1
|
Senglek K, Teerapakpinyo C, Jittapiromsak N, Jittapiromsak P, Lertparinyaphorn I, Thorner PS, Shuangshoti S. Differential Expression of Proteins and Genes at the Tumor-Brain Interface in Invasive Meningioma. Genes Chromosomes Cancer 2024; 63:e70007. [PMID: 39535842 DOI: 10.1002/gcc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Most meningiomas are dural-based extra-axial tumors in close contact with the brain. Expression of genes and proteins at the tumor-brain interface in brain-invasive meningioma is basically unknown. Using the NanoString pan-cancer panel, differential expression of genes in the invasive edge versus main tumor body was determined in 12 invasive meningiomas (comprising the discovery cohort), and 6 candidate genes: DTX1, RASGRF1, GRIN1, TNR, IL6, and NR4A1, were identified. By immunohistochemistry, DTX1 and RASGRF1 expression correlated with gene expression, and were studied in an expanded cohort of 21 invasive and 15 noninvasive meningiomas, together with Ki-67. Significantly higher expression of DTX1, RASGFR1, and Ki-67 was found in the invasive edge compared with the main tumor body. Increased expression of RASGRF1 and Ki-67 was more clearly associated with brain invasion. The situation with DTX1 was less definitive since increased expression was observed in meningiomas both at the invasive edge and when in close contact with brain but without invasion. Pathway analyses identified significant links between DTX1 and RASGRF1 and key biological processes, including cell-cell adhesion, and signaling pathways including Notch, RAS, MAPK, and Rho. Higher expression of DTX1, RASGRF1, and Ki-67 in the brain-invasive area of meningiomas suggests that these proteins play a role in the process of brain invasion.
Collapse
Affiliation(s)
- Kornwika Senglek
- Doctor of Philosophy Program of Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Pathology and Forensic Medicine Department, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Nutchawan Jittapiromsak
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Pakrit Jittapiromsak
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Irin Lertparinyaphorn
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paul Scott Thorner
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shanop Shuangshoti
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Chulalongkorn GenePRO Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
England SJ, Campbell PC, Banerjee S, Bates RL, Grieb G, Fancher WF, Lewis KE. Transcriptional Regulators with Broad Expression in the Zebrafish Spinal Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580357. [PMID: 38405913 PMCID: PMC10888778 DOI: 10.1101/2024.02.14.580357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background The spinal cord is a crucial part of the vertebrate CNS, controlling movements and receiving and processing sensory information from the trunk and limbs. However, there is much we do not know about how this essential organ develops. Here, we describe expression of 21 transcription factors and one transcriptional regulator in zebrafish spinal cord. Results We analyzed the expression of aurkb, foxb1a, foxb1b, her8a, homeza, ivns1abpb, mybl2b, myt1a, nr2f1b, onecut1, sall1a, sall3a, sall3b, sall4, sox2, sox19b, sp8b, tsc22d1, wdhd1, zfhx3b, znf804a, and znf1032 in wild-type and MIB E3 ubiquitin protein ligase 1 zebrafish embryos. While all of these genes are broadly expressed in spinal cord, they have distinct expression patterns from one another. Some are predominantly expressed in progenitor domains, and others in subsets of post-mitotic cells. Given the conservation of spinal cord development, and the transcription factors and transcriptional regulators that orchestrate it, we expect that these genes will have similar spinal cord expression patterns in other vertebrates, including mammals and humans. Conclusions Our data identify 22 different transcriptional regulators that are strong candidates for playing different roles in spinal cord development. For several of these genes, this is the first published description of their spinal cord expression.
