1
|
Härm J, Fan YT, Brenner D. Navigating the metabolic landscape of regulatory T cells: from autoimmune diseases to tumor microenvironments. Curr Opin Immunol 2025; 92:102511. [PMID: 39674060 DOI: 10.1016/j.coi.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, playing crucial roles in modulating autoimmune conditions and contributing to the suppressive tumor microenvironment. Their cellular metabolism governs their generation, stability, proliferation, and suppressive function. Enhancing Treg metabolism to boost their suppressive function offers promising therapeutic potential for alleviating inflammatory symptoms in autoimmune diseases. Conversely, inhibiting Treg metabolism to reduce their suppressive function can enhance the efficacy of traditional immunotherapy in cancer patients. This review explores recent advances in targeting Treg metabolism in autoimmune diseases and the metabolic adaptations of Tregs within the tumor microenvironment that increase their immunosuppressive function.
Collapse
Affiliation(s)
- Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Zheng D, Li X, Wang P, Zhu Q, Huang Z, Zhao T. Exploring the shared mechanism of fatigue between systemic lupus erythematosus and myalgic encephalomyelitis/chronic fatigue syndrome: monocytic dysregulation and drug repurposing. Front Immunol 2025; 15:1440922. [PMID: 39845969 PMCID: PMC11752880 DOI: 10.3389/fimmu.2024.1440922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background SLE and ME/CFS both present significant fatigue and share immune dysregulation. The mechanisms underlying fatigue in these disorders remain unclear, and there are no standardized treatments. This study aims to explore shared mechanisms and predict potential therapeutic drugs for fatigue in SLE and ME/CFS. Methods Genes associated with SLE and ME/CFS were collected from disease target and clinical sample databases to identify overlapping genes. Bioinformatics analyses, including GO, KEGG, PPI network construction, and key target identification, were performed. ROC curve and correlation analysis of key targets, along with single-cell clustering, were conducted to validate their expression in different cell types. Additionally, an inflammation model was established using THP-1 cells to simulate monocyte activation in both diseases in vitro, and RT-qPCR was used to validate the expression of the key targets. A TF-mRNA-miRNA co-regulatory network was constructed, followed by drug prediction and molecular docking. Results Fifty-eight overlapping genes were identified, mainly involved in innate immunity and inflammation. Five key targets were identified (IL1β, CCL2, TLR2, STAT1, IFIH1). Single-cell sequencing revealed that monocytes are enriched with these targets. RT-qPCR confirmed significant upregulation of these targets in the model group. A co-regulatory network was constructed, and ten potential drugs, including suloctidil, N-Acetyl-L-cysteine, simvastatin, ACMC-20mvek, and camptothecin, were predicted. Simvastatin and camptothecin showed high affinity for the key targets. Conclusion SLE and ME/CFS share immune and inflammatory pathways. The identified key targets are predominantly enriched in monocytes at the single-cell level, suggesting that classical monocytes may be crucial in linking inflammation and fatigue. RT-qPCR confirmed upregulation in activated monocytes. The TF-mRNA-miRNA network provides a foundation for future research, and drug prediction suggests N-Acetyl-L-cysteine and camptothecin as potential therapies.
Collapse
Affiliation(s)
- Daisi Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peicheng Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyan Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Kim H. Juvenile Dermatomyositis: Updates in Pathogenesis and Biomarkers, Current Treatment, and Emerging Targeted Therapies. Paediatr Drugs 2025; 27:57-72. [PMID: 39425894 PMCID: PMC11774970 DOI: 10.1007/s40272-024-00658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Juvenile dermatomyositis is a rare systemic inflammatory autoimmune disease involving muscle, skin, and vessels. Most patients do not fully respond to initial therapy, instead having a chronic refractory or polycyclic disease course. Pathogenesis is not completely understood, but immune cell dysregulation, particularly of B cells, mitochondrial dysfunction, changes in neutrophils and neutrophil extracellular traps (NETs), and increased type I and type II interferon (IFN) signaling have been described. There are limited randomized controlled trials of drugs in juvenile dermatomyositis (JDM), and treatment is largely based on lower-quality data such as case series, retrospective studies, and open-label prospective studies. These data have been compiled into expert recommendations or consensus treatment plans, which help guide therapy. While initial therapy is more standard with most including corticosteroids (high-dose oral and/or pulse intravenous methylprednisolone) and methotrexate, for refractory patients, guidelines are more varied with multiple options or combinations, including biologic therapies. There is a clear need for more efficacious and personalized therapy in JDM. Emerging treatment options worthy of further study in JDM include targeting IFN-signaling (JAK, IFNAR1, IFN beta), B-cells (CD20, CD19, BAFF, TACI, CD38, BCMA) including Chimeric Antigen Receptor (CAR)-T cell therapy, mitochondrial dysfunction, and NETs.
