1
|
Desai U, Christian J, Suhagia BN. Simultaneous estimation of prasugrel and aspirin in bulk drugs by chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125306. [PMID: 39461082 DOI: 10.1016/j.saa.2024.125306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
A UV-Vis spectrophotometric method enhanced by chemometric techniques, specifically Principal Component Regression (PCR) and Partial Least Squares (PLS) regression, was developed and validated for the simultaneous quantification of prasugrel (PRA) and aspirin (ASP) in bulk drugs and pharmaceutical formulations. The method demonstrated high accuracy, precision, and robustness, achieving mean recoveries of 100.63% for PRA and 100.08% for ASP with relative standard deviations (RSD) below 3%. Both PCR and PLS models showed excellent predictive capabilities, with RMSEP values of 0.45-0.48 for PRA and 0.78-1.13 for ASP, indicating the models' reliability. In line with green and white chemistry principles, the method minimizes environmental impact by reducing solvent consumption and waste generation compared to traditional chromatographic methods. The Analytical Eco-Scale score was 84, reflecting excellent compliance with green chemistry standards. The method's simplicity, low energy consumption, and reduced chemical waste further support its alignment with sustainability goals. However, acetonitrile, a hazardous solvent, was still used in small quantities, and solvent recycling was not implemented, slightly affecting the eco-score. To evaluate the method's greenness, the RGB12 algorithm was applied, achieving a high score of 94.4%, with the majority of parameters related to reagent consumption, waste production, energy efficiency, and safety scoring optimally. The method's safety, cost-effectiveness, and minimal environmental footprint make it suitable for routine pharmaceutical analysis, particularly in quality control environments where resource efficiency and sustainability are prioritized. Thus, the developed method offers a sustainable, efficient, and environmentally friendly solution for the simultaneous analysis of prasugrel and aspirin in pharmaceutical formulations, making it a valuable tool for routine analysis in the pharmaceutical industry.
Collapse
Affiliation(s)
- Urvish Desai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dharmsinh Desai University, Nadiad, Gujarat, India
| | - Jenee Christian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dharmsinh Desai University, Nadiad, Gujarat, India.
| | - B N Suhagia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dharmsinh Desai University, Nadiad, Gujarat, India
| |
Collapse
|
2
|
Alnemari RM, Abdelazim AH, Almalki AH, Alqahtani AS, Alaqel SI, Alsulami FT, Serag A. Application of signal processing techniques for the spectroscopic analysis of dolutegravir and lamivudine: a comparative assessment and greenness appraisal. BMC Chem 2024; 18:129. [PMID: 38978116 PMCID: PMC11232167 DOI: 10.1186/s13065-024-01226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
HIV treatment has greatly improved over the years, with the introduction of antiretroviral drugs that target the virus and suppress its replication. Dolutegravir and lamivudine are two such antiretroviral drugs that are commonly used in HIV treatment regimens. Herein, three spectrophotometric methods manipulating ratio spectra were developed for the simultaneous analysis of dolutegravir and lamivudine in their binary mixtures. These methods include mathematical processing stages like ratio difference method or signal processing approaches such as the first derivative of the ratio spectra, and continuous wavelet transform. The developed spectrophotometric methods exploit the characteristic spectral differences between dolutegravir and lamivudine in order to quantify them simultaneously. These methods have shown promising results in terms of sensitivity and selectivity as validated per the ICH guidelines. Moreover, these methods offer a straightforward and economical alternative to more intricate analytical methodologies like high-performance liquid chromatography. By incorporating the analytical eco-scale and AGREE for greenness evaluation of the proposed methods, we can further ensure that these techniques are effective and environmentally friendly, aligning with the principles of green chemistry. This evaluation will provide a comprehensive understanding of the environmental friendliness of these spectrophotometric methods in pharmaceutical analysis.
Collapse
Affiliation(s)
- Reem M Alnemari
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arwa S Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Saleh I Alaqel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Fahad T Alsulami
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| |
Collapse
|
3
|
Taha AM, Elmasry MS, Hassan WS, Sayed RA. Spider chart, greenness and whiteness assessment of experimentally designed multivariate models for simultaneous determination of three drugs used as a combinatory antibiotic regimen in critical care units: Comparative study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124115. [PMID: 38484641 DOI: 10.1016/j.saa.2024.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
In this study, five earth-friendly spectrophotometric methods using multivariate techniques were developed to analyze levofloxacin, linezolid, and meropenem, which are utilized in critical care units as combination therapies. These techniques were used to determine the mentioned medications in laboratory-prepared mixtures, pharmaceutical products and spiked human plasma that had not been separated before handling. These methods were named classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), genetic algorithm partial least squares (GA-PLS), and artificial neural network (ANN). The methods used a five-level, three-factor experimental design to make different concentrations of the antibiotics mentioned (based on how much of them are found in the plasma of critical care patients and their linearity ranges). The approaches used for levofloxacin, linezolid, and meropenem were in the ranges of 3-15, 8-20, and 5-25 µg/mL, respectively. Several analytical tools were used to test the proposed methods' performance. These included the root mean square error of prediction, the root mean square error of cross-validation, percentage recoveries, standard deviations, and correlation coefficients. The outcome was highly satisfactory. The study found that the root mean square errors of prediction for levofloxacin were 0.090, 0.079, 0.065, 0.027, and 0.001 for the CLS, PCR, PLS, GA-PLS, and ANN models, respectively. The corresponding values for linezolid were 0.127, 0.122, 0.108, 0.05, and 0.114, respectively. For meropenem, the values were 0.230, 0.222, 0.179, 0.097, and 0.099 for the same models, respectively. These results indicate that the developed models were highly accurate and precise. This study compared the efficiency of artificial neural networks and classical chemometric models in enhancing spectral data selectivity for quickly identifying three antimicrobials. The results from these five models were subjected to statistical analysis and compared with each other and with the previously published ones. Finally, the whiteness of the methods was assessed by the recently published white analytical chemistry (WAC) RGB 12, and the greenness of the proposed methods was assessed using AGREE, GAPI, NEMI, Raynie and Driver, and eco-scale, which showed that the suggested approaches had the least negative environmental impact. Furthermore, to demonstrate solvent sustainability, a greenness index using a spider chart methodology was employed.