Collapse
Affiliation(s)
- Samantha J. England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Paul C. Campbell
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, NY 13045, USA
| | - Richard L. Bates
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Ginny Grieb
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - William F. Fancher
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Katharine E. Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
3
|
Stefańska K, Nemcova L, Blatkiewicz M, Żok A, Kaczmarek M, Pieńkowski W, Mozdziak P, Piotrowska-Kempisty H, Kempisty B. Expression Profile of New Marker Genes Involved in Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells into Chondrocytes, Osteoblasts, Adipocytes and Neural-like Cells. Int J Mol Sci 2023; 24:12939. [PMID: 37629120 PMCID: PMC10455417 DOI: 10.3390/ijms241612939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Wharton's jelly (WJ) contains mesenchymal stem cells (MSCs) exhibiting broad immunomodulatory properties and differentiation capacity, which makes them a promising tool for cellular therapies. Although the osteogenic, chondrogenic and adipogenic differentiation is a gold standard for proper identification of MSCs, it is important to elucidate the exact molecular mechanisms governing these processes to develop safe and efficient cellular therapies. Umbilical cords were collected from healthy, full-term deliveries, for subsequent MSCs (WJ-MSCs) isolation. WJ-MSCs were cultivated in vitro for osteogenic, chondrogenic, adipogenic and neurogenic differentiation. The RNA samples were isolated and the transcript levels were evaluated using NovaSeq platform, which led to the identification of differentially expressed genes. Expression of H19 and SLPI was enhanced in adipocytes, chondrocytes and osteoblasts, and NPPB was decreased in all analyzed groups compared to the control. KISS1 was down-regulated in adipocytes, chondrocytes, and neural-like cells compared to the control. The most of identified genes were already implicated in differentiation of MSCs; however, some genes (PROK1, OCA2) have not yet been associated with initiating final cell fate. The current results indicate that both osteo- and adipo-induced WJ-MSCs share many similarities regarding the most overexpressed genes, while the neuro-induced WJ-MSCs are quite distinctive from the other three groups. Overall, this study provides an insight into the transcriptomic changes occurring during the differentiation of WJ-MSCs and enables the identification of novel markers involved in this process, which may serve as a reference for further research exploring the role of these genes in physiology of WJ-MSCs and in regenerative medicine.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Cellivia 3 S.A., 61-623 Poznan, Poland
| | - Lucie Nemcova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Agnieszka Żok
- Division of Philosophy of Medicine and Bioethics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Wojciech Pieńkowski
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 60177 Brno, Czech Republic
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Scalia P, Williams SJ, Suma A, Carnevale V. The DTX Protein Family: An Emerging Set of E3 Ubiquitin Ligases in Cancer. Cells 2023; 12:1680. [PMID: 37443713 PMCID: PMC10340142 DOI: 10.3390/cells12131680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Until recently, Deltex (DTX) proteins have been considered putative E3 ligases, based on the presence of an E3 RING domain in their protein coding sequence. The human DTX family includes DTX1, DTX2, DTX3, DTX3L and DTX4. Despite the fact that our knowledge of this class of E3-ubiquitin ligases is still at an early stage, our understanding of their role in oncogenesis is beginning to unfold. In fact, recently published studies allow us to define specific biological scenarios and further consolidate evidence-based working hypotheses. According to the current evidence, all DTX family members are involved in the regulation of Notch signaling, suggesting a phylogenetically conserved role in the regulation of this pathway. Indeed, additional evidence reveals a wider involvement of these proteins in other signaling complexes and cancer-promoting mechanisms beyond NOTCH signaling. DTX3, in particular, had been known to express two isoform variants (DTX3a and DTX3b). The recent identification and cloning of a third isoform variant in cancer (DTX3c), and its specific involvement in EphB4 degradation in cancer cells, sheds further light on this group of proteins and their specific role in cancer. Herein, we review the cumulative knowledge of this family of E3 Ubiquitin ligases with a specific focus on the potential oncogenic role of DTX isoforms in light of the rapidly expanding findings regarding this protein family's cellular targets and regulated signaling pathways. Furthermore, using a comparative and bioinformatic approach, we here disclose a new putative motif of a member of this family which may help in understanding the biological and contextual differences between the members of these proteins.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J. Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Suma
- Institute of Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Vincenzo Carnevale
- Institute of Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
E3 Ubiquitin Ligase Regulators of Notch Receptor Endocytosis: From Flies to Humans. Biomolecules 2022; 12:biom12020224. [PMID: 35204725 PMCID: PMC8961608 DOI: 10.3390/biom12020224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Notch is a developmental receptor, conserved in the evolution of the metazoa, which regulates cell fate proliferation and survival in numerous developmental contexts, and also regulates tissue renewal and repair in adult organisms. Notch is activated by proteolytic removal of its extracellular domain and the subsequent release of its intracellular domain, which then acts in the nucleus as part of a transcription factor complex. Numerous regulatory mechanisms exist to tune the amplitude, duration and spatial patterning of this core signalling mechanism. In Drosophila, Deltex (Dx) and Suppressor of dx (Su(dx)) are E3 ubiquitin ligases which interact with the Notch intracellular domain to regulate its endocytic trafficking, with impacts on both ligand-dependent and ligand-independent signal activation. Homologues of Dx and Su(dx) have been shown to also interact with one or more of the four mammalian Notch proteins and other target substrates. Studies have shown similarities, specialisations and diversifications of the roles of these Notch regulators. This review collates together current research on vertebrate Dx and Su(dx)-related proteins, provides an overview of their various roles, and discusses their contributions to cell fate regulation and disease.
