cells was evaluated in an orthotopic model, a subcutaneous model, two postsurgical recurrence model, and a tumor rechallenge model with CKI and low-dose sorafenib combination treatment. In vivo macrophage or CD8+ T cell depletion and in vitro primary cell coculture models were used to determine the regulation of CKI on macrophages and CD8+ T cells. Results CKI significantly enhanced the anticancer activity of sorafenib at a subclinical dose with no obvious side effects. CKI and sorafenib combination treatment prevented the postsurgical recurrence and rechallenged tumor growth. Further, we showed that CKI activated proinflammatory responses and relieved immunosuppression of tumor-associated macrophages in the HCC microenvironment by triggering tumor necrosis factor receptor superfamily member 1 (TNFR1)-mediated NF-κB and p38 MAPK signaling cascades. CKI-primed macrophages significantly promoted the proliferation and the cytotoxic ability of CD8+ T cells and decreased the exhaustion, which subsequently resulted in apoptosis of HCC cells. Conclusions CKI acts on macrophages and CD8+ T cells to reshape the immune microenvironment of HCC, which improves the therapeutic outcomes of low-dose sorafenib and avoids adverse chemotherapy effects. Our study shows that traditional Chinese medicines with immunomodulatory properties can potentiate chemotherapeutic drugs and provide a promising approach for HCC treatment.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mayu Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenbo Yao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Pharmacology, Beijing Zhendong Pharmaceutical Research Institute Co, Ltd, Beijing, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihu Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rongli You
- Department of Pharmacology, Beijing Zhendong Pharmaceutical Research Institute Co, Ltd, Beijing, China
| | - Chenghua Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Fan Y, Ma Z, Zhao L, Wang W, Gao M, Jia X, Ouyang H, He J. Anti-tumor activities and mechanisms of Traditional Chinese medicines formulas: A review. Biomed Pharmacother 2020; 132:110820. [DOI: 10.1016/j.biopha.2020.110820] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
|
10
|
Wu H, Wang L, Zhan X, Wang B, Wu J, Zhou A. A UPLC-Q-TOF/MS-based plasma metabolomics approach reveals the mechanism of Compound Kushen Injection-based intervention against non-small cell lung cancer in Lewis tumor-bearing mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153259. [PMID: 32534358 DOI: 10.1016/j.phymed.2020.153259] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/12/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Compound Kushen Injection (CKI), a well-known Chinese Medicine preparation, has been used to treat non-small cell lung cancer (NSCLC) for more than 15 years, and its clinical curative effect is considered to be beneficial. HYPOTHESIS/PURPOSE This study was designed to evaluate the effects and underlying mechanisms of CKI against NSCLC using an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based plasma metabolomics approach. METHODS 4',6-diamidino-2-phenylindole (DAPI) staining and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay were employed to assess apoptosis and the viability of A549 cells with and without CKI treatment. The weight/volume of Lewis lung carcinoma (LLC) sarcomas and histopathological examinations were used to evaluate the anti-tumor effects of CKI against NSCLC. A UPLC-Q-TOF/MS method combined with multivariate data analysis was developed to characterize metabolomic fingerprinting and to screen functional biomarkers that are linked to the CKI treatment of LLC mice, and then metabolic pathway analysis was used to investigate the therapeutic mechanism of CKI. RESULTS DAPI staining and MTT dye reduction assays indicated that CKI-induced apoptosis and inhibited the proliferation of A549 cells, respectively, in a concentration-dependent manner. The sarcoma volumes and weights in LLC tumor-bearing mice in CKI-dosed groups were significantly lower than those in a model group, which was treated with physiological saline. Histopathological analysis of sections of sarcomas and left pulmonary lobes indicated that CKI exerts an ameliorative effect against LLC. Fourteen functional biomarkers that are related to the therapeutic effects of CKI on LLC were screened and identified using a metabolomics study. Analysis of metabolic pathways revealed that the therapeutic effects of CKI on LLC mainly involved glycerophospholipid metabolism, amino acid metabolism and sphingolipid metabolism. As glycerophospholipid metabolism is a crucial feature of cancer-specific metabolism, the enzymes that are involved in 1-acyl-sn-glycero-3-phosphoinositol biosynthesis were further evaluated. Western blotting results indicated that CKI modulated the abnormal biosynthesis pathway of 1-acyl-sn-glycero-3-phosphoinositol by activation of cytidine diphosphate-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) and cytosolic phospholipase A2 (cPLA2), and by inhibition of lysophosphatidic acid acyltransferase gamma (AGPAT3). CONCLUSION This study demonstrated that CKI has a favorable anti-tumor effect and that a UPLC-Q-TOF/MS-based metabolomics method in conjunction with further verifications at the biochemical level is a promising approach for investigating its underlying mechanisms.
