1
|
Nguyen DK, Dinh VP. Highly Efficient Removal of Cr(VI) by Biochar Derived from Vietnamese Young Durian Fruit: Comparison of Traditional and Microwave-Assisted Pyrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39718351 DOI: 10.1021/acs.langmuir.4c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
This study compares the material characteristics and evaluates the Cr(VI) adsorption capacity of biochar derived from a novel byproduct (young durian fruit, YDF), synthesized using two pyrolysis methods (traditional and microwave-assisted). The optimal pyrolysis conditions for porosity were 800 °C and 800 W for 30 min, respectively. The traditional pyrolysis method yielded a very high surface area and pore volume (668 m2/g; 0.332 cm3/g). XRD patterns and FTIR spectra demonstrated structural and functional group differences, significantly impacting the Cr(VI) removal efficiency in water. pH was a critical factor with optimal adsorption at pH 2.0. The adsorption process reached equilibrium at 180 and 100 min at initial concentrations of 100 and 125 mg/L for biochar synthesized by traditional and microwave-assisted pyrolysis, respectively. The adsorption mechanisms proposed based on modern analytical methods include adsorption-reduction, ion exchange, electrostatic interaction, and surface complexation. Industrial wastewater containing chromium was effectively treated under natural conditions (pH = 5.88; Co = 129.9 mg/L) using biochar synthesized via microwave, achieving a Qe of 21.41 mg/g. The research results pave the way for new directions in the synthesis and application of biochar in environmental treatment, specifically using young fruit materials and microwave methods.
Collapse
Affiliation(s)
- Duy-Khoi Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
2
|
Masuku M, Nure JF, Atagana HI, Hlongwa N, Nkambule TTI. The development of multifunctional biochar with NiFe 2O 4 for the adsorption of Cd (II) from water systems: The kinetics, thermodynamics, and regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123705. [PMID: 39693989 DOI: 10.1016/j.jenvman.2024.123705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
High concentrations of Cd (II) in wastewater have been reported several times which attracted top research attention to mitigate the pollution impacts of the contaminant. Therefore, this study aimed to develop a Zn-doped NiFe2O4- pinecone biochar composite (ZNiF@PB) for the adsorption of Cd (II) from wastewater. FTIR confirmed immobilization of PB on the surface of ZNiF by the presence of C = O at 1638 cm-1, COOH at 1385 cm-1, C-O at 1009 cm-1 and Fe-O at 756 cm-1. Similarly, XRD determined the crystallite structure of the adsorbents where the ZNiF crystallite size of 43 nm was obtained while the particle size of ZNiF@PB was found to be 38 nm. These XRD results agreed with those values obtained from TEM images showing ZNiF and ZNiF@PB had a spherical shape with similar particle sizes. On the other hand, the surface areas of ZNiF, PB, and ZNiF@PB were found to be 78.4 m2/g, 125 m2/g, and 104 m2/g, respectively. These high surface areas have a huge potential to enhance Cd removal. With these adsorbents, the maximum Cd (II) adsorption of 96% was recorded at the optimum experimental condition of adsorbent dosage 0.5g/50 mL, solution pH 6, initial Cd (II) concentration 100 mg/L, and contact time 120 min. Practical adsorption kinetics data were well described by the pseudo-second order model whereas the adsorption isotherm was a perfect fit to the Langmuir isothermal model implying the adsorption process to be a monolayer with mainly a chemically bonded mechanism. In conclusion, this adsorbent is efficient for the adsorption of Cd (II) from wastewater and has also a huge potential to be applied for industrial-scale water purification.