Collapse
|
6
|
Campbell LJ, Levendusky JL, Steines SA, Hyde DR. Retinal regeneration requires dynamic Notch signaling. Neural Regen Res 2021; 17:1199-1209. [PMID: 34782554 PMCID: PMC8643038 DOI: 10.4103/1673-5374.327326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal damage in the adult zebrafish induces Müller glia reprogramming to produce neuronal progenitor cells that proliferate and differentiate into retinal neurons. Notch signaling, which is a fundamental mechanism known to drive cell-cell communication, is required to maintain Müller glia in a quiescent state in the undamaged retina, and repression of Notch signaling is necessary for Müller glia to reenter the cell cycle. The dynamic regulation of Notch signaling following retinal damage also directs proliferation and neurogenesis of the Müller glia-derived progenitor cells in a robust regeneration response. In contrast, mammalian Müller glia respond to retinal damage by entering a prolonged gliotic state that leads to additional neuronal death and permanent vision loss. Understanding the dynamic regulation of Notch signaling in the zebrafish retina may aid efforts to stimulate Müller glia reprogramming for regeneration of the diseased human retina. Recent findings identified DeltaB and Notch3 as the ligand-receptor pair that serves as the principal regulators of zebrafish Müller glia quiescence. In addition, multiomics datasets and functional studies indicate that additional Notch receptors, ligands, and target genes regulate cell proliferation and neurogenesis during the regeneration time course. Still, our understanding of Notch signaling during retinal regeneration is limited. To fully appreciate the complex regulation of Notch signaling that is required for successful retinal regeneration, investigation of additional aspects of the pathway, such as post-translational modification of the receptors, ligand endocytosis, and interactions with other fundamental pathways is needed. Here we review various modes of Notch signaling regulation in the context of the vertebrate retina to put recent research in perspective and to identify open areas of inquiry.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jaclyn L Levendusky
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Shannon A Steines
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
7
|
Liu X, Xian Y, Xu H, Hu M, Che K, Liu X, Wang H. The associations between Deltex1 and clinical characteristics of breast cancer. Gland Surg 2021; 10:3116-3127. [PMID: 34926227 PMCID: PMC8637063 DOI: 10.21037/gs-21-739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 08/25/2023]
Abstract
BACKGROUND Deltex 1 (DTX1) is a single transmembrane protein with ubiquitin E3 ligase activity which has been found to play a role in the development of several cancers. We aimed to investigate the associations between DTX1 and breast cancer (BC). METHODS We explored the roles and mechanisms of DTX1 in BC by using BC cell lines in vitro. Levels of DTX1 in serum and tissues were determined in 316 patients with BC, 102 patients with fibroadenoma, and 113 healthy controls by immunohistochemistry (IHC) and reverse transcription-polymerase chain reaction (RT-PCR). The associations between DTX1 and clinical characteristics of BC were analyzed using multivariate analysis and Cox regression survival analysis. RESULTS Lower levels of DTX1 promoted BC cell proliferation, migration, and invasion. The cell growth and survival of BC might be regulated by DTX1 via the Notch signaling pathway. Levels of DTX1 in BC tissues were lower compared to fibroadenoma tissues and peri-neoplastic breast tissues (P<0.01). A lower level of DTX1 was shown to be associated with advanced tumor grade (P=0.017), advanced clinical stage (P=0.031), positive lymph node metastasis (LNM) (P=0.009), and high Ki-67 index (P=0.023). Lower DTX1 expression was recognized as an impact factor for metastasis-free survival (MFS) in BC. CONCLUSIONS Lower levels of DTX1 could promote BC cell proliferation and migration, and are associated with advanced BC. There is potential for DTX1 as a marker to assist the selection of new BC treatment.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Breast Diseases Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuwei Xian
- Department of Ultrasonography, Qingdao Municipal Hospital, Qingdao, China
| | - Hongmei Xu
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meixiang Hu
- Department of Pathology, People’s Hospital of Qixia, Yantai, China
| | - Kui Che
- Qingdao Key Laboratory of Thyroid Diseases, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangping Liu
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haibo Wang