Collapse
Affiliation(s)
- Huan Wu
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China..
| | - Lina Wang
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Xiang Zhan
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Bin Wang
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Jiawen Wu
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - An Zhou
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China..
| |
Collapse
|
11
|
Cao X, He Q. Anti-Tumor Activities of Bioactive Phytochemicals in Sophora flavescens for Breast Cancer. Cancer Manag Res 2020; 12:1457-1467. [PMID: 32161498 PMCID: PMC7051174 DOI: 10.2147/cmar.s243127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with breast cancer and breast cancer survivors are frequent users of botanicals and their bioactive phytochemicals. In China, active ingredients in Sophora flavescens like matrine (MT), oxymatrine (OMT), other Sophora flavescens alkaloids and Compound Kushen Injection (CKI) are extensively used for multiple malignant tumors. In vivo and in vitro studies have confirmed that these activities or injection have significant effects on relieving symptoms, alleviating side effects after chemotherapy and improving the quality of life of breast cancer patients, where there is evidence for efficacy. A large number of experimental studies have also revealed that they can inhibit the proliferation, invasion and migration of breast cancer cells according to different mechanisms. This provides promising valuable supportive therapies for prevention, treatment and postoperative recovery of breast cancer. Rigorous clinical research and experimental studies reflect integrative care as it is used in hospital is needed to responsibly move this field forward. This review summarizes an up to date knowledge of the available bioactive phytochemicals, their discovery, current clinical and experimental status.
Collapse
Affiliation(s)
- Xianjiao Cao
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People's Republic of China
| | - Qingqing He
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, People's Republic of China
| |
Collapse
|
12
|
Chen H, Yao X, Li T, Lam CWK, Zhang R, Zhang H, Wang J, Zhang W, Leung ELH, Wu Q. Compound Kushen injection combined with platinum-based chemotherapy for stage III/IV non-small cell lung cancer: A meta-analysis of 37 RCTs following the PRISMA guidelines. J Cancer 2020; 11:1883-1898. [PMID: 32194799 PMCID: PMC7052862 DOI: 10.7150/jca.40267] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Objective: Compound Kushen injection (CKI), one of the commonly used antitumor Chinese patent medicines, has been widely prescribed as adjunctive treatment to platinum-based chemotherapy (PBC) in patients with advanced non-small cell lung cancer (NSCLC). However, the efficacy and safety of this combination therapy for advanced NSCLC remain controversial. The objective of this study is to evaluate the effects of CKI combined with PBC on patients with stage III/IV non-small cell lung cancer. Methods: A systematic review and meta-analysis were performed following the PRISMA (Preferred Reported Items for Systematic Review and Meta-analysis) guidelines. All randomized controlled trials (RCTs) comparing CKI in combination with PBC versus PBC alone were retrieved and assessed for inclusion. Analyses were performed using Review Manager 5.3 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014), Comprehensive Meta-Analysis 3.0 (Biostat, Englewood, NJ, United States; 2016) and Trial Sequential Analysis software (TSA) (Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen, Denmark; 2011). The disease control rate (DCR) was regarded as the primary outcome, and the objective response rate (ORR), quality of life (QOL), survival rate, and toxicities were the secondary outcomes. Results: Thirty-seven trials, recruiting 3,272 patients with stage III/IV NSCLC, were included. The results showed that, CKI combined with PBC resulted in significant improvements in DCR (RR = 1.11, 95% CI 1.07 to 1.15, P < 0.00001), ORR (RR = 1.30, 95% CI 1.20 to 1.40, P < 0.00001), QOL (RR = 1.73, 95% CI 1.55 to 1.92, P < 0.00001), 1-year survival rate (RR = 1.51, 95% CI 1.18 to 1.94, P = 0.001), and a 58% decline in the incidence of severe toxicities (RR = 0.42, 95% CI 0.37 to 0.49, P < 0.00001). Conclusions: From the available evidence, our data indicate that CKI plus platinum-based chemotherapy is more effective in improving clinical efficacy and alleviating the toxicity of chemotherapy than platinum-based chemotherapy alone in the treatment of stage III/IV NSCLC. However, considering the intrinsic limitations of the included trials, high-quality RCTs with survival outcomes are still needed to further confirm our findings.
