1
|
Abstract
Fossil fuels are a major contributor to climate change, and as the demand for energy production increases, alternative sources (e.g., renewables) are becoming more attractive. Biofuels such as bioethanol reduce reliance on fossil fuels and can be compatible with the existing fleet of internal combustion engines. Incorporation of biofuels can reduce internal combustion engine (ICE) fleet carbon dioxide emissions. Bioethanol is typically produced via microbial fermentation of fermentable sugars, such as glucose, to ethanol. Traditional feedstocks (e.g., first-generation feedstock) include cereal grains, sugar cane, and sugar beets. However, due to concerns regarding food sustainability, lignocellulosic (second-generation) and algal biomass (third-generation) feedstocks have been investigated. Ethanol yield from fermentation is dependent on a multitude of factors. This review compares bioethanol production from a range of feedstocks, and elaborates on available technologies, including fermentation practices. The importance of maintaining nutrient homeostasis of yeast is also examined. The purpose of this review is to provide industrial producers and policy makers insight into available technologies, yields of bioethanol achieved by current manufacturing practices, and goals for future innovation.
Collapse
|
2
|
Jiang H, Mei C, Li K, Huang Y, Chen Q. Monitoring alcohol concentration and residual glucose in solid state fermentation of ethanol using FT-NIR spectroscopy and L1-PLS regression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:73-80. [PMID: 29906647 DOI: 10.1016/j.saa.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the potential of FT-NIR spectroscopy technique combined with chemometrics method, which employed to monitor time-related changes of alcohol concentration and residual glucose during solid state fermentation (SSF) of ethanol. Characteristic wavelength variables were firstly selected by use of L1-norm regularization approach. Then, the partial least squares (PLS) regression model was finally developed using the variables selected by L1-norm regularization method to quantitative determine alcohol concentration and residual glucose in SSF of ethanol. Compared with the best results of full-spectrum PLS, the L1-PLS model obtained better results as follows: RMSECV = 1.0392 g/L, Rc = 0.9911, RMSEP = 1.0910 g/L, Rp = 0.9917 for alcohol concentration; RMSECV = 1.7002 g/L, Rc = 0.9880, RMSEP = 2.1859 g/L, Rp = 0.9896 for residual glucose. The overall results sufficiently demonstrate that FT-NIR spectroscopy technique coupled with appropriate chemometrics method is a promising tool for monitoring the process of SSF of ethanol.
Collapse
Affiliation(s)
- Hui Jiang
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Congli Mei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kangji Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yonghong Huang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
3
|
Logistics of Lignocellulosic Feedstocks: Preprocessing as a Preferable Option. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 166:43-68. [PMID: 29934794 DOI: 10.1007/10_2017_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material. Graphical Abstract.
Collapse
|
4
|
Liu P, Zhao J, Guo P, Lu W, Geng Z, Levesque CL, Johnston LJ, Wang C, Liu L, Zhang J, Ma N, Qiao S, Ma X. Dietary Corn Bran Fermented by Bacillus subtilis MA139 Decreased Gut Cellulolytic Bacteria and Microbiota Diversity in Finishing Pigs. Front Cell Infect Microbiol 2017; 7:526. [PMID: 29312900 PMCID: PMC5744180 DOI: 10.3389/fcimb.2017.00526] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/12/2017] [Indexed: 01/29/2023] Open
Abstract
Solid-state fermentation of feedstuffs by Bacillus subtilis MA139 can reduce insoluble dietary fiber content in vitro and improve growth performance in pigs. This study was conducted to investigate the effects of dietary corn bran (CB) fermented by B. subtilis on growth performance and gut microbiota composition in finishing pigs. A total of 60 finishing pigs were allocated to 3 dietary treatments consisting of a control (CON) diet, a 10% CB diet, and a 10% fermented CB (FCB) diet in a 21 d feeding trial. Growth performance and nutrient digestibility were evaluated. Fecal samples were determined for bacterial community diversity by 16S rRNA gene amplicon sequencing. The dietary CB and FCB did not affect growth performance of finishing pigs. The digestibility of organic matter was decreased in both CB and FCB treatments compared with CON group (P < 0.05). The α-diversity for bacterial community analysis of Chao 1 in FCB treatment was lower than CON treatment (P < 0.05). The Fibrobacteres phylum belongs to cellulolytic bacteria was isolated, and their relative abundance in CB group showed no difference between CON and FCB treatments. The abundance of Lachnospiraceae_NK4A136_group in CB treatment was higher than CON and FCB groups (P < 0.05), whereas the population of norank_f_Prevotellaceae was higher in FCB group compared to CON and CB groups (P < 0.05). In conclusion, dietary FCB decreased the abundance of bacterial communities, particularly the population of bacteria related to cellulolytic degradation.