- Breast Diseases Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Ruzicka L, Howe DG, Ramachandran S, Toro S, Van Slyke CE, Bradford YM, Eagle A, Fashena D, Frazer K, Kalita P, Mani P, Martin R, Moxon ST, Paddock H, Pich C, Schaper K, Shao X, Singer A, Westerfield M. The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic Acids Res 2020; 47:D867-D873. [PMID: 30407545 PMCID: PMC6323962 DOI: 10.1093/nar/gky1090] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
The Zebrafish Information Network (ZFIN) (https://zfin.org/) is the database for the model organism, zebrafish (Danio rerio). ZFIN expertly curates, organizes and provides a wide array of zebrafish genetic and genomic data, including genes, alleles, transgenic lines, gene expression, gene function, mutant phenotypes, orthology, human disease models, nomenclature and reagents. New features at ZFIN include increased support for genomic regions and for non-coding genes, and support for more expressive Gene Ontology annotations. ZFIN has recently taken over maintenance of the zebrafish reference genome sequence as part of the Genome Reference Consortium. ZFIN is also a founding member of the Alliance of Genome Resources, a collaboration of six model organism databases (MODs) and the Gene Ontology Consortium (GO). The recently launched Alliance portal (https://alliancegenome.org) provides a unified, comparative view of MOD, GO, and human data, and facilitates foundational and translational biomedical research.
Collapse
Affiliation(s)
- Leyla Ruzicka
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | | | - Sabrina Toro
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ceri E Van Slyke
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Anne Eagle
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - David Fashena
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ken Frazer
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Patrick Kalita
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Prita Mani
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ryan Martin
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Sierra Taylor Moxon
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Holly Paddock
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Christian Pich
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Kevin Schaper
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Xiang Shao
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Amy Singer
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Monte Westerfield
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| |
Collapse
|
9
|
Xu Y, Wang Y, Liu H, Kang X, Li W, Wei Q. Genetic variants of genes in the Notch signaling pathway predict overall survival of non-small cell lung cancer patients in the PLCO study. Oncotarget 2018; 7:61716-61727. [PMID: 27557513 PMCID: PMC5308685 DOI: 10.18632/oncotarget.11436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
The Notch signaling pathway has been shown to have biological significance and therapeutic application in non-small cell lung cancer (NSCLC). We hypothesize that genetic variants of genes in the Notch signaling pathway are associated with overall survival (OS) of NSCLC patients. To test this hypothesis, we performed multivariate Cox proportional hazards regression analysis to evaluate associations of 19,571 single nucleotide polymorphisms (SNPs) in 132 Notch pathway genes with OS of 1,185 NSCLC patients available from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. We found that five potentially functional tagSNPs in four genes (i.e., ADAM12 rs10794069 A > G, DTX1 rs1732793 G > A, TLE1 rs199731120 C > CA, TLE1 rs35970494 T > TC and E2F3 rs3806116 G > T) were associated with a poor OS, with a variant-allele attributed hazards ratio (HR) of 1.27 [95% confidence interval (95% CI) = 1.13–1.42, P = 3.62E-05], 1.30 (1.14–1.49, 8.16E-05), 1.40 (1.16–1.68, 3.47E-04), 1.27 (1.11–1.44, 3.38E-04), and 1.21 (1.09–1.33, 2.56E-04), respectively. Combined analysis of these five risk genotypes revealed that the genetic score 0–5 was associated with the adjusted HR in a dose-response manner (Ptrend = 3.44E-13); individuals with 2–5 risk genotypes had an adjusted HR of 1.56 (1.34–1.82, 1.46E-08), compared with those with 0–1 risk genotypes. Larger studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozheng Kang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
10
|
Tian H, Li X, Tang Q, Zhang W, Li Q, Sun X, Zhao R, Ma C, Liu H, Gao Y, Han F. Yi-nao-jie-yu Prescription Exerts a Positive Effect on Neurogenesis by Regulating Notch Signals in the Hippocampus of Post-stroke Depression Rats. Front Psychiatry 2018; 9:483. [PMID: 30386260 PMCID: PMC6198169 DOI: 10.3389/fpsyt.2018.00483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 11/13/2022] Open
Abstract
