1
|
Kumar D, Dutt S, Jaiswal AK, Kaundal B, Kumar D, Singh B. Bioethanol production from potatoes in India: A SWOT analysis. Heliyon 2024; 10:e40677. [PMID: 39660213 PMCID: PMC11629263 DOI: 10.1016/j.heliyon.2024.e40677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
India is the third-largest energy consumer globally, heavily reliant on imported oil. Projections suggest India's energy consumption will double by 2050, posing challenges to energy security and leading to significant foreign currency outflows. The extensive use of fossil fuels increases carbon emissions, raising environmental and health concerns. In this context, bioethanol production from potatoes offers a promising solution. This paper presents a SWOT analysis of this potential. Strengths include potatoes' widespread availability, high starch content, and compatibility with existing infrastructure. However, weaknesses such as seasonal cultivation, water-intensive farming, and competition with food demand require strategic solutions. Opportunities for bioethanol production from potatoes are numerous, including rural development, reduced fossil fuel reliance, and supportive governmental policies promoting renewable energy. Yet, threats like market fluctuations, technological limitations, and environmental issues related to land use and water consumption challenge the feasibility of this venture. This SWOT analysis provides insights into the strengths, weaknesses, opportunities, and threats associated with bioethanol production from potatoes in India, highlighting the potential and challenges of this renewable energy pathway.
Collapse
Affiliation(s)
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla, HP, India
| | - Arvind Kumar Jaiswal
- ICAR-Central Potato Research Institute, Regional Station, Jalandhar, Punjab, India
| | - Bandana Kaundal
- ICAR-Central Potato Research Institute Regional Station, Modipuram, UP, India
| | - Dinesh Kumar
- ICAR-Central Potato Research Institute, Shimla, HP, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, HP, India
| |
Collapse
|
2
|
Xu X, Wang Q, Yang L, Chen Z, Zhou Y, Feng H, Zhang P, Wang J. Effects of Exocellobiohydrolase CBHA on Fermentation of Tobacco Leaves. J Microbiol Biotechnol 2024; 34:1727-1737. [PMID: 39049482 PMCID: PMC11380505 DOI: 10.4014/jmb.2404.04028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The quality of tobacco is directly affected by macromolecular content, fermentation is an effective method to improve biochemical properties. In this study, we utilized CBHA (cellobiohydrolase A) glycosylase, which was expressed by Pichia pastoris, as an additive for fermentation. The contents of main chemical components of tobacco leaves after fermentation were determined, and the changes of microbial community structure and abundance in tobacco leaves during fermentation were analyzed. The relationship between chemical composition and changes in microbial composition was investigated, and the function of bacteria and fungi in fermentation was predicted to identify possible metabolic pathways. After 48 h of CBHA fermentation, the contents of starch, cellulose and total nitrogen in tobacco leaf decreased by 17.60%, 28.91% and 16.05%, respectively. The microbial community structure changed significantly, with Aspergillus abundance decreasing significantly, while Filobasidum, Cladosporium, Bullera, Komagataella, etc., increased in CBHA treated group. Soluble sugar was most affected by microbial community in tobacco leaves, which was negatively correlated with starch, cellulose and total nitrogen. During the fermentation process, the relative abundance of metabolism-related functional genes increased, and the expressions of cellulase and endopeptidase also increased. The results showed that the changes of bacterial community and dominant microbial community on tobacco leaves affected the content of chemical components in tobacco leaves, and adding CBHA for fermentation had a positive effect on improving the quality of tobacco leaves.