Collapse
Affiliation(s)
- Hanna Kim
- National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Chen Y, Lin Q, Cheng H, Xiang Q, Zhou W, Wu J, Wang X. Immunometabolic shifts in autoimmune disease: Mechanisms and pathophysiological implications. Autoimmun Rev 2024; 24:103738. [PMID: 39743123 DOI: 10.1016/j.autrev.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune diseases occur when the immune system abnormally attacks the body's normal tissues, causing inflammation and damage. Each disease has unique immune and metabolic dysfunctions during pathogenesis. In rheumatoid arthritis (RA), immune cells have different metabolic patterns and mitochondrial/lysosomal dysfunctions at different disease stages. In systemic lupus erythematosus (SLE), type I interferon (IFN) causes immune cell metabolic dysregulation, linking activation to metabolic shifts that may worsen the disease. In systemic sclerosis (SSc), mitochondrial changes affect fibroblast metabolism and the immune response. Idiopathic inflammatory myopathies (IIMs) patients have mitochondrial and metabolic issues. In primary Sjögren's syndrome (pSS), immune cell metabolism is imbalanced and mitochondrial damage can lead to cell/tissue damage. Metabolic reprogramming links cellular energy needs and immune dysfunctions, causing inflammation, damage, and symptoms in these diseases. It also affects immune cell functions like differentiation, proliferation, and secretion. This review discusses the potential of targeting metabolic pathways to restore immune balance, offering directions for future autoimmune disease research and treatment.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Lin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Hui Cheng
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyu Xiang
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
He T, Ren K, Xiang L, Yao H, Huang Y, Gao Y. Efficacy of N-Acetylcysteine as an Adjuvant Therapy for Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Br J Hosp Med (Lond) 2024; 85:1-16. [PMID: 39618229 DOI: 10.12968/hmed.2024.0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aims/Background Rheumatoid arthritis (RA) is an inflammatory autoimmune disease and N-acetylcysteine (NAC) is considered a potential therapeutic agent for RA due to strong antioxidant and anti-inflammatory properties. Therefore, this systematic review and meta-analysis aimed to evaluate the efficacy of NAC as an adjuvant therapy for RA. Methods A systematic search was conducted across five databases from inception to 1 August 2024, including CINAHL, Cochrane Library, EMBASE, PubMed, and Web of Science. The Cochrane risk-of-bias tool for randomized trials was used to assess the quality of the included studies. Sensitivity analysis was performed when significant heterogeneity was identified. Results Four studies involving 204 patients were included in our meta-analysis. The results indicated that NAC alleviated disease activity in RA patients (Disease Activity Score 28-erythrocyte sedimentation rate (DAS28-ESR): mean difference (MD) = 0.54). Additionally, NAC reduced inflammatory markers (erythrocyte sedimentation rate (ESR): MD = 3.00). However, the beneficial effects of NAC on oxidative stress in RA patients were not observed. Conclusion This meta-analysis demonstrated the efficacy of NAC in reducing inflammatory markers, improving joint tenderness, and swelling in patients with RA.