Collapse
Affiliation(s)
- Asmaa M Taha
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Manal S Elmasry
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Wafaa S Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Rania A Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Alsharif ST, Almalki AH, Ramzy S, Sultan Alqahtani A, Abduljabbar MH, Algarni MA, Serag A. Derivative spectroscopy and wavelet transform as green spectrophotometric methods for abacavir and lamivudine measurement. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123913. [PMID: 38271846 DOI: 10.1016/j.saa.2024.123913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Herein, two different sustainable and green signal processing spectrophotometric approaches, namely, derivative spectroscopy and wavelet transform, have been utilized for effective measurement of the antiretroviral therapy abacavir and lamivudine in their pharmaceutical formulations. These methods were used to enhance the spectral data and differentiate between the absorption bands of abacavir and lamivudine in order to accurately measure their concentrations. For determining abacavir and lamivudine, the first derivative spectrophotometric method has been applied to the zero-order and ratio spectra of both drugs. The same approach has been tested using the continuous wavelet transform method where a second order 2.4 of rbio and bior wavelet families were found to be optimum for measuring both drugs. Validation of the proposed methods affirmed their reliability in terms of linearity over the concentration range 1.5-30 µg/mL and 1.5-36 µg/mL for abacavir and lamivudine, respectively, precision (RSD < 2 %), and accuracy with mean recoveries ranging between 98 % and 102 %. Additionally, these spectrophotometric methodologies were applied to real pharmaceutical preparations and yielded results congruent with a prior chromatographic method. Most prominently, the proposed methods stood out for their greenness and sustainability with 97 points as evaluated by the analytical eco-scale method and a score value of 0.79 as analyzed by AGREE method, thereby making them suitable for resource-limited settings and highlighting the potential for broader application of green analytical methods in pharmaceutical analysis.
Collapse
Affiliation(s)
- Shaker T Alsharif
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia; Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box, 90950, Riyadh 11623, Saudi Arabia
| | - Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Majed A Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt.
| |
Collapse
|
5
|
Abo Elkheir SM, Nasr JJM, Walash MI, Zeid AM. Green spectrophotometric and spectrofluorimetric determination of biperiden hydrochloride using erythrosine B sensing probe. LUMINESCENCE 2024; 39:e4725. [PMID: 38532614 DOI: 10.1002/bio.4725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Erythrosine B (EB) is a food colorant antiviral xanthene dye that has many applications as a color additive in pharmaceuticals and cosmetics. Its use as a sensor for spectrofluorimetric and spectrophotometric analysis of amine-based pharmaceuticals renders many advantages because of its availability, low cost, rapid labeling, and high sensitivity. Herein, two fast and sensitive spectrofluorimetric and spectrophotometric methods were established for the estimation of the anti-Parkinson drug, biperiden (BIP) hydrochloride (HCl), in its raw material and tablet forms. The proposed methods depended on the interaction between the phenolic group of EB and the tertiary amino group of the studied analyte to form an ion-pair complex at pH 4 using the Britton Robinson buffer. The spectrofluorimetric method is based on the measurement of the quenching power of BIP HCl on the fluorescence intensity of EB at λex/em = 527.0/550.9 nm. This method was rectilinear over the concentration range of 0.1-1.0 μg/mL with a limit of detection (LOD) = 0.017 μg/mL and a limit of quantification (LOQ) = 0.05 μg/mL. Meanwhile, the colorimetric method involved monitoring the absorbance of the formed ion-pair complex at 555 nm, showing a linearity range of 0.4-5.0 μg/mL with LOD = 0.106 μg/mL and LOQ = 0.322 μg/mL. The proposed methods were assessed for the greenness, indicating the greenness of the developed methods.
Collapse
Affiliation(s)
- Shrouk M Abo Elkheir
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Jenny Jeehan M Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Mohamed I Walash
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdallah M Zeid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|