Collapse
Affiliation(s)
- Xueqin Xu
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Qianqian Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Longyan Yang
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Zhiyan Chen
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Yun Zhou
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Hui Feng
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Peng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
3
|
Wang X, Guo N, Hu J, Gou C, Xie X, Zheng H, Liao A, Huang J, Hui M, Liu N. Construction of an amylolytic Saccharomyces cerevisiae strain with high copies of α-amylase and glucoamylase genes integration for bioethanol production from sweet potato residue. Front Microbiol 2024; 15:1419293. [PMID: 39171266 PMCID: PMC11337298 DOI: 10.3389/fmicb.2024.1419293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Sweet potato residue (SPR) is the by-product of starch extraction from fresh sweet potatoes and is rich in carbohydrates, making it a suitable substrate for bioethanol production. An amylolytic industrial yeast strain with co-expressing α-amylase and glucoamylase genes would combine enzyme production, SPR hydrolysis, and glucose fermentation into a one-step process. This consolidated bioprocessing (CBP) shows great application potential in the economic production of bioethanol. In this study, a convenient heterologous gene integration method was developed. Eight copies of a Talaromyces emersonii α-amylase expression cassette and eight copies of a Saccharomycopsis fibuligera glucoamylase expression cassette were integrated into the genome of industrial diploid Saccharomyces cerevisiae strain 1974. The resulting recombinant strains exhibited clear transparent zones in the iodine starch plates, and SDS-PAGE analysis indicated that α-amylase and glucoamylase were secreted into the culture medium. Enzymatic activity analysis demonstrated that the optimal temperature for α-amylase and glucoamylase was 60-70°C, and the pH optima for α-amylase and glucoamylase was 4.0 and 5.0, respectively. Initially, soluble corn starch with a concentration of 100 g/L was initially used to evaluate the ethanol production capability of recombinant amylolytic S. cerevisiae strains. After 7 days of CBP fermentation, the α-amylase-expressing strain 1974-temA and the glucoamylase-expressing strain 1974-GA produced 33.03 and 28.37 g/L ethanol, respectively. However, the 1974-GA-temA strain, which expressed α-amylase and glucoamylase, produced 42.22 g/L ethanol, corresponding to 70.59% of the theoretical yield. Subsequently, fermentation was conducted using the amylolytic strain 1974-GA-temA without the addition of exogenous α-amylase and glucoamylase, which resulted in the production of 32.15 g/L ethanol with an ethanol yield of 0.30 g/g. The addition of 20% glucoamylase (60 U/g SPR) increased ethanol concentration to 50.55 g/L, corresponding to a theoretical yield of 93.23%, which was comparable to the ethanol production observed with the addition of 100% α-amylase and glucoamylase. The recombinant amylolytic strains constructed in this study will facilitate the advancement of CBP fermentation of SPR for the production of bioethanol.
Collapse
Affiliation(s)
- Xin Wang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, Henan, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
- School of Food and Pharmacy, Xuchang University, Xuchang, Henan, China
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang, Henan, China
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, Zhengzhou, Henan, China
| | - Na Guo
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jingting Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Chenchen Gou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Xinyue Xie
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Haobo Zheng
- School of International Education, Henan University of Technology, Zhengzhou, Henan, China
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, Zhengzhou, Henan, China
| | - Jihong Huang
- School of Food and Pharmacy, Xuchang University, Xuchang, Henan, China
- Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang, Henan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, Zhengzhou, Henan, China
| | - Na Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Zhou X, Zhang X, Wang D, Luo R, Qin Z, Lin F, Xia X, Liu X, Hu G. Efficient Biosynthesis of Salidroside via Artificial in Vivo enhanced UDP-Glucose System Using Cheap Sucrose as Substrate. ACS OMEGA 2024; 9:22386-22397. [PMID: 38799314 PMCID: PMC11112596 DOI: 10.1021/acsomega.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Salidroside, a valuable phenylethanoid glycoside, is obtained from plants belonging to the Rhodiola genus, known for its diverse biological properties. At present, salidroside is still far from large-scale industrial production due to its lower titer and higher process cost. In this study, we have for the first time increased salidroside production by enhancing UDP-glucose supply in situ. We constructed an in vivo UDP-glucose regeneration system that works in conjunction with UDP-glucose transferase from Rhodiola innovatively to improve UDP-glucose availability. And a coculture was formed in order to enable de novo salidroside synthesis. Confronted with the influence of tyrosol on strain growth, an adaptive laboratory evolution strategy was implemented to enhance the strain's tolerance. Similarly, salidroside production was optimized through refinement of the fermentation medium, the inoculation ratio of the two microbes, and the inoculation size. The final salidroside titer reached 3.8 g/L. This was the highest titer achieved at the shake flask level in the existing reports. And this marked the first successful synthesis of salidroside in an in situ enhanced UDP-glucose system using sucrose. The cost was reduced by 93% due to the use of inexpensive substrates. This accomplishment laid a robust foundation for further investigations into the synthesis of other notable glycosides and natural compounds.