Collapse
Affiliation(s)
- Makhosazana Masuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| | - Harrison I Atagana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Ntuthuko Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| |
Collapse
|
3
|
Nguyen DK, Ly-Tran QB, Dinh VP, Duong BN, Nguyen TPT, Nguyen Kim Tuyen P. Adsorption mechanism of aqueous Cr(vi) by Vietnamese corncob biochar: a spectroscopic study. RSC Adv 2024; 14:39205-39218. [PMID: 39664238 PMCID: PMC11632952 DOI: 10.1039/d4ra07455f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cr(vi) is highly toxic and carcinogenic, posing significant threats to health and ecosystems. This study utilizes solid waste from corncobs to synthesize biochar (CCBC) for the removal of Cr(vi) from water. The most effective Cr(vi) removal was achieved at pH 2.0, with a maximum adsorption capacity (Q m, Langmuir, mg g-1) of 38.1, higher than that of activated carbon (25.69), composite (35.84), and magnetic biochar (25.94) derived from corncobs. Brunauer-Emmett-Teller (BET) results indicated that Cr(vi) was adsorbed on the internal surface instead of external surface. Scanning electron microscope (SEM-mapping) images combined with the pHPZC value (7.6) demonstrated that Cr(vi) interacts with the material surface via electrostatic mechanisms. Energy-dispersive X-ray (EDX) spectra combined with Fourier-transform infrared (FTIR) spectra demonstrate that two key adsorption mechanisms in this study are surface adsorption (Cr(vi)-biochar) followed by the reduction of Cr(vi) to Cr(iii), allowing ion exchange adsorption to occur. X-ray diffraction (XRD) patterns indicate no precipitation on the surface, and the material remains stable after four reuse cycles. These results suggest that CCBC can be used as an efficient, cost-effective, and environmentally friendly adsorbent for Cr(vi) removal from water. This is the first study to combine spectroscopic methods and theoretical models to gain deeper insights into the Cr(vi) adsorption mechanisms onto CCBC.
Collapse
Affiliation(s)
- Duy-Khoi Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Quoc-Bao Ly-Tran
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Bich-Ngoc Duong
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Thi-Phuong-Tu Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | | |
Collapse
|
4
|
Sahu UK, Tripathy S, Mohanty HS, Kar P. Effective adsorption of Cr(VI) from aqueous solution by Mg-Fe LDH supported on orange peel activated carbon: isotherm, kinetic, thermodynamics and mechanism studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-14. [PMID: 39530456 DOI: 10.1080/15226514.2024.2427388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The toxic Cr(VI) contaminating water released from the metallurgical, dyeing, and electroplating industries is getting worse day by day and is extremely hazardous to human health. Thus, the development of a cost-effective, quick, and efficient adsorbent is highly essential for the Cr(VI) decontamination from wastewater. Herein, a microwave-assisted carbon-based composite called Mg-Fe LDH@OPAC was prepared by assembling Mg-Fe LDH onto orange peel-activated carbon (OAPC). Prior to investigating deeply into the adsorption behavior of the composite, the Mg-Fe LDH@OPAC formation was confirmed by using instrumental techniques like FESEM, EDS, Zeta potential, XRD, FTIR, Raman, XPS, and BET analyzer. The material had a high surface area of 143.9 m2/g and showed a good monolayer Langmuir uptake capacity of 118.36 mg/g. Under ideal circumstances, the maximum amount of Cr(VI) was removed within just 120 min and showed high efficiency in the presence of other coexisting anions respectively. The adsorption was accounted by pseudo-second-order kinetics and spontaneous in nature. Ultimately, a possible adsorption mechanism was suggested, confirmed by XPS studies; which showed that oxidation-reduction, electrostatic interaction, and surface complexation reaction were responsible for Cr(VI) adsorption on Mg-Fe LDH@OPAC surface.
