1
|
DeChellis A, Nemmaru B, Sammond D, Douglass J, Patil N, Reste O, Chundawat SPS. Supercharging carbohydrate-binding module alone enhances endocellulase thermostability, binding, and activity on cellulosic biomass. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.557007. [PMID: 37745483 PMCID: PMC10515785 DOI: 10.1101/2023.09.09.557007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Lignocellulosic biomass recalcitrance to enzymatic degradation necessitates high enzyme loadings incurring large processing costs for industrial-scale biofuels or biochemicals production. Manipulating surface charge interactions to minimize non-productive interactions between cellulolytic enzymes and plant cell wall components (e.g., lignin or cellulose) via protein supercharging has been hypothesized to improve biomass biodegradability, but with limited demonstrated success to date. Here we characterize the effect of introducing non-natural enzyme surface mutations and net charge on cellulosic biomass hydrolysis activity by designing a library of supercharged family-5 endoglucanase Cel5A and its native family-2a carbohydrate binding module (CBM) originally belonging to an industrially relevant thermophilic microbe Thermobifida fusca . A combinatorial library of 33 mutant constructs containing different CBM and Cel5A designs spanning a net charge range of -52 to 37 was computationally designed using Rosetta macromolecular modelling software. Activity for all mutants was rapidly characterized as soluble cell lysates and promising mutants (containing mutations either on the CBM, Cel5A catalytic domain, or both CBM and Cel5A domains) were then purified and systematically characterized. Surprisingly, often endocellulases with mutations on the CBM domain alone resulted in improved activity on cellulosic biomass, with three top-performing supercharged CBM mutants exhibiting between 2-5-fold increase in activity, compared to native enzyme, on both pretreated biomass enriched in lignin (i.e., corn stover) and isolated crystalline/amorphous cellulose. Furthermore, we were able to clearly demonstrate that endocellulase net charge can be selectively fine-tuned using protein supercharging protocol for targeting distinct substrates and maximizing biocatalytic activity. Additionally, several supercharged CBM containing endocellulases exhibited a 5-10 °C increase in optimal hydrolysis temperature, compared to native enzyme, which enabled further increase in hydrolytic yield at higher operational reaction temperatures. This study demonstrates the first successful implementation of enzyme supercharging of cellulolytic enzymes to increase hydrolytic activity towards complex lignocellulosic biomass derived substrates.
Collapse
|
2
|
Haldar D, Shabbirahmed AM, Mahanty B. Multivariate regression and artificial neural network modelling of sugar yields from acid pretreatment and enzymatic hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 370:128519. [PMID: 36563864 DOI: 10.1016/j.biortech.2022.128519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 05/26/2023]
Abstract
Reducing sugar generation from lignocellulosic biomass (LCB) is closely linked with biomass characteristics, pretreatment and enzymatic hydrolysis conditions. In this study curated experimental data from literature was used to develop multivariate regression and artificial neural network (ANN) model considering nine predictors (i.e., cellulose, hemicellulose, lignin content, cellulose-lignin ratio, acid concentration, temperature, time, pretreatment severity, and enzyme concentration). Selected reduced polynomial model (R2: 0.891, Adj. R2: 0.849) suggests positive influence of acid and enzyme, while negative influence of treatment severity, temperature and time on reducing sugar generation. Genetic algorithm-optimized ANN model offered excellent fitness for LCB hydrolysis on training (R2: 0.997), validation (R2: 0.984), and test sets (R2: 0.967). Sensitivity analysis of the ANN predictors suggests lignin and to some extent hemicellulose contents can be inhibitory. Though polynomial models can have simple interpretation, use of optimized ANN offers better predictability in dataset with diverse biomass compositions.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | | | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India.
| |
Collapse
|
3
|
De Meester B, Van Acker R, Wouters M, Traversari S, Steenackers M, Neukermans J, Van Breusegem F, Déjardin A, Pilate G, Boerjan W. Field and saccharification performances of poplars severely downregulated in CAD1. THE NEW PHYTOLOGIST 2022; 236:2075-2090. [PMID: 35808905 DOI: 10.1111/nph.18366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse-grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol-specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1-yr-old hpCAD wood had 10% less lignin, 3-yr-old hpCAD wood had wild-type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1-yr-old and 3-yr-old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD-deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Silvia Traversari
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Research Institute on Terrestrial Ecosytems (IRET-CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Marijke Steenackers
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500, Geraardsbergen, Belgium
| | - Jenny Neukermans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Annabelle Déjardin
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Gilles Pilate
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
4
|
Ling R, Wei W, Jin Y. Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol-water to improve the cellulose enzymatic conversion. BIORESOURCE TECHNOLOGY 2022; 361:127723. [PMID: 35914671 DOI: 10.1016/j.biortech.2022.127723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In this work, HCl catalyzed ethylene glycol-water pretreatment (HCl/EG-H2O) of sugarcane bagasse (SCB) was explored with response surface methodology (RSM) and single factor analysis, which aim to investigate the influence of pretreatment variable on pretreated solid cellulose enzymatic conversion. The result showed that HCl/EG-H2O pretreatment could selectively extract ∼89.9 % xylan and ∼61.2 % lignin in SCB, meanwhile maintain a relatively high cellulose retention (∼86.8 %). Pretreatment of SCB at 120 °C for 60 min with 1.00 % HCl and 90 % EG obtained the pretreated solid having maximum cellulose enzymatic conversion of 88.7 % under 10 FPU/g enzyme dosage, this enhancement of cellulose enzymatic conversion mainly attributed to structure change of SCB in pretreatment. The adding of enzymatic additives into the hydrolysis process could not only improve hydrolysis efficiency but also lower the enzyme dosage. Besides, the linear relationship between substrate characteristic parameters (such cellulose content, lignin removal rate etc.) and cellulose conversion were observed.
Collapse
Affiliation(s)
- Rongxin Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
5
|
Jia H, Feng X, Huang J, Guo Y, Zhang D, Li X, Zhao J. Recombinant Family 1 Carbohydrate-Binding Modules Derived From Fungal Cellulase Enhance Enzymatic Degradation of Lignocellulose as Novel Effective Accessory Protein. Front Microbiol 2022; 13:876466. [PMID: 35898911 PMCID: PMC9309510 DOI: 10.3389/fmicb.2022.876466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal cellulases usually contain a family 1 carbohydrate-binding module (CBM1), and its role was considered to recognize the substrate specifically. This study testified that the CBM1s derived from cellobiohydrolase I of Trichoderma reesei, Penicillium oxalicum, and Penicillium funiculosum could be used as an effective accessory protein in cellulase cocktails to enhance the saccharification of lignocellulose, and its enhancement effect was significantly superior to some reported accessory proteins, such as bovine serum albumin (BSA). The promoting effects of the CBM1s were related to not only the CBM1 sources and protein dosages, but also the substrate characteristics and solid consistency during enzymatic hydrolysis. The adsorption capacity of the CBM1s, the adsorption kinetic of TrCBM from T. reesei and cellobiohydrolase, endoglucanase, and β-glucosidase from P. oxalicum, and the effect of adding TrCBM on enzyme activities of free cellulases in the hydrolysis system were investigated, and the binding conformations and affinities of CBM1s to cellulose and lignin were predicted by molecular docking. It was speculated that the higher affinity of the CBM1s to lignin than cellulases could potentially enable the CBM1s to displace cellulase adsorbed on lignin or to preferentially adsorb onto lignin to avoid ineffective adsorption of cellulase onto lignin, which enhanced cellulase system efficiency during enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- Hexue Jia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoting Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiamin Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingjie Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Daolei Zhang
- School of Bioengineering, Shandong Polytechnic, Jinan, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Xuezhi Li,
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Jian Zhao,
| |
Collapse
|
6
|
Gacias-Amengual N, Wohlschlager L, Csarman F, Ludwig R. Fluorescent Imaging of Extracellular Fungal Enzymes Bound onto Plant Cell Walls. Int J Mol Sci 2022; 23:ijms23095216. [PMID: 35563607 PMCID: PMC9105846 DOI: 10.3390/ijms23095216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Lignocelluloytic enzymes are industrially applied as biocatalysts for the deconstruction of recalcitrant plant biomass. To study their biocatalytic and physiological function, the assessment of their binding behavior and spatial distribution on lignocellulosic material is a crucial prerequisite. In this study, selected hydrolases and oxidoreductases from the white rot fungus Phanerochaete chrysosporium were localized on model substrates as well as poplar wood by confocal laser scanning microscopy. Two different detection approaches were investigated: direct tagging of the enzymes and tagging specific antibodies generated against the enzymes. Site-directed mutagenesis was employed to introduce a single surface-exposed cysteine residue for the maleimide site-specific conjugation. Specific polyclonal antibodies were produced against the enzymes and were labeled using N-hydroxysuccinimide (NHS) ester as a cross-linker. Both methods allowed the visualization of cell wall-bound enzymes but showed slightly different fluorescent yields. Using native poplar thin sections, we identified the innermost secondary cell wall layer as the preferential attack point for cellulose-degrading enzymes. Alkali pretreatment resulted in a partial delignification and promoted substrate accessibility and enzyme binding. The methods presented in this study are suitable for the visualization of enzymes during catalytic biomass degradation and can be further exploited for interaction studies of lignocellulolytic enzymes in biorefineries.