Collapse
Affiliation(s)
- Hongwei Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Ruonan Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Huixia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| |
Collapse
|
13
|
Compound Kushen Injection as an Adjunctive Therapy for the Treatment of Non-Small-Cell Lung Cancer: A Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7241927. [PMID: 31781277 PMCID: PMC6875363 DOI: 10.1155/2019/7241927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Objectives To evaluate the efficacy and safety of compound Kushen injection (CKI) combined with chemo treatment (chemo) for non-small-cell lung cancer (NSCLC). Methods We systematically searched the literature published in seven databases, including Embase, PubMed, central, MEDLINE, CNKI, Wanfang, and VIP, from their inception to April 2019 for all randomized controlled trials (RCTs) comparing CKI plus chemo with chemo alone in patients with NSCLC. Our main end point was clinical efficiency and the secondary outcomes were Karnofsky performance score (KPS), immune function, and adverse events. The Cochrane risk of bias tool was applied for quality assessment. Results 10 studies involving 1019 participants were included. The clinical response rate (relative risk (RR) = 1.21, 95% confidence interval (CI): 1.06 to 1.37; P=0.003), KPS (RR = 2.18, 95% CI: 1.49 to 3.17; P < 0.0001), immune function (mean differences (MD) = 0.82, 95% CI: 0.12 to 1.52; P=0.02) and adverse effects (RR = 0.67, 95% CI: 0.60 to 0.74; P < 0.00001) in the CKI plus chemo group showed significant differences when compared with chemo alone. Conclusions CKI combined with chemo can improve clinical efficiency, KPS, and immune function and reduce adverse reactions in patients with NSCLC when compared with chemo alone. However, more rigorously designed RCTs are needed to validate this benefit, as some of the included RCTs are of low methodological quality.
Collapse
|
14
|
Shen H, Qu Z, Harata-Lee Y, Cui J, Aung TN, Wang W, Kortschak RD, Adelson DL. A New Strategy for Identifying Mechanisms of Drug-drug Interaction Using Transcriptome Analysis: Compound Kushen Injection as a Proof of Principle. Sci Rep 2019; 9:15889. [PMID: 31685921 PMCID: PMC6828681 DOI: 10.1038/s41598-019-52375-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023] Open
Abstract
Drug-drug interactions (DDIs), especially with herbal medicines, are complex, making it difficult to identify potential molecular mechanisms and targets. We introduce a workflow to carry out DDI research using transcriptome analysis and interactions of a complex herbal mixture, Compound Kushen Injection (CKI), with cancer chemotherapy drugs, as a proof of principle. Using CKI combined with doxorubicin or 5-Fu on cancer cells as a model, we found that CKI enhanced the cytotoxic effects of doxorubicin on A431 cells while protecting MDA-MB-231 cells treated with 5-Fu. We generated and analysed transcriptome data from cells treated with single treatments or combined treatments and our analysis showed that opposite directions of regulation for pathways related to DNA synthesis and metabolism which appeared to be the main reason for different effects of CKI when used in combination with chemotherapy drugs. We also found that pathways related to organic biosynthetic and metabolic processes might be potential targets for CKI when interacting with doxorubicin and 5-Fu. Through co-expression analysis correlated with phenotype results, we selected the MYD88 gene as a candidate major regulator for validation as a proof of concept for our approach. Inhibition of MYD88 reduced antagonistic cytotoxic effects between CKI and 5-Fu, indicating that MYD88 is an important gene in the DDI mechanism between CKI and chemotherapy drugs. These findings demonstrate that our pipeline is effective for the application of transcriptome analysis to the study of DDIs in order to identify candidate mechanisms and potential targets.