Collapse
Affiliation(s)
- Uttam Kumar Sahu
- Department of Chemistry, Gandhi Institute of Engineering and Technology University, Gunupur, India
| | - Swagatika Tripathy
- Department of Chemistry, Veer Surendra Sai University of Technology, India
| | - Hari Sankar Mohanty
- Department of Physics, Gandhi Institute of Engineering and Technology University, Gunupur, India
| | - Prativa Kar
- Department of Chemistry, Gandhi Institute of Engineering and Technology University, Gunupur, India
| |
Collapse
|
5
|
Tibebu S, Kassahun E, Ale TH, Worku A, Sime T, Berhanu AA, Akino B, Hailu AM, Ayana LW, Shibeshi A, Mohammed MA, Lema NK, Ammona AA, Tebeje A, Korsa G, Ayele A, Nuru S, Kebede S, Ayalneh S, Angassa K, Weldmichael TG, Ashebir H. The application of Rumex Abysinicus derived activated carbon/bentonite clay/graphene oxide/iron oxide nanocomposite for removal of chromium from aqueous solution. Sci Rep 2024; 14:19280. [PMID: 39164377 PMCID: PMC11335875 DOI: 10.1038/s41598-024-70238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Rapid industrialization has significantly boosted economic growth but has also introduced severe environmental challenges, particularly in water pollution. This study evaluates the effectiveness of a nanocomposite composed of Rumex Abyssinicus Activated Carbon/Acid Activated Bentonite Clay/Graphene Oxide, and Iron Oxide (RAAC/AABC/GO/Fe3O4) for chromium removal from aqueous solutions. The preparation of the nanocomposite involved precise methods, and its characterization was performed using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, and the point of zero charge (pHpzc). Batch adsorption experiments were designed using Design Expert software with a central composite design under response surface methodology. The factors investigated included pH (3, 6, and 9), initial Cr (VI) concentration (40, 70, and 100 mg/L), adsorbent dose (0.5, 0.75, 1 g/200 mL), and contact time (60, 90, and 120 min). Adsorption isotherms were analyzed using nonlinearized Langmuir, Freundlich, and Temkin models, while pseudo-first-order and pseudo-second-order models were applied to adsorption kinetics. Characterization revealed a pHpzc of 8.25, a porous and heterogeneous surface (SEM), diverse functional groups (FTIR), an amorphous structure (XRD), and a significant surface area of 1201.23 m2/g (BET). The highest removal efficiency of 99.91% was achieved at pH 6, with an initial Cr (VI) concentration of 70 mg/L, a 90 min contact time, and an adsorbent dose of 1 g/200 mL. Optimization of the adsorption process identified optimal parameters as pH 5.84, initial Cr (VI) concentration of 88.94 mg/L, contact time of 60 min, and adsorbent dose of 0.52 g/200 mL. The Langmuir isotherm model, with an R2 value of 0.92836, best described the adsorption process, indicating a monolayer adsorption mechanism. The pseudo-second-order kinetics model provided the best fit with an R2 value of 0.988. Overall, the nanocomposite demonstrates significant potential as a cost-effective and environmentally friendly solution for chromium removal from wastewater.
Collapse
Affiliation(s)
- Solomon Tibebu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia.
| | - Estifanos Kassahun
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Innovation Incubation Center & Intellectual Property Right Coordination Office, University-Industry Linkage & Technology Transfer Directorate, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Tigabu Haddis Ale
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abebe Worku
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Takele Sime
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Afework Aemro Berhanu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Belay Akino
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abrha Mulu Hailu
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Department of Chemistry, Aksum University, Tigray, Ethiopia
| | - Lalise Wakshum Ayana
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
- Manufacturing Industry Development Institute, Chemical and Construction Inputs Industry Research and Development Center, Addis Ababa, Ethiopia
| | - Abebaw Shibeshi
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Mohammednur Abdu Mohammed
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Niguse Kelile Lema
- Department of Biotechnology, Arba Minch University, Arba Minch, Ethiopia
| | - Andualem Arka Ammona
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Aseged Tebeje
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Gamachis Korsa
- Department of Biotechnology, College of Applied and Natural Science, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Abate Ayele
- Department of Biotechnology, College of Applied and Natural Science, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Saba Nuru
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Seble Kebede
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Shiferaw Ayalneh
- Department of Chemical Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Kenatu Angassa
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Tsedekech Gebremeskel Weldmichael
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| | - Hailu Ashebir
- Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Prasannakumari ASN, Madhu GDP, Bhuvanendran RK, Bhuvaneshwari S. Development of a continuous electrochemical reactor incorporated with waste-derived activated carbon electrode for the effective removal of hexavalent chromium from industrial effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50297-50315. [PMID: 39093392 DOI: 10.1007/s11356-024-34512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Being a recognized carcinogen, hexavalent chromium is hazardous to both human and environmental health. Thus, it is imperative to regulate and oversee their levels in a variety of industries, including textiles, dyes, pigments, and metal finishing. This study strives to reduce Cr(VI) in wastewater by using capacitive deionization in conjunction with an activated carbon-based electrode and a continuous electrochemical reactor (CER). Activated carbon derived from rubberwood sawdust demonstrated excellent properties, including a high surface area of 1157 m2 g-1. The electrical conductivity and mechanical stability of the electrode were enhanced by the incorporation of synthesized expanded graphite (EG) into the AC. Key parameters were optimized via systematic batch electroreduction experiments with an optimal response surface design. The efficacy of the fabricated CER was proved when it successfully reduced Cr(VI) in a 5 mg L-1 solution within 15 min under optimized conditions, in contrast to the considerably longer durations anticipated by conventional methods. Validation of these findings was done by treating industrial wastewater of 30 mg L-1 in the CER. The electroreduction of Cr(VI) followed the Langmuir isotherm with a maximum capacity of 13.491 mg g-1 and pseudo-second-order kinetics. These results indicate that the combined use of the modified AC electrode and CER holds potential as a sustainable and economical approach to effectively eliminate Cr(VI) from wastewater.