Collapse
|
7
|
Improvement of Enzymatic Saccharification and Ethanol Production from Rice Straw Using Recycled Ionic Liquid: The Effect of Anti-Solvent Mixture. Bioengineering (Basel) 2022; 9:bioengineering9030115. [PMID: 35324804 PMCID: PMC8944977 DOI: 10.3390/bioengineering9030115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major concerns for utilizing ionic liquid on an industrial scale is the cost involved in the production. Despite its proven pretreatment efficiency, expenses involved in its usage hinder its utilization. A better way to tackle this limitation could be overcome by studying the recyclability of ionic liquid. The current study has applied the Box–Behnken design (BBD) to optimize the pretreatment condition of rice straw through the usage of 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) as an ionic liquid. The model predicted the operation condition with 5% solid loading at 128.4 °C for 71.83 min as an optimum pretreatment condition. Under the optimized pretreatment condition, the necessity of the best anti-solvent was evaluated among water, acetone methanol, and their combinations. The study revealed that pure methanol is the suitable choice of anti-solvent, enhancing the highest sugar yield. Recyclability of EMIM-Ac coupled with anti-solvent was conducted up to five recycles following the predicted pretreatment condition. Fermentation studies evaluated the efficacy of recycled EMIM-Ac for ethanol production with 89% more ethanol production than the untreated rice straw even after five recycles. This study demonstrates the potential of recycled ionic liquid in ethanol production, thereby reducing the production cost at the industrial level.
Collapse
|
8
|
Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13169295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anaerobic digestion (AD) is a process in which microorganisms, under oxygen-free conditions, convert organic matter into biogas and digestate. Normally, only 40–70% of biomass is converted into biogas; therefore, digestate still contains significant amounts of degradable organic matter and biogas potential. The recovery of this residual biogas potential could optimize substrate utilization and lower methane emissions during digestate storage and handling. Post-treatment methods have been studied with the aim of enhancing the recovery of biogas from digestate. This review summarizes the studies in which these methods have been applied to agricultural and wastewater digestate and gives a detailed overview of the existing scientific knowledge in the field. The current studies have shown large variation in outcomes, which reflects differences in treatment conditions and digestate compositions. While studies involving biological post-treatment of digestate are still limited, mechanical methods have been relatively more explored. In some cases, they could increase methane yields of digestate; however, the extra gain in methane has often not covered treatment energy inputs. Thermal and chemical methods have been studied the most and have yielded some promising results. Despite all the research conducted in the area, several knowledge gaps still should be addressed. For a more thorough insight of the pros and cons within post-treatment, more research where the effects of the treatments are tested in continuous AD systems, along with detailed economic analysis, should be performed.
Collapse
|
9
|
Jia H, Sun W, Li X, Zhao J. Cellulose induced protein 1 (Cip1) from Trichoderma reesei enhances the enzymatic hydrolysis of pretreated lignocellulose. Microb Cell Fact 2021; 20:136. [PMID: 34281536 PMCID: PMC8287770 DOI: 10.1186/s12934-021-01625-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Trichoderma reesei is currently the main strain for the commercial production of cellulase. Cellulose induced protein 1 (Cip1) is one of the most abundant proteins in extracellular proteins of T. reesei. Reported literatures about Cip1 mainly focused on the regulation of Cip1 and its possible enzyme activities, but the effect of Cip1 on the enzymatic hydrolysis of lignocellulose and possible mechanism have not still been reported. Results In this study, Cip1 from T. reesei was cloned, expressed and purified, and its effects on enzymatic hydrolysis of several different pretreated lignocellulose were investigated. It was found that Cip1 could promote the enzymatic hydrolysis of pretreated lignocellulose, and the promoting effect was significantly better than that of bovine serum albumin (BSA). And especially for the lignocellulosic substrate with high lignin content such as liquid hot water pretreated corn stover and corncob residue, the promoting effect of Cip1 was even better than that of the commercial cellulase when adding equal amount protein. It was also showed that the metal ions Zn2+ and Cu2+ influenced the promoting effect on enzymatic hydrolysis. The Cip1 protein had no lyase activity, but it could destroy the crystal structure of cellulose and reduce the non-productive adsorption of cellulase on lignin, which partly interpreted the promoting effect of Cip1 on enzymatic hydrolysis of lignocellulose. Conclusion The Cip1 from T. reesei could significantly promote the enzymatic hydrolysis of pretreated lignocellulose, and the promotion of Cip1 was even higher than that of commercial cellulase in the enzymatic hydrolysis of the substrates with high lignin content. This study will help us to better optimize cellulase to improve its ability to degrade lignocellulose, thereby reducing the cost of enzymes required for enzymatic hydrolysis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01625-z.
Collapse
Affiliation(s)
- Hexue Jia
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Wan Sun
- National Glycoengineering Research Center, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| |
Collapse
|
10
|
Deralia PK, Jensen A, Felby C, Thygesen LG. Chemistry of lignin and hemicellulose structures interacts with hydrothermal pretreatment severity and affects cellulose conversion. Biotechnol Prog 2021; 37:e3189. [PMID: 34176230 DOI: 10.1002/btpr.3189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022]
Abstract
Understanding of how the plant cell walls of different plant species respond to pretreatment can help improve saccharification in bioconversion processes. Here, we studied the chemical and structural modifications in lignin and hemicellulose in hydrothermally pretreated poplar and wheat straw using wet chemistry and 2D heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and their effects on cellulose conversion. Increased pretreatment severity reduced the levels of β─O─4 linkages with concomitant relatively increased levels of β─5 and β─β structures in the NMR spectra. β─5 structures appeared at medium and high severities for wheat straw while only β─β structures were observed at all pretreatment severities for poplar. These structural differences accounted for the differences in cellulose conversion for these biomasses at different severities. Changes in the hemicellulose component include a complete removal of arabinosyl and 4-O-methyl glucuronosyl substituents at low and medium pretreatment severities while acetyl groups were found to be relatively resistant toward hydrothermal pretreatment. This illustrates the importance of these groups, rather than xylan content, in the detrimental role of xylan in cellulose saccharification and helps explain the higher poplar recalcitrance compared to wheat straw. The results point toward the need for both enzyme preparation development and pretreatment technologies to target specific plant species.
Collapse
Affiliation(s)
- Parveen Kumar Deralia
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Jensen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Claus Felby
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Méndez-Líter JA, de Eugenio LI, Hakalin NLS, Prieto A, Martínez MJ. Production of a β-Glucosidase-Rich Cocktail from Talaromyces amestolkiae Using Raw Glycerol: Its Role for Lignocellulose Waste Valorization. J Fungi (Basel) 2021; 7:jof7050363. [PMID: 34066619 PMCID: PMC8148544 DOI: 10.3390/jof7050363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
As β-glucosidases represent the major bottleneck for the industrial degradation of plant biomass, great efforts are being devoted to discover both novel and robust versions of these enzymes, as well as to develop efficient and inexpensive ways to produce them. In this work, raw glycerol from chemical production of biodiesel was tested as carbon source for the fungus Talaromyces amestolkiae with the aim of producing enzyme β-glucosidase-enriched cocktails. Approximately 11 U/mL β-glucosidase was detected in these cultures, constituting the major cellulolytic activity. Proteomic analysis showed BGL-3 as the most abundant protein and the main β-glucosidase. This crude enzyme was successfully used to supplement a basal commercial cellulolytic cocktail (Celluclast 1.5 L) for saccharification of pretreated wheat straw, corroborating that even hardly exploitable industrial wastes, such as glycerol, can be used as secondary raw materials to produce valuable enzymatic preparations in a framework of the circular economy.