Post-stroke depression (PSD) is one of the most frequent complications of stroke. The Yi-nao-jie-yu prescription (YNJYP) is an herbal prescription widely used as a therapeutic agent against PSD in traditional Chinese medicine. Disruption of adult neurogenesis has attracted attention as a potential cause of cognitive pathophysiology in neurological and psychiatric disorders. The Notch signaling pathway plays an important role in neurogenesis. This study investigated the effects of YNJYP on adult neurogenesis and explored its underlying molecular mechanism in a rat model of PSD that is established by middle cerebral artery occlusion and accompanied by chronic immobilization stress for 1 week. At 2, 4, and 8 weeks, depression-like behavior was evaluated by a forced swim test (FST) and sucrose consumption test (SCT). Neurogenesis was observed by double immunofluorescence staining. Notch signals were detected by real-time polymerase chain reaction. The results show that, at 4 weeks, the immobility time in the FST for rats in the PSD group increased and the sucrose preference in the SCT decreased compared with that in the stroke group. Therefore, YNJYP decreased the immobility time and increased the sucrose preference of the PSD rats. Further, PSD interfered with neurogenesis and decreased the differentiation toward neurons of newly born cells in the hippocampal dentate gyrus, and increased the differentiation toward astrocytes, effects that were reversed by YNJYP, particularly at 4 weeks. At 2 weeks, compared with the stroke group, expression of target gene Hes5 mRNA transcripts in the PSD group decreased, but increased after treatment with YNJYP. At 4 weeks, compared with the stroke group, the expression of Notch receptor Notch1 mRNA transcripts in the PSD group decreased, but also increased after treatment with YNJYP. Overall, this study indicated that disturbed nerve regeneration, including the increased numbers of astrocytes and decrease numbers of neurons, is a mechanism of PSD, and Notch signaling genes dynamically regulate neurogenesis. Moreover, YNJYP can relieve depressive behavior in PSD rats, and exerts a positive effect on neurogenesis by dynamically regulating the expression of Notch signaling genes.
Collapse
Affiliation(s)
- Huiling Tian
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoli Li
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qisheng Tang
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Zhang
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingmeng Li
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Sun
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruizhen Zhao
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- Research Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Haipeng Liu
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- Research Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Han
- Department of Encephalopathy, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Wang Z, Dai Z, Pan Y, Wu S, Li Z, Zuo C. E3 ubiquitin ligase DTX4 is required for adipogenic differentiation in 3T3-L1 preadipocytes cell line. Biochem Biophys Res Commun 2017; 492:419-424. [PMID: 28842252 DOI: 10.1016/j.bbrc.2017.08.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 01/14/2023]
Abstract
Deltex4 (DTX4) is a member of the Deltex family of proteins. To date several lines of evidences suggest that Deltex family of proteins is closely linked to cell development and cell differentiation. However, little is known about the role of DTX4 in adipogenic differentiation. In this study, we assessed the impact of DTX4 on adipogenic differentiation in vitro, we found that DTX4 protein expression gradually increased during adipogenic differentiation of 3T3-L1 preadipocytes cell line. While DTX4 stable knockdown by recombinant shRNA lentivirus (sh-DTX4) notably reduced the number of lipid droplets and down-regulated the expression of adipogenic transcription factors C/EBPα and PPARγ and adipogenic markers gene FABP4 and Adipsin. Besides, cell numbers and incorporation of 5-Ethynyl-2'-deoxyuridine (EdU) into cells were significantly decreased during mitotic clonal expansion (MCE) in sh-DTX4 cells postinduction. Furthermore, compared to recombinant shRNA lentivirus control group (sh-CON), the mRNA levels of Wnt signaling genes such as Wnt6, Wnt10b and β-catenin, were obviously elevated in sh-DTX4 group at day 3 of postinduction. Taken together, our results indicate that DTX4 stable knockdown inhibits adipogenesis of 3T3-L1 cells through inhibiting C/EBPα and PPARγ, arresting mitotic clonal expansion and regulating Wnt signaling pathway.
Collapse
Affiliation(s)
- Zonggui Wang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Zhong Dai
- Department of Pharmocology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Yaqiong Pan
- Department of Pharmocology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Simin Wu
- Department of Pharmocology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Zhengli Li
- Department of Pharmocology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Changqing Zuo
- Department of Pharmocology, Guangdong Medical University, Dongguan, Guangdong, 523808, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|