Collapse
Affiliation(s)
| | | | - Rahul Krishna Bhuvanendran
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Soundararajan Bhuvaneshwari
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601.
| |
Collapse
|
7
|
Adugna Areti H, Jabesa A, Diriba Muleta M, Nemera Emana A. Adsorptive performances and valorization of green synthesized biochar-based activated carbon from banana peel and corn cob composites for the abatement of Cr(VI) from synthetic solutions: Parameters, isotherms, and remediation studies. Heliyon 2024; 10:e33811. [PMID: 39027535 PMCID: PMC11255510 DOI: 10.1016/j.heliyon.2024.e33811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
This study intended to remove Cr(VI) from an aqueous synthetic solution employing synthesized biochar adsorbent from a blend of locally sourced banana peel, and corn cob biomass wastes. An equal ratio of the prepared powder was activated with ZnCl2 solution (1:1 wt basis) and carbonized for 2 h at 600 °C. The proximate analysis of the selected BP-CCAC@ZC3 biochar was conducted. Subsequently, its surface area, surface functions, and morphology were examined using BET analysis, FTIR, and SEM techniques, respectively. The proximate analysis of BP-CCAC@ZC3 showed a moisture content of 2.37 ± 0.80 %, an ash content of 8.07 ± 0.75 %, volatile matter of 19.38 ± 2.66 %, and fixed carbon of 70.18 %. It was found that the synthesized BP-CCAC@ZC3 had 432.149 m2/g of a specific area as per the BET surface area analysis. The highest efficiency for Cr(VI) removal was determined to be 97.92 % through adsorption batch tests using a dose of 0.4 g of BP-CCAC@ZC3, an initial Cr(VI) concentration of 20 mg/L, pH of 2, and 35 min contact time. Likewise, the adsorption process was effectively described by the Langmuir isotherm model, which had a high correlation coefficient (R 2 = 0.9977) and a maximum adsorption capacity of 19.16 mg/g, indicating a monolayer adsorption mechanism. The BP-CCAC@ZC3 biochar exhibited reusability for up to four cycles with only a slight decrease in effectiveness, highlighting its potential for sustainable wastewater treatment. Overall, using corn cob and banana peel composites to synthesize activated carbon with ZnCl2 offers a promising method for effectively removing Cr(VI) containing wastewater.