Collapse
|
12
|
Zheng Y, Yu Y, Lin W, Jin Y, Yong Q, Huang C. Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment. BIORESOURCE TECHNOLOGY 2021; 325:124691. [PMID: 33461121 DOI: 10.1016/j.biortech.2021.124691] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 05/09/2023]
Abstract
The high content of lignin in bamboo is considered as the major obstacle for its biorefining. In this work, a green, lignin-selective, and recyclable solvent of phenoxyethanol was coupled with acid solution to deconstruct recalcitrant structure of bamboo residues (BR) to boost its enzymatic digestibility. Results showed phenoxyethanol has excellent lignin-removal ability from 29.4% to 91.6% when phenoxyethanol:acid ratios increased from 0:1 to 4:1 at 120 °C. 82.5%-87.8% of cellulose was preserved in pretreated BR. The enzymatic digestibility of BR significantly improved from 20.0% to 91.3% when it was pretreated under optimized conditions. With lower enzyme dosages (10 FPU/g) and 5 recycled using of pretreatment liquor, pretreated BR still showed a good enzymatic digestibility of 67.4%-93.7% and 67.1-76.8%, respectively. Examination of physicochemical changes revealed that improvements to accessibility, reduction of crystallite size, decrease of surface lignin and hydrophobicity for pretreated BR showed positive correlations (R2 > 0.7) with their enzymatic digestibility.
Collapse
Affiliation(s)
- Yayue Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Department of Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Zhou Z, Ju X, Chen J, Wang R, Zhong Y, Li L. Charge-oriented strategies of tunable substrate affinity based on cellulase and biomass for improving in situ saccharification: A review. BIORESOURCE TECHNOLOGY 2021; 319:124159. [PMID: 33010717 DOI: 10.1016/j.biortech.2020.124159] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The intrinsic recalcitrance of lignocellulosic biomass makes it resistant to enzymatic hydrolysis. The electron-rich surface of the lignin and cellulose-alike structure of hemicellulose competitively absorb the cellulase. Thus, modifying the surface charge on biomass components to alter cellulase affinity is an urgent requisite. Developing charge tunable cellulase will alter substrate affinity. Also, charge-based immobilization generates controllable substrate affinity. Within immobilized cellulase involved in situ biomass saccharification, charge effects made a crucial contribution. In addition to affecting the interaction between immobilized cellulase and biomass, charge exerts an impact on cellulase to immobilize the materials, further investigation is essential. This study aims to review the charge effects on the cellulase affinity in biomass saccharification, strategies of charge tunable cellulase, and immobilized cellulase, thereby explaining the role of electrostatic interaction. In terms of electrostatic behavior, the pathways and plans to improve in situ biomass saccharification seem to be promising.
Collapse
Affiliation(s)
- Zheng Zhou
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xin Ju
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiajia Chen
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Rong Wang
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yuqing Zhong
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Liangzhi Li
- College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
14
|
Chettri D, Verma AK, Verma AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00525. [PMID: 32963975 PMCID: PMC7490808 DOI: 10.1016/j.btre.2020.e00525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
For sustainable growth, concept of biorefineries as recourse to the "fossil derived" energy source is important. Here, the Carbohydrate Active enZymes (CAZymes) play decisive role in generation of biofuels and related sugar-based products utilizing lignocellulose as a carbon source. Given their industrial significance, extensive studies on the evolution of CAZymes have been carried out. Various bacterial and fungal organisms have been scrutinized for the development of CAZymes, where advance techniques for strain enhancement such as CRISPR and analysis of specific expression systems have been deployed. Specific Omic-based techniques along with protein engineering have been adopted to unearth novel CAZymes and improve applicability of existing enzymes. In-Silico computational research and functional annotation of new CAZymes to synergy experiments are being carried out to devise cocktails of enzymes for use in biorefineries. Thus, with the establishment of these technologies, increased diversity of CAZymes with broad span of functions and applications is seen.
Collapse
|
15
|
Vishnu Prasad J, Sahoo TK, Naveen S, Jayaraman G. Evolutionary engineering of Lactobacillus bulgaricus reduces enzyme usage and enhances conversion of lignocellulosics to D-lactic acid by simultaneous saccharification and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:171. [PMID: 33088341 PMCID: PMC7566127 DOI: 10.1186/s13068-020-01812-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/06/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Simultaneous saccharification and fermentation (SSF) of pre-treated lignocellulosics to biofuels and other platform chemicals has long been a promising alternative to separate hydrolysis and fermentation processes. However, the disparity between the optimum conditions (temperature, pH) for fermentation and enzyme hydrolysis leads to execution of the SSF process at sub-optimal conditions, which can affect the rate of hydrolysis and cellulose conversion. The fermentation conditions could be synchronized with hydrolysis optima by carrying out the SSF at a higher temperature, but this would require a thermo-tolerant organism. Economically viable production of platform chemicals from lignocellulosic biomass (LCB) has long been stymied because of the significantly higher cost of hydrolytic enzymes. The major objective of this work is to develop an SSF strategy for D-lactic acid (D-LA) production by a thermo-tolerant organism, in which the enzyme loading could significantly be reduced without compromising on the overall conversion. RESULTS A thermo-tolerant strain of Lactobacillus bulgaricus was developed by adaptive laboratory evolution (ALE) which enabled the SSF to be performed at 45 °C with reduced enzyme usage. Despite the reduction of enzyme loading from 15 Filter Paper Unit/gLCB (FPU/gLCB) to 5 FPU/gLCB, we could still achieve ~ 8% higher cellulose to D-LA conversion in batch SSF, in comparison to the conversion by separate enzymatic hydrolysis and fermentation processes at 45 °C and pH 5.5. Extending the batch SSF to SSF with pulse-feeding of 5% pre-treated biomass and 5 FPU/gLCB, at 12-h intervals (36th-96th h), resulted in a titer of 108 g/L D-LA and 60% conversion of cellulose to D-LA. This is one among the highest reported D-LA titers achieved from LCB. CONCLUSIONS We have demonstrated that the SSF strategy, in conjunction with evolutionary engineering, could drastically reduce enzyme requirement and be the way forward for economical production of platform chemicals from lignocellulosics. We have shown that fed-batch SSF processes, designed with multiple pulse-feedings of the pre-treated biomass and enzyme, can be an effective way of enhancing the product concentrations.
Collapse
Affiliation(s)
- J. Vishnu Prasad
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| | - Tridweep K. Sahoo
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| | - S. Naveen
- Present Address: Indian Institute of Technology, BHU, Varanasi, India
| | - Guhan Jayaraman
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| |
Collapse
|
16
|
Li Y, Guan X, Chaffey PK, Ruan Y, Ma B, Shang S, Himmel ME, Beckham GT, Long H, Tan Z. Carbohydrate-binding module O-mannosylation alters binding selectivity to cellulose and lignin. Chem Sci 2020; 11:9262-9271. [PMID: 34123172 PMCID: PMC8163390 DOI: 10.1039/d0sc01812k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes. Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.![]()
Collapse
Affiliation(s)
- Yaohao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China .,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Bo Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 China
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Hai Long
- Computational Science Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Zhongping Tan
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
17
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
18
|
Luo X, Gong Z, Shi J, Chen L, Zhu W, Zhou Y, Huang L, Liu J. Integrating Benzenesulfonic Acid Pretreatment and Bio-Based Lignin-Shielding Agent for Robust Enzymatic Conversion of Cellulose in Bamboo. Polymers (Basel) 2020; 12:polym12010191. [PMID: 31936846 PMCID: PMC7022729 DOI: 10.3390/polym12010191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/22/2023] Open
Abstract
A hydrotrope-based pretreatment, benzenesulfonic acid (BA) pretreatment, was used to fractionate bamboo in this work. With optimized content (80 wt %) of BA in pretreatment liquor, about 90% of lignin and hemicellulose could be removed from bamboo under mild conditions (95 °C, 30 min or 80 °C, 60 min). The potential accessibility of BA pretreated substrate to cellulase was thus significantly improved and was also found to be much higher than those of acidic ethanol and dilute acid pretreatments. But the deposition of lignin on the surface of solid substrates, especially the BA pretreated substrate, was also observed, which showed a negative effect on the enzymatic hydrolysis efficiency. The addition of inexpensive soy protein, a bio-based lignin-shielding agent, could readily overcome this negative effect, leading the increase of enzymatic conversion of cellulose in BA pretreated substrate from 37% to 92% at a low cellulase loading of 4 FPU/g glucan. As compared to acidic ethanol and dilute acid pretreatments, the combination of BA pretreatment and soy protein could not only stably improve the efficiency of non-cellulose components removal, but also could significantly reduce the loading of cellulase.
Collapse
Affiliation(s)
- Xiaolin Luo
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Z.G.); (J.S.); (L.C.)
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhenggang Gong
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Z.G.); (J.S.); (L.C.)
| | - Jinghao Shi
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Z.G.); (J.S.); (L.C.)
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Z.G.); (J.S.); (L.C.)
| | - Wenyuan Zhu
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
| | - Yonghui Zhou
- Department of Civil and Environmental Engineering, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Liulian Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Z.G.); (J.S.); (L.C.)
- Correspondence: (L.H.); (J.L.); Tel.: +86-591-8371-5175 (J.L.)
| | - Jing Liu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Z.G.); (J.S.); (L.C.)