Collapse
Affiliation(s)
- Tingting He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kehui Ren
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Xiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Huan Yao
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Pengzhou, Sichuan, China
| | - Yucheng Huang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yongxiang Gao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Poznyak AV, Orekhov NA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov AN. Mitochondrial Dysfunction in Systemic Lupus Erythematosus: Insights and Therapeutic Potential. Diseases 2024; 12:226. [PMID: 39329895 PMCID: PMC11430897 DOI: 10.3390/diseases12090226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by the presence of various serum autoantibodies and multi-system effects, predominantly affecting young female patients. The pathogenesis of SLE involves a combination of genetic factors, environmental triggers, and pathogen invasions that disrupt immune cell activation, leading to the release of autoantibodies and chronic inflammation. Mitochondria, as the primary cellular powerhouses, play a crucial role in SLE development through their control of energy generation, reactive oxygen species (ROS) production, and cellular apoptotic pathways. Dysregulation of mitochondrial structure and function can contribute to the immune dysregulation, oxidative stress, and inflammation seen in SLE. Recent research has highlighted the impact of mitochondrial dysfunction on various immune cells involved in SLE pathogenesis, such as T-lymphocytes, B-lymphocytes, neutrophils, and plasmacytoid dendritic cells. Mitochondrial dysfunction in these immune cells leads to increased ROS production, disrupted mitophagy, and alterations in energy metabolism, contributing to immune dysregulation and inflammation. Moreover, genetic variations in mitochondrial DNA (mtDNA) and abnormalities in mitochondrial dynamics have been linked to the pathogenesis of SLE, exacerbating oxidative stress and immune abnormalities. Targeting mitochondrial function has emerged as a promising therapeutic approach for SLE. Drugs such as sirolimus, N-acetylcysteine, coenzyme Q10, and metformin have shown potential in restoring mitochondrial homeostasis, reducing oxidative stress, and modulating immune responses in SLE. These agents have demonstrated efficacy in preclinical models and clinical studies by improving disease activity, reducing autoantibody titers, and ameliorating organ damage in SLE patients. In conclusion, this review underscores the critical role of mitochondria in the pathogenesis of SLE and the potential of targeting mitochondrial dysfunction as a novel therapeutic strategy for improving outcomes in SLE patients. Further investigation into the mechanisms underlying mitochondrial involvement in SLE and the development of targeted mitochondrial therapies hold promise for advancing SLE treatment and enhancing patient care.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Nikolay A Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Alexey V Churov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Russian Gerontology Clinical Research Centre, Institute on Aging Research, Pirogov Russian National Research Medical University, Russian Federation, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A Starodubtseva
- Department of Polyclinic Therapy, N.N. Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia
| | - Tatiana I Kovyanova
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Vasily N Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| |
Collapse
|
7
|
Veldkamp SR, van Wijk F, van Royen-Kerkhof A, Jansen MH. Personalised medicine in juvenile dermatomyositis: From novel insights in disease mechanisms to changes in clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101976. [PMID: 39174374 DOI: 10.1016/j.berh.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Juvenile dermatomyositis is characterized by childhood-onset chronic inflammation of the muscles and skin, with potential involvement of other organs. Patients are at risk for long-term morbidity due to insufficient disease control and steroid-related toxicity. Personalised treatment is challenged by a lack of validated tools that can reliably predict treatment response and monitor ongoing (subclinical) inflammation, and by a lack of evidence regarding the best choice of medication for individual patients. A better understanding of the involved disease mechanisms could reveal potential biomarkers and novel therapeutic targets. In this review, we highlight the most relevant immune and non-immune mechanisms, elucidating the effects of interferon overexpression on tissue alongside the interplay between the interferon signature, mitochondrial function, and immune cells. We review mechanism-based biomarkers that are promising for clinical implementation, and the latest advances in targeted therapy development. Finally, we discuss key steps needed for translating these discoveries into clinical practice.
Collapse
Affiliation(s)
- Saskia R Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annet van Royen-Kerkhof
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Ha Jansen
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Wang S, Yang N, Zhang H. Metabolic dysregulation of lymphocytes in autoimmune diseases. Trends Endocrinol Metab 2024; 35:624-637. [PMID: 38355391 DOI: 10.1016/j.tem.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Lymphocytes are crucial for protective immunity against infection and cancers; however, immune dysregulation can lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Metabolic adaptation controls lymphocyte fate; thus, metabolic reprogramming can contribute to the pathogenesis of autoimmune diseases. Here, we summarize recent advances on how metabolic reprogramming determines the autoreactive and proinflammatory nature of lymphocytes in SLE and RA, unraveling molecular mechanisms and providing therapeutic targets for human autoimmune diseases.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Cao S, Jiang J, Yin H, Wang L, Lu Q. Abnormal energy metabolism in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol 2024; 134:112149. [PMID: 38692019 DOI: 10.1016/j.intimp.2024.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease with significant socioeconomic impact worldwide. Orderly energy metabolism is essential for normal immune function, and disordered energy metabolism is increasingly recognized as an important contributor to the pathogenesis of SLE. Disorders of energy metabolism are characterized by increased reactive oxygen species, ATP deficiency, and abnormal metabolic pathways. Oxygen and mitochondria are critical for the production of ATP, and both mitochondrial dysfunction and hypoxia affect the energy production processes. In addition, several signaling pathways, including mammalian target of rapamycin (mTOR)/adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling and the hypoxia-inducible factor (HIF) pathway also play important regulatory roles in energy metabolism. Furthermore, drugs with clear clinical effects on SLE, such as sirolimus, metformin, and tacrolimus, have been proven to improve the disordered energy metabolism of immune cells, suggesting the potential of targeting energy metabolism for the treatment of SLE. Moreover, several metabolic modulators under investigation are expected to have potential therapeutic effects in SLE. This review aimed to gain insights into the role and mechanism of abnormal energy metabolism in the pathogenesis of SLE, and summarizes the progression of metabolic modulator in the treatment of SLE.