Collapse
Affiliation(s)
- Hirpha Adugna Areti
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Melkiyas Diriba Muleta
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Abdi Nemera Emana
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| |
Collapse
|
8
|
Masuku M, Nure JF, Atagana HI, Hlongwa N, Nkambule TTI. Pinecone biochar for the Adsorption of chromium (VI) from wastewater: Kinetics, thermodynamics, and adsorbent regeneration. ENVIRONMENTAL RESEARCH 2024; 258:119423. [PMID: 38889839 DOI: 10.1016/j.envres.2024.119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
High concentration of chromium in aquatic environments is the trigger for researchers to remediate it from wastewater environments. However, conventional water treatment methods have not been satisfactory in removing chromium from water and wastewater over the last decade. Similarly, many adsorption studies have been focused on one aspect of the treatment, but this study dealt with all aspects of adsorption packages to come up with a concrete conclusion. Therefore, this study aimed to prepare pinecone biochar (PBC) via pyrolysis and apply it for Cr(VI) removal from wastewater. The PBC was characterized using FTIR, SEM-EDX, BET surface area, pHpzc, Raman analyses, TGA, and XRD techniques. Chromium adsorption was studied under the influence of PBC dose, solution pH, initial Cr(VI) concentration, and contact time. The characteristics of PBC are illustrated by FTIR spectroscopic functional groups, XRD non-crystallite structure, SEM rough surface morphology, and high BET surface area125 m2/g, pore volume, 0.07 cm3/g, and pore size 1.4 nm. On the other hand, the maximum Cr (VI) adsorption of 69% was found at the experimental condition of pH 2, adsorbent dosage 0.25 mg/50 mL, initial Cr concentration 100 mg/L, and contact time of 120 min. Similarly, the experimental data were well-fitted with the Langmuir adsorption isotherm at R2 0.96 and the pseudo-second-order kinetics model at R2 0.99. This implies the adsorption process is mainly attributed to monolayer orientation between the adsorbent and adsorbate. In the thermodynamics study of adsorption, ΔG was found to be negative implying the adsorption process was feasible and spontaneous whereas the positive values of ΔH and ΔS indicated the adsorption process was endothermic and increasing the degree of randomness, respectively. Finally, adsorbent regeneration and reusability were successful up to three cycles. In conclusion, biochar surface modification and reusability improvements are urgently required before being applied at the pilot scale.
Collapse
Affiliation(s)
- Makhosazana Masuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| | - Harrison I Atagana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Ntuthuko Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| |
Collapse
|
9
|
Popoola LT. Parameter Influence, Characterization and Adsorption Mechanism Studies of Alkaline-Hydrolyzed Garcinia kola Hull Particles for Cr(VI) Sequestration. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302231215667. [PMID: 38250241 PMCID: PMC10799592 DOI: 10.1177/11786302231215667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
Despite the regulations by The World Health Organization (WHO) on the permissible limit of chromium, many industries still discharge wastewater polluted with chromium into the environment irrationally. This poses a lot of risk to aquatic lives and humans because of its carcinogenic and toxic attributes. Thus, treatment of industrial wastewater polluted with chromium is highly imperative before its disposal. Nonetheless, the hulls generated from Garcinia kola in our various farmlands also causes environmental pollution when dumped unknowingly. In this present study, Garcinia kola hull particles (GK-HP) was hydrolyzed using NaOH and applied as adsorbent for Cr(VI) sequestration. The raw Garcinia kola hull particles (rGK-HP) and modified Garcinia kola hull particles (cMGK-HP) were characterized using Brunauer-Emmett-Teller (BET) method, scanning electron microscopy (SEM), powder X-ray diffractometry (XRD), Fourier-Transform-Infrared (FTIR), thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) and point of zero charge (pHpzc). The influence of pH, adsorbent dose, contact time, temperature and adsorbate initial concentration on Cr(VI) sequestration were examined. The cMGK-HP was able to remove 96.25% of Cr(VI) from solution and proved to be effective than rGK-HP. The amount of Cr(VI) removed from solution decreased as the pH and adsorbate initial concentration were increased. However, the amount increased as the adsorbent dose, contact time and temperature were increased. Change in morphological structure, textural property, spectral peak, phase composition and adsorbents chemical composition before and after Cr(VI) sequestration from solution were proved by SEM, BET, FTIR, XRD, and EDS analyses respectively. The isotherm and kinetic studies suggest Cr(VI) adsorption on adsorbents' surface to be monolayer in nature and adsorption data to be well-fitted into pseudo second order model respectively. The cMGK-HP possessed excellent reusability attribute and high thermal stability as shown by TGA. In conclusion, cMGK-HP could effectively be used as an adsorbent for Cr(VI) sequestration from solution.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Separation Processes Research Laboratory, Chemical and Petroleum Engineering Department, Afe Babalola University, Ado-ekiti, Ekiti State, Nigeria