- Correspondence: (L.H.); (J.L.); Tel.: +86-591-8371-5175 (J.L.)
| |
Collapse
|
19
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
20
|
Li J, Liu D, Zhang M, Roozeboom KL, Wang D. Boosting fermentable sugars by integrating magnesium oxide-treated corn stover and corn stover liquor without washing and detoxification. BIORESOURCE TECHNOLOGY 2019; 288:121586. [PMID: 31176203 DOI: 10.1016/j.biortech.2019.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Integration of MgO-treated corn stover and corn stover liquor for enzymatic hydrolysis was studied to improve sugar yield and concentration as well as to simplify the bioconversion process. Results showed that under the same enzymatic hydrolysis conditions (2 mL enzyme/g biomass and 10% substrate loading), MgO-treated corn stover plus corn stover liquor had a similar glucose yield (70.4 vs. 68.8%) and concentration (40.4 vs. 41.5 g/L) but a higher xylose yield (56.6 vs. 25.3%) and concentration (16.7 vs. 10.6 g/L) compared with using MgO-treated corn stover only. Corn stover slurry from MgO pretreatment was near-neutral and free of 5-hydroxymethylfurfural and furfural, eliminating the need for washing and detoxification and lightening the burden for wastewater treatment. In addition, Tween 80 significantly reduced the irreversible binding of lignin to enzyme, increasing xylose and glucose yields by 14.7 and 6.2% and sugar concentration by 7.4 g/L, respectively.
Collapse
Affiliation(s)
- Jun Li
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Dan Liu
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States; College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Zhang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Kraig L Roozeboom
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
21
|
Luo X, Liu J, Zheng P, Li M, Zhou Y, Huang L, Chen L, Shuai L. Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:51. [PMID: 30911331 PMCID: PMC6417190 DOI: 10.1186/s13068-019-1387-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/22/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Liquid hot water (LHW) pretreatment has been considered as one of the most industrially viable and environment-friendly methods for facilitating the transformation of lignocelluloses into biofuels through biological conversion. However, lignin fragments in pretreatment hydrolysates are preferential to condense with each other and then deposit back onto cellulose surface under severe conditions. Particularly, lignin tends to relocate or redistribute under high-temperature LHW pretreatment conditions. The lignin residues on the cellulose surface would result in significant nonproductive binding of cellulolytic enzymes, and therefore negatively affect the enzymatic conversion (EC) of glucan in pretreated substrates. Although additives such as bovine serum albumin (BSA) and Tween series have been used to reduce nonproductive binding of enzymes through blocking the lignin, the high cost or non-biocompatibility of these additives limits their potential in industrial applications. RESULTS Here, we firstly report that a soluble soy protein (SP) extracted from inexpensive defatted soy powder (DSP) showed excellent performance in promoting the EC of glucan in LHW-pretreated lignocellulosic substrates. The addition of the SP (80 mg/g glucan) could readily reduce the cellulase (Celluclast 1.5 L®) loading by 8 times from 96.7 to 12.1 mg protein/g glucan and achieve a glucan EC of 80% at a hydrolysis time of 72 h. With the same cellulase (Celluclast 1.5 L®) loading (24.2 mg protein/g glucan), the ECs of glucan in LHW-pretreated bamboo, eucalyptus, and Masson pine substrates increased from 57%, 54% and 45% (without SP) to 87%, 94% and 86% (with 80 mg SP/g glucan), respectively. Similar effects were also observed when Cellic CTec2, a newer-generation cellulase preparation, was used. Mechanistic studies indicated that the adsorption of soluble SP onto the surface of lignin residues could reduce the nonproductive binding of cellulolytic enzymes to lignin. The cost of the SP required for effective promotion would be equivalent to the cost of 2.9 mg cellulase (Celluclast 1.5 L®) protein (or 1.2 FPU/g glucan), if a proposed semi-simultaneous saccharification and fermentation (semi-SSF) model was used. CONCLUSIONS Near-complete saccharification of glucan in LHW-pretreated lignocellulosic substrates could be achieved with the addition of the inexpensive and biocompatible SP additive extracted from DSP. This simple but remarkably effective technique could readily contribute to improving the economics of the cellulosic biorefinery industry.
Collapse
Affiliation(s)
- Xiaolin Luo
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jing Liu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Peitao Zheng
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meng Li
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Energy, Xiamen University, Xiamen, 361102 China
| | - Yang Zhou
- Department of Sustainable Biomaterials, Virginia Tech, 230 Cheatham Hall, Blacksburg, VA 24060 USA
| | - Liulian Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Li Shuai
- Department of Sustainable Biomaterials, Virginia Tech, 230 Cheatham Hall, Blacksburg, VA 24060 USA
| |
Collapse
|
22
|
Dos Santos AC, Ximenes E, Kim Y, Ladisch MR. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends Biotechnol 2018; 37:518-531. [PMID: 30477739 DOI: 10.1016/j.tibtech.2018.10.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Lignin is central to overcoming recalcitrance in the enzyme hydrolysis of lignocellulose. While the term implies a physical barrier in the cell wall structure, there are also important biochemical components that direct interactions between lignin and the hydrolytic enzymes that attack cellulose in plant cell walls. Progress toward a deeper understanding of the lignin synthesis pathway - and the consistency between a range of observations over the past 40 years in the very extensive literature on cellulose hydrolysis - is resulting in advances in reducing a major impediment to cellulose conversion: the cost of enzymes. This review addresses lignin and its role in the hydrolysis of hardwood and other lignocellulosic residues.
Collapse
Affiliation(s)
- Antonio Carlos Dos Santos
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Youngmi Kim
- Department of Agricultural Engineering Technology, University of Wisconsin, River Falls, WI 54022, USA
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; www.purdue.edu/LORRE.
| |
Collapse
|
23
|
Zhang P, Chen M, Duan Y, Huang R, Su R, Qi W, Thielemans W, He Z. Real-Time Adsorption of Exo- and Endoglucanases on Cellulose: Effect of pH, Temperature, and Inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13514-13522. [PMID: 30372079 DOI: 10.1021/acs.langmuir.8b02260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Effective regulation of cellulase adsorption is key to improving the efficiencies of the two major bottlenecks of lignocellulose hydrolysis and cellulase recovery. In this work, we investigated the effect of inhibitors, pH, and temperature on the adsorption of exo- and endoglucanases (Cel7A and Cel7B, respectively) on cellulose using quartz crystal microgravimetry with dissipation. The addition of glucose and cellobiose can both inhibit the hydrolysis activity of Cel7A, whereas only cellobiose can inhibit that of Cel7B. Notably, the adsorption was favored by acidic conditions (pH ≤ 4.8) and low temperature, whereas alkaline conditions (pH 9 and 10) facilitated enzyme desorption, which is useful to guide the process of cellulase recovery. The adsorption and hydrolysis activity of Cel7A and Cel7B were both higher at 45 °C than at 25 °C. These findings pave the way to effective regulation of cellulase adsorption and thus improve lignocellulose conversion and cellulase recovery.
Collapse
Affiliation(s)
| | | | | | | | - Rongxin Su
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , PR China
| | - Wei Qi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , PR China
| | - Wim Thielemans
- Renewable Materials and Nanotechnology Group, Department of Chemical Engineering , KU Leuven , Campus Kortrijk, Etienne Sabbelaan 53 , 8500 Kortrijk , Belgium
| | | |
Collapse
|
24
|
Lu X, Feng X, Li X, Zhao J. The adsorption properties of endoglucanase to lignin and their impact on hydrolysis. BIORESOURCE TECHNOLOGY 2018; 267:110-116. [PMID: 30014989 DOI: 10.1016/j.biortech.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Nonproductive adsorption of cellulase to lignin dramatically influenced the hydrolysis efficiency of lignocellulose. By comparing the adsorption behaviors of CBH and EG, we found that the adsorption of EG to lignin showed lower adsorption velocity and capacity versus CBH. During the adsorption of EG to lignin, carbohydrate binding domain (CBM) and catalytic domain (CD) both played an important role by a two-step adsorption process, in which CD slowly bond on lignin and developed stronger interaction with lignin. The optimal binding position of EG on lignin was consistent with that on polysaccharide located in the open catalytic tunnel. So, the adsorption of EG to lignin not only limited the movement of enzyme, but also restricted the catalytic ability of enzyme, which dramatically influenced enzymatic hydrolysis. Increasing the proportion of EG in cellulase cocktails or engineering "weak lignin adsorbed" EG was necessary to relieve the influence of lignin adsorption on hydrolysis.