Collapse
Affiliation(s)
- Shumei Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
10
|
Papachristodoulou E, Kyttaris VC. New and emerging therapies for systemic lupus erythematosus. Clin Immunol 2024; 263:110200. [PMID: 38582250 DOI: 10.1016/j.clim.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Systemic Lupus Erythematosus (SLE) and lupus nephritis treatment is still based on non-specific immune suppression despite the first biological therapy for the disease having been approved more than a decade ago. Intense basic and translational research has uncovered a multitude of pathways that are actively being evaluated as treatment targets in SLE and lupus nephritis, with two new medications receiving FDA approval in the last 3 years. Herein we provide an overview of targeted therapies for SLE including medications targeting the B lymphocyte compartment, intracellular signaling, co-stimulation, and finally the interferons and other cytokines.
Collapse
Affiliation(s)
- Eleni Papachristodoulou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Kato H, Kahlenberg JM. Emerging biologic therapies for systemic lupus erythematosus. Curr Opin Rheumatol 2024; 36:169-175. [PMID: 38299618 DOI: 10.1097/bor.0000000000001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW The approval of belimumab and anifrolumab has expanded the scope of treatment for systemic lupus erythematosus (SLE) patients. However, many patients remain refractory to currently available therapies and suffer from drug toxicities. This review will discuss approved and target-specific therapeutics in development that bring hope for better SLE treatments. RECENT FINDINGS Since the last review on this subject in the journal, the FDA has approved anifrolumab and belimumab for SLE and lupus nephritis (LN), respectively. A fully humanized anti-CD20, obinutuzumab, met the primary end point in a phase II trial in LN. A Tyk2 inhibitor, deucravacitinib, and an antibody targeting plasmacytoid dendritic cells, litifilimab, met the primary end point in phase II trials in SLE and cutaneous lupus erythematosus (CLE). Ustekinumab and baricitinib met the primary end point in phase II but not in phase III trials. SUMMARY While many drug candidates which met the end points in phase II trials have failed phase III trials, the number of target-specific therapies for SLE has continued to expand.
Collapse
Affiliation(s)
- Hiroshi Kato
- University of Michigan Lupus Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
12
|
Miñano S, González-Correa C, Moleón J, Duarte J. Metabolic Modulators in Cardiovascular Complications of Systemic Lupus Erythematosus. Biomedicines 2023; 11:3142. [PMID: 38137363 PMCID: PMC10741086 DOI: 10.3390/biomedicines11123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial disorder with contributions from hormones, genetics, and the environment, predominantly affecting young women. Cardiovascular disease is the primary cause of mortality in SLE, and hypertension is more prevalent among SLE patients. The dysregulation of both innate and adaptive immune cells in SLE, along with their infiltration into kidney and vascular tissues, is a pivotal factor contributing to the cardiovascular complications associated with SLE. The activation, proliferation, and differentiation of CD4+ T cells are intricately governed by cellular metabolism. Numerous metabolic inhibitors have been identified to target critical nodes in T cell metabolism. This review explores the existing evidence and knowledge gaps concerning whether the beneficial effects of metabolic modulators on autoimmunity, hypertension, endothelial dysfunction, and renal injury in lupus result from the restoration of a balanced immune system. The inhibition of glycolysis, mitochondrial metabolism, or mTORC1 has been found to improve endothelial dysfunction and prevent the development of hypertension in mouse models of SLE. Nevertheless, limited information is available regarding the potential vasculo-protective effects of drugs that act on immunometabolism in SLE patients.
Collapse
Affiliation(s)
- Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
13
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|