| |
Collapse
|
10
|
Rehman A, Naeem A, Ahmad I, Fozia F, Almutairi MH, Aslam M, Israr M, Almutairi BO, Ullah Z. Synthesis of Plant-Mediated Iron Oxide Nanoparticles and Optimization of Chemically Modified Activated Carbon Adsorbents for Removal of As, Pb, and Cd Ions from Wastewater. ACS OMEGA 2024; 9:317-329. [PMID: 38222602 PMCID: PMC10785089 DOI: 10.1021/acsomega.3c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/16/2024]
Abstract
This research study was designed with the aim to prepare plant extract-mediated iron oxide nanoparticles (IONPs) and different chemically modified carbon adsorbents from the Parthenium hysterophorus plant and then optimize the carbon adsorbents by evaluating their adsorption applications in wastewater for the selected metal ions like arsenic (As3+), lead (Pb2+), and cadmium (Cd2+). The Fourier transform infrared spectroscopy (FTIR) technique was used to highlight functional groups in plant-mediated IONPs and chemically modified carbon adsorbents. A scanning electron microscopy study was conducted to explain the surface morphology of the adsorbents. Energy-dispersive X-rays was used for elemental analysis and X-ray diffraction for particle size and crystallinity of the adsorbents. From the study, it was found that the best optimum conditions were pH = 5-6, initial concentration of adsorbate of 10 mg/L, dose of adsorbent of 0.01 g, contact time of 90-120 min of adsorbent and adsorbate, and temperature of 25 °C. At optimum conditions, the adsorption capacities of IONPs for arsenic (As) 144.7 mg/g, lead (Pb) 128.01 mg/g, and cadmium (Cd) ions 122.1 mg/g were recorded. The activated carbon at optimum conditions showed adsorption capacities of 46.35 mg/g for As, 121.95 mg/g for Pb, and 113.25 mg/g for Cd ion. At equilibrium, Langmuir, Freundlich Temkin, and Dubinin-Radushkevich isotherms were applied on the experimental adsorption data having the best R2 values (0.973-0.999) by the Langmuir isotherm. High-correlation coefficient R2 values (0.996-0.999) were obtained from the pseudo-second-order for all cases, showing that the adsorption process proceeds through pseudo second-order kinetics. The apparent adsorption energy E value was in the range of 0.24-2.36 kJ/mol. The adsorption capacity of regenerated IONPs for As gradually decreased from 144.8 to 45.67 mg/g, for lead 128.15 to 41.65 mg/g, and cadmium from 122.10 to 31.20 mg/g in 5 consecutive cycles. The study showed that the synthesized IONPs and acid-activated carbon adsorbent were successfully used to remove selected metal ions from wastewater.
Collapse
Affiliation(s)
- Ali Rehman
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Pakistan
| | - Abdul Naeem
- National
Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Ijaz Ahmad
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Pakistan
| | - Fozia Fozia
- Biochemistry
Department, Khyber Medical University Institute
of Dental Sciences, Kohat 26000, Pakistan
| | - Mikhlid H. Almutairi
- Zoology
Department, College of Science, King Saud
University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Madeeha Aslam
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Pakistan
| | - Muhammad Israr
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Pakistan
| | - Bader O. Almutairi
- Zoology
Department, College of Science, King Saud
University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Zia Ullah
- College
of Professional Studies, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Singh AK, Singh SP. Molecular scale insights from NMR studies of hybrid systems formed via doping silver QDs in 6CHBT liquid crystal: a quantitative investigation of their optoelectronic properties. LIQUID CRYSTALS 2023; 50:2019-2046. [DOI: 10.1080/02678292.2023.2227979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/18/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Kumari Singh
- Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malviya University of Technology, Gorakhpur, India
| | - Satya Pal Singh
- Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malviya University of Technology, Gorakhpur, India
| |
Collapse
|
12
|
Popoola LT. Efficient Cr(VI) sequestration from aqueous solution by chemically modified Garcinia kola hull particles: characterization, isotherm, kinetic, and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109751-109768. [PMID: 37777702 DOI: 10.1007/s11356-023-29848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