Collapse
Affiliation(s)
- Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, PR China
| | - Xiaoting Feng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, PR China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, PR China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
25
|
Jain L, Kurmi AK, Agrawal D. Feasibility studies with lignin blocking additives in enhancing saccharification and cellulase recovery: Mutant UV-8 of T. verruculosus IIPC 324 a case study. Enzyme Microb Technol 2018; 118:44-49. [DOI: 10.1016/j.enzmictec.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023]
|
26
|
Djajadi DT, Pihlajaniemi V, Rahikainen J, Kruus K, Meyer AS. Cellulases adsorb reversibly on biomass lignin. Biotechnol Bioeng 2018; 115:2869-2880. [PMID: 30132790 PMCID: PMC6282830 DOI: 10.1002/bit.26820] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
Adsorption of cellulases onto lignin is considered a major factor in retarding enzymatic cellulose degradation of lignocellulosic biomass. However, the adsorption mechanisms and kinetics are not well understood for individual types of cellulases. This study examines the binding affinity, kinetics of adsorption, and competition of four monocomponent cellulases of Trichoderma reesei during adsorption onto lignin.
TrCel7A,
TrCel6A,
TrCel7B, and
TrCel5A were radiolabeled for adsorption experiments on lignin‐rich residues (LRRs) isolated from hydrothermally pretreated spruce (L‐HPS) and wheat straw (L‐HPWS), respectively. On the basis of adsorption isotherms fitted to the Langmuir model, the ranking of binding affinities was
TrCel5A >
TrCel6A >
TrCel7B >
TrCel7A on both types of LRRs. The enzymes had a higher affinity to the L‐HPS than to the L‐HPWS. Adsorption experiments with dilution after 1 and 24 hr and kinetic modeling were performed to quantify any irreversible binding over time. Models with reversible binding parameters fitted well and can explain the results obtained. The adsorption constants obtained from the reversible models agreed with the fitted Langmuir isotherms and suggested that reversible adsorption–desorption existed at equilibrium. Competitive binding experiments showed that individual types of cellulases competed for binding sites on the lignin and the adsorption data fitted the Langmuir adsorption model. Overall, the data strongly indicate that the adsorption of cellulases onto lignin is reversible and the findings have implications for the development of more efficient cellulose degrading enzymes.
Collapse
Affiliation(s)
- Demi T Djajadi
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | - Anne S Meyer
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Yang P, Wu Y, Zheng Z, Cao L, Zhu X, Mu D, Jiang S. CRISPR-Cas9 Approach Constructing Cellulase sestc-Engineered Saccharomyces cerevisiae for the Production of Orange Peel Ethanol. Front Microbiol 2018; 9:2436. [PMID: 30364071 PMCID: PMC6191481 DOI: 10.3389/fmicb.2018.02436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
The development of lignocellulosic bioethanol plays an important role in the substitution of petrochemical energy and high-value utilization of agricultural wastes. The safe and stable expression of cellulase gene sestc was achieved by applying the clustered regularly interspaced short palindromic repeats-Cas9 approach to the integration of sestc expression cassette containing Agaricus biporus glyceraldehyde-3-phosphate-dehydrogenase gene (gpd) promoter in the Saccharomyces cerevisiae chromosome. The target insertion site was found to be located in the S. cerevisiae hexokinase 2 by designing a gRNA expression vector. The recombinant SESTC protein exhibited a size of approximately 44 kDa in the engineered S. cerevisiae. By using orange peel as the fermentation substrate, the filter paper, endo-1,4-β-glucanase, exo-1,4-β-glucanase activities of the transformants were 1.06, 337.42, and 1.36 U/mL, which were 35.3-fold, 23.03-fold, and 17-fold higher than those from wild-type S. cerevisiae, respectively. After 6 h treatment, approximately 20 g/L glucose was obtained. Under anaerobic conditions the highest ethanol concentration reached 7.53 g/L after 48 h fermentation and was 37.7-fold higher than that of wild-type S. cerevisiae (0.2 g/L). The engineered strains may provide a valuable material for the development of lignocellulosic ethanol.
Collapse
Affiliation(s)
- Peizhou Yang
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Takenaka M, Lee JM, Kahar P, Ogino C, Kondo A. Efficient and Supplementary Enzyme Cocktail from Actinobacteria and Plant Biomass Induction. Biotechnol J 2018; 14:e1700744. [PMID: 29981210 DOI: 10.1002/biot.201700744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/28/2018] [Indexed: 11/08/2022]
Abstract
Actinobacteria plays a key role in the cycling of organic matter in soils. They secret biomass-degrading enzymes that allow it to produce the unique metabolites that originate in plant biomass. Although past studies have focused on these unique metabolites, a large-scale screening of Actinobacteria is yet to be reported to focus on their biomass-degrading ability. In the present study, a rapid and simple method is constructed for a large-scale screening, and the novel resources that form the plant biomass-degrading enzyme cocktail are identified from 850 isolates of Actinobacteria. As a result, Nonomuraea fastidiosa secretes a biomass degrading enzyme cocktail with the highest enzyme titer, although cellulase activities are lower than a commercially available enzyme. So the rich accessory enzymes are suggested to contribute to the high enzyme titer for a pretreated bagasse with a synergistic effect. Additionally, an optimized cultivation method of biomass induction caused to produce the improved enzyme cocktail indicated strong enzyme titers and a strong synergistic effect. Therefore, the novel enzyme cocktails are selected via the optimized method for large-scale screening, and then the enzyme cocktail can be improved via the optimized production with biomass-induction.
Collapse
Affiliation(s)
- Musashi Takenaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Jae M Lee
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| |
Collapse
|
29
|
Microbial Strategies for Cellulase and Xylanase Production through Solid-State Fermentation of Digestate from Biowaste. SUSTAINABILITY 2018. [DOI: 10.3390/su10072433] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Solid-state fermentation (SSF) is a promising technology for producing bioproducts from organic wastes. The objective of this study is to assess the feasibility of using digestate as substrate to produce hydrolytic enzymes, mainly cellulase and xylanase, by exploring three different inoculation strategies: (i) SSF with autochthonous microbiota; (ii) non-sterile SSF inoculated with Trichoderma reesei and (iii) sequential batch operation to select a specialized inoculum, testing two different residence times. Native microbial population did not show a significant cellulase production, suggesting the need for a specialized inoculum. The inoculation of Trichoderma reesei did not improve the enzymatic activity. On the other hand, inconsistent operation was achieved during sequential batch reactor in terms of specific oxygen uptake rate, temperature and enzymatic activity profile. Low cellulase and xylanase activities were attained and the main hypotheses are non-appropriate biomass selection and some degree of hydrolysis by non-targeted proteases produced during fermentation.
Collapse
|
30
|
Fang H, Kandhola G, Rajan K, Djioleu A, Carrier DJ, Hood KR, Hood EE. Effects of Oligosaccharides Isolated From Pinewood Hot Water Pre-hydrolyzates on Recombinant Cellulases. Front Bioeng Biotechnol 2018; 6:55. [PMID: 29868572 PMCID: PMC5962771 DOI: 10.3389/fbioe.2018.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/23/2018] [Indexed: 11/29/2022] Open
Abstract
Loblolly pine residues have enormous potential to be the raw material for advanced biofuel production due to extensive sources and high cellulose content. Hot water (HW) pretreatment, while being a relatively economical and clean technology for the deconstruction of lignocellulosic biomass, could also inhibit the ensuing enzymatic hydrolysis process because of the production of inhibitors. In this study, we investigated the effect of oligosaccharide fractions purified from HW pre-hydrolyzate of pinewood using centrifugal partition chromatography (CPC) on three recombinant cellulolytic enzymes (E1, CBHI and CBHII), which were expressed in the transgenic corn grain system. The efficiency of recombinant enzymes was measured using either a 4-methylumbelliferyl-β-D-cellobioside (MUC) or a cellulose-dinitrosalicylic acid (DNS) assay system. The results showed that HW pre-hydrolyzate CPC fractions contain phenolics, furans, and monomeric and oligomeric sugars. Among CPC fractions, oligomers composed of xylan, galactan, and mannan were inhibitory to the three recombinant enzymes and to the commercial cellulase cocktail, reducing the enzymatic efficiency to as low as 10%.