Collapse
Affiliation(s)
- Ping Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenqing Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengying Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Crystal L Levesque
- Department of Animal Sciences, South Dakota State University, Brookings, SD, United States
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS One 2017; 12:e0173441. [PMID: 28278216 PMCID: PMC5344405 DOI: 10.1371/journal.pone.0173441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
Abstract
Iron (Fe) deficiency is a critical agricultural problem, especially in calcareous soil, which is distributed worldwide. Rice plants take up Fe(II) from soil through a OsIRT1 transporter (Strategy I-related system) and also take up Fe(III) via a phytosiderophore-based system (Strategy II system). However, rice plants are susceptible to low-Fe conditions because they have low Fe(III) reduction activity and low-level phytosiderophore secretion. Previously, we produced transgenic rice plants expressing a mutationally reconstructed yeast ferric chelate reductase, refre1/372, under the control of the OsIRT1 promoter. This transgenic rice line exhibited higher Fe(III) chelate reductase activity and tolerance to Fe deficiency. In addition, we produced transgenic rice overexpressing the Fe deficiency-inducible transcription factor, OsIRO2, which regulates the expression of various genes involved in the strategy II Fe(III) uptake system, including OsNAS1, OsNAAT1, OsDMAS1, OsYSL15, and TOM1. This transgenic rice exhibited improved phytosiderophore secretion ability and tolerance to Fe deficiency. In the present research, transgenic rice plants that possess both the OsIRT1 promoter-refre1/372 and the 35S promoter-OsIRO2 (RI lines) were produced to enhance both Strategy I Fe(II) reductase ability and Strategy II phytosiderophore productivity. RI lines exhibited enhanced tolerance to Fe-deficient conditions at the early and middle-late stages of growth in calcareous soil, compared to both the non-transgenic line and lines harboring either OsIRT1 promoter-refre1/372 or 35S promoter-OsIRO2 alone. RI lines also exhibited a 9-fold higher yield than the non-transgenic line. Moreover, we successfully produced Fe-deficiency-tolerant Tachisugata rice, which is a high-biomass variety used as fodder. Collectively, our results demonstrate that combined enhancement of two Fe uptake systems in rice is highly effective in conferring tolerance to low Fe availability in calcareous soil.
Collapse
|
6
|
Wu WH, Hung WC, Lo KY, Chen YH, Wan HP, Cheng KC. Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. BIORESOURCE TECHNOLOGY 2016; 201:27-32. [PMID: 26615498 DOI: 10.1016/j.biortech.2015.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
In the present study, evaluation and optimization of taro waste (TW), which was mainly composed of taro peels that contain many starch residues, as the main carbon source in medium were studied. The flask studies showed the optimal medium was using 170g/L of TW which is about 100g/L of glucose and 9g/L of CGM as alternative nitrogen source. Simultaneous saccharification and fermentation (SSF) exhibited higher bioethanol productivity toward separation hydrolysis and fermentation (SHF). The optimal condition of SSF was 5% of Kluyveromyces marxianus K21 inoculum at 40°C resulting in the maximum ethanol concentration (48.98g/L) and productivity (2.23g/L/h) after 22h of cultivation. The scaling up experiment in a 5L bioreactor demonstrated that K21 can still maintain its capability. After 20h of cultivation, 43.78g/L of ethanol (2.19g/L/h of productivity) was achieved corresponding to a 94.2% theoretical ethanol yield.