There is a need for the removal of hexavalent chromium from contaminated water prior to its discharge into the environment, as part of industrial effluents, due to its toxic nature. In this present study, an adsorbent prepared via chemical modification of Garcinia kola hull particles (GK-HP) using NaOH was applied for Cr(VI) sequestration from aqueous solution. Both the raw (rGK-HP) and chemically modified Garcinia kola hull particles (cMGK-HP) were characterized using BET, SEM, XRD, FTIR, TGA, and EDS. The effects of pH, contact time, adsorbent dose, adsorbate initial concentration, and temperature on Cr(VI) sequestration were examined. The adsorbent, cMGK-HP, proved to be more effective for the adsorption process than rGK-HP with 96.25% removal efficiency at a pH of 2, a contact time of 60 min, an adsorbent dose of 5 g/L, Cr(VI) initial concentration of 20 mg/L and a temperature of 40°C. Isotherm and kinetic studies showed experimental data to be well-fitted with Langmuir isotherm and follow the pseudo-second-order kinetic model. The thermodynamic study revealed adsorption nature to be feasible, occur via physisorption, spontaneous, and exothermic. Changes in morphological structure, textural property, spectral peak, phase composition, and chemical composition of adsorbents before and after Cr(VI) sequestration from solution were proved by SEM, BET, FTIR, XRD, and EDS analyses, respectively. cMGK-HP possessed excellent reusability attribute and high thermal stability as shown by TGA. In conclusion, the adsorption capacity of cMGK-HP is better than many other adsorbents generated from agrowastes used in previous studies for Cr(VI) removal.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Separation Processes Research Laboratory, Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
| |
Collapse
|
13
|
Worku Z, Tibebu S, Nure JF, Tibebu S, Moyo W, Ambaye AD, Nkambule TTI. Adsorption of chromium from electroplating wastewater using activated carbon developed from water hyacinth. BMC Chem 2023; 17:85. [PMID: 37488644 PMCID: PMC10367414 DOI: 10.1186/s13065-023-00993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
Industrial wastewater polluted with high concentrations of Cr is commonly discharged into water resources without proper treatment. This gives rise to the deterioration of water quality and imposes adverse effects on public health. Therefore, this study is aimed at removing Cr from electroplating wastewater using activated carbon produced from water hyacinth under a full factorial experimental design with three factors and three levels (pH,2,5 and 8, adsorbent dose 0.5,1and1.5 in 100 mL and contact time 30, 60 and120 min). A phosphoric acid solution of 37% was used to activate the carbon, which was then subjected to thermal decomposition for 15 min at 500 °C. The activated carbon was characterized by the presence of a high surface area (203.83 m2/g) of BET, cracking of adsorbent beads of SEM morphology, amorphous nature of XRD, and many functional groups of FTIR such as hydroxyl (3283 cm-1), alkane (2920 cm-1), nitrile (2114 cm-1) and aromatics (1613 cm-1). The minimum Cr adsorption performance of 15.6% was obtained whereas maximum removal of 90.4% was recorded at the experimental condition of pH 2, adsorbent dose of 1.5 g/100 mL, and contact time of 120 min at a fixed value of initial Cr concentration of 100 mg/L. Similarly, the maximum Cr removal from real electroplating wastewater was 81.2% at this optimum point. Langmuir's model best described the experimental value at R2 0.96 which implies the adsorption is chemically bonded, homogeneous, and monolayer. Pseudo-second-order model best fits with the experimental data with R2 value of 0.99. The adsorbent was regenerated for seven cycles and the removal efficiency decreased from 93.25% to 21.35%. Finally, this technology is promising to be scaled up to an industrial level.
Collapse
Affiliation(s)
- Zemene Worku
- Department of Environmental Engineering, Addis Ababa Science, and Technology University, 16417, Addis Ababa, Ethiopia.
| | - Samuel Tibebu
- Department of Environmental Engineering, Addis Ababa Science, and Technology University, 16417, Addis Ababa, Ethiopia
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Science Campus Florida, Johannesburg, South Africa
| | - Solomon Tibebu
- Department of Environmental Engineering, Addis Ababa Science, and Technology University, 16417, Addis Ababa, Ethiopia
| | - Welldone Moyo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Science Campus Florida, Johannesburg, South Africa
| | - Abera Demeke Ambaye
- Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Science Campus Florida, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Science Campus Florida, Johannesburg, South Africa
| |
Collapse
|