Collapse
Affiliation(s)
- Hong Fang
- Department of Biology, Molecular Biosciences Graduate Program, College of Biology, Molecular Biosciences, Arkansas State University, Jonesboro, AR, United States
| | - Gurshagan Kandhola
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kalavathy Rajan
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States
| | - Angele Djioleu
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Danielle Julie Carrier
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States
| | - Kendall R Hood
- Infinite Enzymes, Arkansas State University, Jonesboro, AR, United States
| | - Elizabeth E Hood
- Arkansas State University Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, AR, United States
| |
Collapse
|
31
|
Isaac A, de Paula J, Viana CM, Henriques AB, Malachias A, Montoro LA. From nano- to micrometer scale: the role of microwave-assisted acid and alkali pretreatments in the sugarcane biomass structure. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:73. [PMID: 29588658 PMCID: PMC5863382 DOI: 10.1186/s13068-018-1071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND To date, great strides have been made in elucidating the role of thermochemical pretreatments in the chemical and structural features of plant cell walls; however, there is no clear picture of the plant recalcitrance and its relationship to deconstruction. Previous studies precluded full answers due to the challenge of multiscale features of plant cell wall organization. Complementing the previous efforts, we undertook a systematic, multiscale, and integrated approach to track the effect of microwave-assisted H2SO4 and NaOH treatments on the hierarchical structure of plants, i.e., from a nano- to micrometer scale. We focused on the investigation of the highly recalcitrant sclerenchyma cell walls from sugarcane bagasse. RESULTS Through atomic force microscopy and X-ray diffraction analyses, remarkable details of the assembly of cellulose microfibrils not previously seen were revealed. Following the H2SO4 treatment, we observed that cellulose microfibrils were almost double the width of the alkali pretreated sample at the temperature of 160 °C. Such enlargement led to a greater contact between cellulose chains, with a subsequent molecule alignment, as indicated by the X-ray diffraction (XRD) results with the conspicuous expansion of the average crystallite size. The delignification process had little effect on the local nanometer-sized arrangement of cellulose molecules. However, the rigidity and parallel alignment of cellulose microfibrils were partially degraded. The XRD analysis also agrees with these findings as evidenced by large momentum transfer vectors (q > 20 nm-1), interpreted as indicators of the long-range order of cell wall components, which were similar for all the studied samples except with application of the NaOH treatment at 160 °C. These changes were followed by the eventual swelling of the fiber cell walls. CONCLUSIONS Based on an integrated approach, we presented multidimensional architectural models of cell wall deconstruction resulting from microwave-assisted pretreatments. We provided direct evidence supporting the idea that hemicellulose is the main barrier for the swelling of cellulose microfibrils, whereas lignin adds rigidity to cell walls. Our findings shed light on the design of more efficient strategies, not only for the conversion of biomass to fuels but also for the production of nanocellulose, which has great potential for several applications such as composites, rheology modifiers, and pharmaceuticals.
Collapse
Affiliation(s)
- Augusta Isaac
- Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Jéssica de Paula
- Microscopy Center, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Carlos Martins Viana
- Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Andréia Bicalho Henriques
- Mining Engineering Department, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Angelo Malachias
- Department of Physics, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Luciano A. Montoro
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| |
Collapse
|
32
|
Lu X, Wang C, Li X, Zhao J. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties. BIORESOURCE TECHNOLOGY 2017; 245:819-825. [PMID: 28926914 DOI: 10.1016/j.biortech.2017.08.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 05/03/2023]
Abstract
Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors.
Collapse
Affiliation(s)
- Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan City, Shandong Province 250100, China
| | - Can Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan City, Shandong Province 250100, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan City, Shandong Province 250100, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan City, Shandong Province 250100, China.
| |
Collapse
|
33
|
Van Acker R, Déjardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C, Goeminne G, Légée F, Lapierre C, Pilate G, Ralph J, Boerjan W. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. PLANT PHYSIOLOGY 2017; 175:1018-1039. [PMID: 28878036 PMCID: PMC5664467 DOI: 10.1104/pp.17.00834] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 05/02/2023]
Abstract
In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula × Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S'(8-8)S' and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and xylose (up to +153%) release, suggesting that down-regulating CAD1 is a promising strategy for improving lignocellulosic biomass for the sugar platform industry.
Collapse
Affiliation(s)
- Rebecca Van Acker
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Sandrien Desmet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lennart Hoengenaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53726-4084
| | - Nicholas Santoro
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Cliff Foster
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Geert Goeminne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Frédéric Légée
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute, Versailles, France
| | - Catherine Lapierre
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute, Versailles, France
| | | | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
34
|
Smit AT, Huijgen WJJ. The promotional effect of water-soluble extractives on the enzymatic cellulose hydrolysis of pretreated wheat straw. BIORESOURCE TECHNOLOGY 2017; 243:994-999. [PMID: 28753744 DOI: 10.1016/j.biortech.2017.07.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Enzymatic cellulose hydrolysis of pretreated wheat straw pulp to glucose is enhanced when the hydrolysis is performed in the presence of an aqueous extract of the wheat straw. A relative digestibility increase of about 10% has been observed for organosolv, alkaline and dilute acid pretreated wheat straw pulp (enzyme dose 2.5FPU/g pulp). At lower enzyme doses, the extract effect increases leading to an enzyme dose reduction of 40% to obtain a glucose yield of 75% within 48h using organosolv wheat straw pulp. Possibly, cellulase deactivation by irreversible binding to pulp lignin is reduced by competition with proteins in the extract. However, since the extract effect has also been demonstrated for lignin-lean substrates, other effects like improved accessibility of the pulp cellulose (amorphogenesis) cannot be excluded. Overall, this contribution demonstrates the positive effect of biomass extractives on enzymatic cellulose digestibility, thereby reducing costs for 2G biofuels and bio-based chemicals.
Collapse
Affiliation(s)
- A T Smit
- Energy Research Centre of the Netherlands (ECN), Biomass & Energy Efficiency, P.O. Box 1, 1755 ZG Petten, The Netherlands.
| | - W J J Huijgen
- Energy Research Centre of the Netherlands (ECN), Biomass & Energy Efficiency, P.O. Box 1, 1755 ZG Petten, The Netherlands
| |
Collapse
|
35
|
Yao L, Yang H, Yoo CG, Meng X, Li M, Pu Y, Ragauskas AJ, Sykes RW. Adsorption of cellobiohydrolases I onto lignin fractions from dilute acid pretreated Broussonetia papyrifera. BIORESOURCE TECHNOLOGY 2017; 244:957-962. [PMID: 28847086 DOI: 10.1016/j.biortech.2017.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Broussonetia papyrifera, known as paper mulberry, is a potential feed stock for bioethanol production because of its cellulose-rich composition. Lignin in dilute acid pretreated Broussonetia papyrifera was fractionated to three different fractions, and their physiochemical properties were determined by FT-IR, GPC and NMR analyses. Different structural characteristics were observed from each lignin fraction. Cellobiohydrolases I (CBH) adsorption to each lignin was understood by the lignin properties. The results showed that aliphatic hydroxyl groups in lignin showed positive correlations with the maximum binding ability of CBH onto lignin samples. Also, the contents of phenolic compounds such as p-hydroxyphenyl benzoate (PB), syringyl (S) and guaiacyl (G) units in the lignin influenced their CBH binding.
Collapse
Affiliation(s)
- Lan Yao
- School of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Haitao Yang
- School of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chang Geun Yoo
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Mi Li
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN 37996-2200, USA; Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee, Institute of Agriculture, Knoxville, TN 37996-2200, USA.
| | - Robert W Sykes
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| |
Collapse
|
36
|
Cerda A, Mejías L, Gea T, Sánchez A. Cellulase and xylanase production at pilot scale by solid-state fermentation from coffee husk using specialized consortia: The consistency of the process and the microbial communities involved. BIORESOURCE TECHNOLOGY 2017; 243:1059-1068. [PMID: 28764108 DOI: 10.1016/j.biortech.2017.07.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Solid state fermentation is a promising technology however rising concerns related to scale up and reproducibility in a productive process. Coffee husk and a specialized inoculum were used in a 4.5L and then in 50L reactors to assess the reproducibility of a cellulase and hemicellulase production system. Fermentations were consistent in terms of cellulase production and microbial communities. The higher temperatures achieved when operating at 50L generated a shift on the microbial communities and a reduction of nearly 50% on cellulase production at pilot scale. In spite, an overall enzymatic production of 3.1±0.5FPUg-1DM and 48±4Ug-1DM for FPase and Xyl activities was obtained, respectively, with low deviation coefficients of 16 and 19% for FPase and Xyl production. Gaseous emissions assessment revealed an emission factor of 2.6·10-3kg volatile organic compounds per Mg of coffee husk and negligible NH3, CH4 and N2O emissions.
Collapse
Affiliation(s)
- Alejandra Cerda
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Laura Mejías
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Teresa Gea
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antoni Sánchez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
37
|
Improved thermostability of a metagenomic glucose-tolerant β-glycosidase based on its X-ray crystal structure. Appl Microbiol Biotechnol 2017; 101:8353-8363. [DOI: 10.1007/s00253-017-8525-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022]
|
38
|
The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose. Sci Rep 2017; 7:9622. [PMID: 28851921 PMCID: PMC5575103 DOI: 10.1038/s41598-017-08985-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022] Open
Abstract
The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systems employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Here, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance.