Collapse
Affiliation(s)
- Wei-Hao Wu
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chun Hung
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yen-Hui Chen
- Department of Food Science, Tunghai University, Taichung, Taiwan
| | - Hou-Peng Wan
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
7
|
You T, Shao L, Wang R, Zhang L, Xu F. Facile isothermal solid acid catalyzed ionic liquid pretreatments to enhance the combined sugars production from Arundo donax Linn. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:177. [PMID: 27559360 PMCID: PMC4995755 DOI: 10.1186/s13068-016-0589-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Solid acid catalyzed inexpensive ionic liquid (IL) pretreatment is promising because of its effectiveness at decreasing biomass recalcitrance to subsequent enzymatic hydrolysis or in situ hydrolysis of carbohydrate oligomers. However, the conventional strategy was limited by the complex non-isothermal process and considering only one aspect of sugar recovery. In this study, facile isothermal pretreatments using Amberlyst 35DRY catalyzed 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) at mild conditions were developed on bioenergy crop Arundo donax Linn. to enhance the combined sugars released. The physicochemical differences, enzymatic digestibility, and sugars released in situ were evaluated and compared to define the best set of conditions. RESULTS The optimized isothermal pretreatment (110 °C, IL for 3 h, Amberlyst for 1 h) resulted in significant enhancement in combined sugars released (58.4 g/100 g raw materials), recovering 85.0 % of the total reducing glycan in the raw biomass. This remarkable improvement could be correlated to cellulose crystallinity reduction, crystalline conversion, and partial removal of the main chemical components caused by the pretreatment. Particularly, solubilization of hemicelluloses and partial depolymerization of cellulose contributed to the synergetic improvement of sugars production in enzymatic hydrolysis and in situ. Irrespective of the generous differences in mass recovery, the highest cellulose digestibility of 90.2 % and sugar released of 43.0 % (based on initial materials) in the pretreatment liquor were obtained. Interestingly, lignin (0.8-6.1 %) and sugars derived lactic acid (4.70-5.94 %) were produced without any notable deleterious effects. CONCLUSIONS Isothermal [C4mim]Cl-Amberlyst pretreatment was a highly effective, simple, and convenient process that produced high yields of fermentable sugars from recalcitrant biomass by in situ hydrolysis of soluble biomass and enhancement of cellulose digestibility of the regenerated biomass. Relatively high amount of new revenues beyond sugars of this pretreatment could promote the commercial viability.
Collapse
Affiliation(s)
- Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Lupeng Shao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Ruizhen Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Liming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
8
|
Wu M, Yan ZY, Zhang XM, Xu F, Sun RC. Integration of mild acid hydrolysis in γ-valerolactone/water system for enhancement of enzymatic saccharification from cotton stalk. BIORESOURCE TECHNOLOGY 2016; 200:23-28. [PMID: 26476160 DOI: 10.1016/j.biortech.2015.09.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
In this study, mild acid hydrolysis using γ-valerolactone (GVL)/water system integrated with enzymatic hydrolysis was carried out for the enhancement of enzymatic saccharification efficiency. The quantitative analysis of soluble carbohydrates and structural characterizations of solid residues were conducted. Results showed that the soluble carbohydrates in the water-phase were mainly composed of monomers and oligomers from xylose and glucose, while the contents of which were depended on the ratio of GVL to water. Moreover, the inhibitors were hardly detected due to the moderate pretreatment severity. Compared with the untreated feedstock, the yields of enzymatic hydrolysis from pretreated samples increased by two-fold with the mixture of 80/20 GVL/H2O. Combined with the amount of glucose (14.6%) dissolved in the water-phase, over 92.6% of glucose in cotton stalk was released and recovered. Based on the comprehensive analysis, treatment with GVL/H2O system provided us a more effective approach for sugar production from biomass.
Collapse
Affiliation(s)
- Miao Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhong Ya Yan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xue Ming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Run Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|