Collapse
Affiliation(s)
- Hanyuan Shen
- Zhendong Australia - China Centre for Molecular Chinese Medicine, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhipeng Qu
- Zhendong Australia - China Centre for Molecular Chinese Medicine, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Yuka Harata-Lee
- Zhendong Australia - China Centre for Molecular Chinese Medicine, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jian Cui
- Zhendong Australia - China Centre for Molecular Chinese Medicine, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Thazin Nwe Aung
- Zhendong Australia - China Centre for Molecular Chinese Medicine, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Wei Wang
- Zhendong Research Institute, Shanxi-Zhendong Pharmaceutical Co Ltd, Beijing, China
| | - R Daniel Kortschak
- Zhendong Australia - China Centre for Molecular Chinese Medicine, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - David L Adelson
- Zhendong Australia - China Centre for Molecular Chinese Medicine, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
15
|
Uncovering the Anticancer Mechanism of Compound Sophorae Decoction against Ulcerative Colitis-Related Colorectal Cancer in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8128170. [PMID: 31772601 PMCID: PMC6854971 DOI: 10.1155/2019/8128170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/04/2019] [Indexed: 12/11/2022]
Abstract
Compound sophorae decoction (CSD), a traditional Chinese medicine (TCM) formula, has been voluminously used in China to deal with ulcerative colitis and gained significant therapeutic effect. Tremendous explorations have unraveled a contributory role of inflammatory bowel disease (IBD) like ulcerative colitis (UC) and Crohn's disease (CD) at the onset of colorectal cancer, scilicet, and colitis-related cancer (CRC). In light of the anti-inflammatory properties of CSD in UC, we appraised its chemoprevention capacity and underlying mechanism in ulcerative colitis-related colorectal cancer (UCRCC), employing a model of azoxymethane (AOM) plus dextran sulfate sodium- (DSS-) induced colorectal cancer (CRC) in C57BL/6 mice. Rapturously, our results illuminated the ameliorative effect of CSD against UCRCC in mice portrayed by lesser polyps or adenomas, attenuated colonic xenograft tumor growth in company with the preferable well-being of mice in contrast to the Model Group. We examined significant downregulation of proinflammatory cytokines such as TNF-α, NF-κB, IL-6, STAT3, and IL-17 after exposure to CSD, with the concomitant repression of inflammation-associated proteins, including COX-2 and iNOS. Independent of this, treatment with CSD declined the proportion of T helper 17 cells (Th17) and protein level of matrix metallopeptidase 9 (MMP-9). Moreover, transmission electron microscopy (TEM) detected observably suppressed mitophagy in mice administered with CSD and that was paralleled by the pro-apoptotic effect as indicated by upregulating caspase-3 together with caspase-9 and deregulating B-cell lymphoma 2 (Bcl-2). In closing, these findings suggest CSD executes the UCRCC-inhibitory activity through counteracting inflammatory responses and rescuing detuning of apoptosis as well as neutralizing overactive mitophagy, concurring to build up an oncosuppressive microenvironment.
Collapse
|
16
|
Ao M, Xiao X, Li Q. Efficacy and safety of compound Kushen injection combined with chemotherapy on postoperative Patients with breast cancer: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019; 98:e14024. [PMID: 30653109 PMCID: PMC6370033 DOI: 10.1097/md.0000000000014024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This meta-analysis aimed to assess efficacy and safety of combination of Kushen and chemotherapy or chemotherapy alone among postoperative patients with breast cancer receiving. METHODS A systematic literature search was conducted for relevant randomized controlled trials from 2000 to July 2017. Primary outcomes were clinical response rate (CRR) and performance status improvement by Karnofsky performance scale score (KPSS); secondary outcomes were adverse drug reactions (ADRs) rate and tumor marker decrease rate. Quality assessment and data analysis were performed with Review Manager 5.3. RESULTS A total of 16 studies with 1315 participants were included in the analysis. Compared with chemotherapy alone, compound Kushen injection (CKI or KI) combined with chemotherapy did not significant increase CRR. However, performance status improvement rate was significantly higher among patients given Kushen injection combined with chemotherapy (relative risk 1.25, 95% confidence interval 1.09-1.42, P = .001). In the analysis of ADRs, combination of Kushen and chemotherapy was indicated to significantly reduce the rate liver dysfunction, kidney dysfunction, nausea and vomiting, diarrhea, hair loss, platelet decrease, and oral mucositis. CONCLUSION Using CKI on the basis of chemotherapy might improve performance status and reduce ADRs among postoperative patients with breast cancer.
Collapse
Affiliation(s)
| | - Xu Xiao
- Pharmacology Department, Affiliated Hospital of Chengde Medical School of Hebei Province, China
| | | |
Collapse
|