Collapse
|
39
|
Mithra M, Padmaja G. Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals. Heliyon 2017; 3:e00384. [PMID: 28831456 PMCID: PMC5553344 DOI: 10.1016/j.heliyon.2017.e00384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/22/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
Two strategies leading to enzyme saving during saccharification of pretreated lignocellulo-starch biomass (LCSB) was investigated which included reducing enzyme dosage by varying their levels in enzyme cocktails and enhancing the fermentable sugar yield in enzyme-reduced systems using detoxification chemicals. Time course release of reducing sugars (RS) during 24-120 h was significantly higher when an enzyme cocktail containing full dose of cellulase (16 FPU/g cellulose) along with half dose each of xylanase (1.5 mg protein/g hemicelluloses) and Stargen (12.5 μl/g biomass) was used to saccharify conventional dilute sulphuric acid (DSA) pretreated biomass compared to a parallel system where only one-fourth the dose of the latter two enzymes was used. The reduction in RS content in the 120 h saccharified mash to the extent of 3-4 g/L compared to the system saccharified with full complement of the three enzymes could be overcome considerably by supplementing the system (half dose of two enzymes) with detoxification chemical mix incorporating Tween 20, PEG 4000 and sodium borohydride. Microwave (MW)-assisted DSA pretreated biomass on saccharification with enzyme cocktail having full dose of cellulase and half dose of Stargen along with detoxification chemicals gave significantly higher RS yield than DSA pretreated system saccharified using three enzymes. The study showed that xylanase could be eliminated during saccharification of MW-assisted DSA pretreated biomass without affecting RS yield when detoxification chemicals were also supplemented. The Saccharification Efficiency and Overall Conversion Efficiency were also high for the MW-assisted DSA pretreated biomass. Since whole slurry saccharifcation of pretreated biomass is essential to conserve fermentable sugars in LCSB saccharification, detoxification of soluble inhibitors is equally important as channelling out of insoluble lignin remaining in the residue. As one of the major factors contributing to the cost of ethanol production from LCSB is the cost of enzymes, appropriate modification of enzyme cocktail based on the composition of the pretreated biomass coupled with effective detoxification of the slurry would be a promising approach towards cost reduction.
Collapse
Affiliation(s)
| | - G. Padmaja
- Division of Crop Utilization, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| |
Collapse
|
40
|
Toyosawa Y, Ikeo M, Taneda D, Okino S. Quantitative analysis of adsorption and desorption behavior of individual cellulase components during the hydrolysis of lignocellulosic biomass with the addition of lysozyme. BIORESOURCE TECHNOLOGY 2017; 234:150-157. [PMID: 28319763 DOI: 10.1016/j.biortech.2017.02.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The effect of non-catalytic protein addition on the adsorption/desorption behavior of individual cellulase components on/from substrates during the hydrolysis of microcrystalline cellulose and steam exploded sugarcane bagasse (SEB) were investigated. The addition of non-catalytic protein enhanced the enzymatic hydrolysis of SEB, but did not enhance the hydrolysis of microcrystalline cellulose. During the hydrolysis of SEB, adsorption of beta-glucosidase (BGL) was prevented in the presence of non-catalytic protein. Cellobiohydrolase I (CBH I) and endoglucanase I (EG I) desorbed from the substrate after temporary adsorption in the presence of non-catalytic protein during SEB hydrolysis. This suggested that reduction of the non-specific adsorption of cellulase components, CBH I, EG I, and BGL, on lignin in SEB led to the improving of enzymatic hydrolysis.
Collapse
Affiliation(s)
- Yoshiko Toyosawa
- JGC Corporation, 2205, Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Pref. 311-1313, Japan
| | - Makoto Ikeo
- JGC Corporation, 2205, Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Pref. 311-1313, Japan
| | - Daisuke Taneda
- JGC Corporation, 2205, Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Pref. 311-1313, Japan
| | - Shohei Okino
- JGC Corporation, 2205, Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Pref. 311-1313, Japan.
| |
Collapse
|
41
|
Kellock M, Rahikainen J, Marjamaa K, Kruus K. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics. BIORESOURCE TECHNOLOGY 2017; 232:183-191. [PMID: 28231536 DOI: 10.1016/j.biortech.2017.01.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 05/03/2023]
Abstract
Non-productive enzyme binding onto lignin is the major inhibitory mechanism, which reduces hydrolysis rates and yields and prevents efficient enzyme recycling in the hydrolysis of lignocellulosics. The detailed mechanisms of binding are still poorly understood. Enzyme-lignin interactions were investigated by comparing the structural properties and binding behaviour of fungal monocomponent enzymes, cellobiohydrolases TrCel7A and TrCel6A, endoglucanases TrCel7B and TrCel5A, a xylanase TrXyn11 and a β-glucosidase AnCel3A, onto lignins isolated from steam pretreated spruce and wheat straw. The enzymes exhibited decreasing affinity onto lignin model films in the following order: TrCel7B>TrCel6A>TrCel5A>AnCel3A>TrCel7A>TrXyn11. As analysed in Avicel hydrolysis, TrCel6A and TrCel7B were most inhibited by lignin isolated from pretreated spruce. This could be partially explained by adsorption of the enzyme onto the lignin surface. Enzyme properties, such as enzyme surface charge, thermal stability or surface hydrophobicity could not alone explain the adsorption behaviour.
Collapse
Affiliation(s)
- Miriam Kellock
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT, Finland.
| | - Jenni Rahikainen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT, Finland.
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT, Finland.
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044 VTT, Finland.
| |
Collapse
|
42
|
Toscan A, Morais ARC, Paixão SM, Alves L, Andreaus J, Camassola M, Dillon AJP, Lukasik RM. Effective Extraction of Lignin from Elephant Grass Using Imidazole and Its Effect on Enzymatic Saccharification To Produce Fermentable Sugars. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04932] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andréia Toscan
- Unidade
de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
- Laboratório
de Enzimas e Biomassa de Caxias do Sul−Instituto de Biotecnologia, Caxias
do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Ana Rita C. Morais
- Unidade
de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
- LAQV/REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Susana M. Paixão
- Unidade
de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Luís Alves
- Unidade
de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Jürgen Andreaus
- Departamento
de Química, Universidade Regional de Blumenau, Blumenau, Santa Catarina 89030-903, Brazil
| | - Marli Camassola
- Laboratório
de Enzimas e Biomassa de Caxias do Sul−Instituto de Biotecnologia, Caxias
do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Aldo José Pinheiro Dillon
- Laboratório
de Enzimas e Biomassa de Caxias do Sul−Instituto de Biotecnologia, Caxias
do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Rafal M. Lukasik
- Unidade
de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
43
|
Cai C, Qiu X, Zeng M, Lin M, Lin X, Lou H, Zhan X, Pang Y, Huang J, Xie L. Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin. BIORESOURCE TECHNOLOGY 2017; 227:74-81. [PMID: 28013139 DOI: 10.1016/j.biortech.2016.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 05/24/2023]
Abstract
Polyvinylpyrrolidone (PVP) is an antifouling polymer to resist the adsorption of protein on solid surface. Effects of PVP on the enzymatic hydrolysis of pretreated lignocelluloses and its mechanism were studied. Adding 1g/L of PVP8000, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) was increased from 28.9% to 73.4%, which is stronger than the classic additives, such as PEG, Tween and bovine serum albumin. Compared with PEG4600, the adsorption of PVP8000 on lignin was larger, and the adsorption layer was more stable and hydrophilic. Therefore, PVP8000 reduced 73.1% of the cellulase non-productive adsorption on lignin and enhanced the enzymatic hydrolysis of lignocelluloses greatly.
Collapse
Affiliation(s)
- Cheng Cai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Meijun Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Meilu Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xuliang Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Xuejuan Zhan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jinhao Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Lingshan Xie
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
44
|
Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis. World J Microbiol Biotechnol 2017; 33:29. [PMID: 28058637 DOI: 10.1007/s11274-016-2198-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Identification of bacteria that produce carbohydrolytic enzymes is extremely important given the increased demand for these enzymes in many industries. Twenty lignocellulose-degrading bacterial isolates from Algerian compost and different soils were screened for their potential to produce different enzymes involved in biomass deconstruction. Based on 16S rRNA gene sequencing, the isolates belonged to Proteobacteria and Actinobacteria. Differences among species were reflected both as the presence/absence of enzymes or at the level of enzyme activity. Among the most active species, Bosea sp. FBZP-16 demonstrated cellulolytic activity on both amorphous cellulose (CMC) and complex lignocellulose (wheat straw) and was selected for whole-genomic sequencing. The genome sequencing revealed the presence of a complex enzymatic machinery required for organic matter decomposition. Analysis of the enzyme-encoding genes indicated that multiple genes for endoglucanase, xylanase, β-glucosidase and β-mannosidase are present in the genome with enzyme activities displayed by the bacterium, while other enzymes, such as certain cellobiohydrolases, were not detected at the genomic level. This indicates that a combination of functional screening of bacterial cultures with the use of genome-derived information is important for the prediction of potential enzyme production. These results provide insight into their possible exploitation for the production of fuels and chemicals derived from plant biomass.
Collapse
|
45
|
Tang S, Liu R, Sun FF, Dong C, Wang R, Gao Z, Zhang Z, Xiao Z, Li C, Li H. Bioprocessing of tea oil fruit hull with acetic acid organosolv pretreatment in combination with alkaline H 2O 2. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:86. [PMID: 28405217 PMCID: PMC5385081 DOI: 10.1186/s13068-017-0777-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/05/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND As a natural renewable biomass, the tea oil fruit hull (TOFH) mainly consists of lignocellulose, together with some bioactive substances. Our earlier work constructed a two-stage solvent-based process, including one aqueous ethanol organosolv extraction and an atmospheric glycerol organosolv (AGO) pretreatment, for bioprocessing of the TOFH into diverse bioproducts. However, the AGO pretreatment is not as selective as expected in removing the lignin from TOFH, resulting in the limited delignification and simultaneously high cellulose loss. RESULTS In this study, acetic acid organosolv (AAO) pretreatment was optimized with experimental design to fractionate the TOFH selectively. Alkaline hydrogen peroxide (AHP) pretreatment was used for further delignification. Results indicate that the AAO-AHP pretreatment had an extremely good selectivity at component fractionation, resulting in 92% delignification and 88% hemicellulose removal, with 87% cellulose retention. The pretreated substrate presented a remarkable enzymatic hydrolysis of 85% for 48 h at a low cellulase loading of 3 FPU/g dry mass. The hydrolyzability was correlated with the composition and structure of substrates by using scanning electron microscopy, confocal laser scanning microscopy, and X-ray diffraction. CONCLUSION The mild AAO-AHP pretreatment is an environmentally benign and advantageous scheme for biorefinery of the agroforestry biomass into value-added bioproducts.
Collapse
Affiliation(s)
- Song Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Rukuan Liu
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Chunying Dong
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Rui Wang
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Zhongyuan Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4001 Australia
| | - Zhihong Xiao
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Changzhu Li
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Hui Li
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| |
Collapse
|
46
|
Haarmeyer CN, Smith MD, Chundawat SPS, Sammond D, Whitehead TA. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein. Biotechnol Bioeng 2016; 114:740-750. [DOI: 10.1002/bit.26201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/09/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Carolyn N. Haarmeyer
- Department of Chemical Engineering and Materials Science; Michigan State University; East Lansing Michigan 48824
| | - Matthew D. Smith
- Department of Chemical Engineering and Materials Science; Michigan State University; East Lansing Michigan 48824
| | - Shishir P. S Chundawat
- Great Lakes Bioenergy Research Center (GLBRC); Michigan State University; East Lansing Michigan
- Department of Chemical and Biochemical Engineering; Rutgers; The State University of New Jersey; Piscataway New Jersey
| | - Deanne Sammond
- Biosciences Center; National Renewable Energy Laboratory; Golden Colorado
| | - Timothy A. Whitehead
- Department of Chemical Engineering and Materials Science; Michigan State University; East Lansing Michigan 48824
- Department of Biosystems and Agricultural Engineering; Michigan State University; East Lansing Michigan 48824
| |
Collapse
|
47
|
Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Appl Microbiol Biotechnol 2016; 100:8043-51. [PMID: 27138202 DOI: 10.1007/s00253-016-7563-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/10/2016] [Accepted: 04/17/2016] [Indexed: 12/17/2022]
Abstract
Trichoderma reesei Xyn III, an endo-β-1,4-xylanase belonging to glycoside hydrolase family 10 (GH10), is vital for the saccharification of xylans in plant biomass. However, its enzymatic thermostability and hydrolytic activity on insoluble substrates are low. To overcome these difficulties, the thermostability of Xyn III was improved using random mutagenesis and directed evolution, and its hydrolytic activity on insoluble substrates was improved by creating a chimeric protein. In the screening of thermostable Xyn III mutants from a random mutagenesis library, we identified two amino acid residues, Gln286 and Asn340, which are important for the thermostability of Xyn III. The Xyn III Gln286Ala/Asn340Tyr mutant showed xylanase activity even after heat treatment at 60 °C for 30 min or 50 °C for 96 h, indicating a dramatic enhancement in thermostability. In addition, we found that the addition of a xylan-binding domain (XBD) to the C-terminal of Xyn III improved its hydrolytic activity on insoluble xylan.
Collapse
|
48
|
Qing Q, Zhou L, Huang M, Guo Q, He Y, Wang L, Zhang Y. Improving enzymatic saccharification of bamboo shoot shell by alkalic salt pretreatment with H2O2. BIORESOURCE TECHNOLOGY 2016; 201:230-6. [PMID: 26675047 DOI: 10.1016/j.biortech.2015.11.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 05/25/2023]
Abstract
Pretreatment of bamboo shoot shell (BSS) by a combination of alkalic salts with hydrogen peroxide (H2O2) was evaluated for its delignification effect and for its ability to enhance enzymatic saccharification of pretreated solids. By comparing different alkalic salts, the combination of 9% Na3PO4·12H2O and 0.3g/g H2O2 (ASHP) was identified as an effective system that showed the highest delignification of 87.7% and the total reducing sugar yield of 97.1% when pretreated BSS at a solid to liquid ratio of 1/20 (w/w) at 80°C for 2h. The delignification effect and the disruption of the lignocelluloses structure by this novel pretreatment method were deduced to be the main reasons that led to enhanced enzymatic saccharification as supported by the chemical composition analysis and the results of SEM, FTIR and XRD analyses of the untreated and alkalic salt pretreated BSS.
Collapse
Affiliation(s)
- Qing Qing
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Linlin Zhou
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Meizi Huang
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Qi Guo
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yucai He
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Liqun Wang
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yue Zhang
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China.
| |
Collapse
|
49
|
Li Y, Sun Z, Ge X, Zhang J. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:20. [PMID: 26816530 PMCID: PMC4727347 DOI: 10.1186/s13068-016-0434-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/08/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Considerable works have been reported concerning the obstruction of enzymatic hydrolysis efficiency by lignin. However, there is a lack of information about the influence of lignin on the adsorption of cellulases on cellulose, along with the hydrolytic activity of the cellulases adsorbed on lignin. In addition, limited discovery has been reported about the influence of additives on cellulase desorption from lignin and lignocellulosic materials. In this work, the effects of lignin on cellulase adsorption and hydrolysis of Avicel were investigated and the effects of Tween 80 on cellulases adsorption and desorption on/from lignin and corn stover were explored. RESULTS The results showed that the maximum adsorption capacity of Avicel reduced from 276.9 to 179.7 and 112.1 mg/g cellulose with the addition of 1 and 10 mg lignin per gram Avicel, which indicated that lignin adsorbed on Avicel reduced surface area of cellulose and lignin available for cellulases. Cellulases adsorbed on lignin could be released by reaching new adsorption equilibrium between lignin and supernatants. In addition, cellulases desorbed from lignin still possess hydrolytic capacity. Tween 80 could adsorb onto both lignin and corn stover, and reduce the cellulase adsorption on them. Furthermore, Tween 80 could enhance desorption of cellulases from both lignin and corn stover, which might be due to the competitive adsorption between cellulases and Tween 80 on them. CONCLUSIONS The presence of lignin decreased the maximum adsorption capacity of cellulases on cellulose and the cellulases adsorbed on lignin could be released to supernatant, exhibiting hydrolytic activity. Tween 80 could alleviate the adsorption of cellulases and enhanced desorption of cellulases on/from lignin and corn stover. The conclusions of this work help us further understanding the role of lignin in the reduction of adsorption of cellulases on substrates, and the function of additives in cellulases adsorption and desorption on/from lignin and substrates.
Collapse
Affiliation(s)
- Yanfei Li
- College of Forestry, Northwest A and F University, 3 Taicheng Road, Yangling, 712100 China
| | - Zongping Sun
- College of Forestry, Northwest A and F University, 3 Taicheng Road, Yangling, 712100 China
| | - Xiaoyan Ge
- College of Forestry, Northwest A and F University, 3 Taicheng Road, Yangling, 712100 China
| | - Junhua Zhang
- College of Forestry, Northwest A and F University, 3 Taicheng Road, Yangling, 712100 China
| |
Collapse
|
50
|
|