Collapse
Affiliation(s)
- Xiaojie Zhou
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaoxiao Zhang
- AgroParisTech, 22 place de l’Agronomie, 91120 Palaiseau, France
| | - Dan Wang
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ruoshi Luo
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Zhao Qin
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Fanzhen Lin
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xue Xia
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xuemei Liu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ge Hu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
5
|
Teo KSK, Kondo K, Khattab SMR, Watanabe T, Nagata T, Katahira M. Enhancing Bioethanol Production from Rice Straw through Environmentally Friendly Delignification Using Versatile Peroxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2657-2666. [PMID: 38288662 DOI: 10.1021/acs.jafc.3c07998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Rice straw (RS), an agricultural residue rich in carbohydrates, has substantial potential for bioethanol production. However, the presence of lignin impedes access to these carbohydrates, hindering efficient carbohydrate-to-bioethanol conversion. Here, we expressed versatile peroxidase (VP), a lignin-degrading enzyme, in Pichia pastoris and used it to delignify RS at 30 °C using a membrane bioreactor that continuously discarded the degraded lignin. Klason lignin analysis revealed that VP-treatment led to 35% delignification of RS. We then investigated the delignified RS by SEC, FTIR, and SEM. The results revealed the changes of RS caused by VP-mediated delignification. Additionally, we compared the saccharification and fermentation yields between RSs treated with and without VP, VP-RS, and Ctrl-RS, respectively. This examination unveiled an improvement in glucose and bioethanol production, VP-RS exhibiting up to 1.5-fold and 1.4-fold production, respectively. These findings underscore the potential of VP for delignifying RS and enhancing bioethanol production through an eco-friendly approach.
Collapse
Affiliation(s)
- Kenneth Sze Kai Teo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Sadat Mohamed Rezk Khattab
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Faculty of Science, Al-Azhar University, 2091110 Assiut, Egypt
| | - Takashi Watanabe
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Cripwell RA, My R, Treu L, Campanaro S, Favaro L, van Zyl WH, Viljoen-Bloom M. Additional glucoamylase genes increase ethanol productivity on rice and potato waste streams by a recombinant amylolytic yeast. BIORESOURCE TECHNOLOGY 2023; 388:129787. [PMID: 37741578 DOI: 10.1016/j.biortech.2023.129787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
The implementation of consolidated bioprocessing for converting starch to ethanol relies on a robust yeast that produces enough amylases for rapid starch hydrolysis. Furthermore, using low-cost substrates will assist with competitive ethanol prices and support a bioeconomy, especially in developing countries. This paper addresses both challenges with the expression of additional glucoamylase gene copies in an efficient amylolytic strain (Saccharomyces cerevisiae ER T12) derived from the industrial yeast, Ethanol Red™. Recombinant ER T12 was used as a host to increase ethanol productivity during raw starch fermentation; the ER T12.7 variant, selected from various transformants, displayed enhanced raw starch conversion and a 36% higher ethanol concentration than the parental strain after 120 h. Unripe rice, rice bran, potato waste and potato peels were evaluated as alternative starchy substrates to test ER T12.7's fermenting ability. ER T12.7 produced high ethanol yields at significantly improved ethanol productivity, key criteria for its industrial application.
Collapse
Affiliation(s)
- Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rebecca My
- Waste to Bioproducts-Lab, Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padova, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padova, Italy
| | - Lorenzo Favaro
- Waste to Bioproducts-Lab, Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
7
|
Liu Y, Ma W, Fang X. The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases. Int J Mol Sci 2023; 24:ijms24098300. [PMID: 37176008 PMCID: PMC10179388 DOI: 10.3390/ijms24098300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
AA9 lytic polysaccharide monooxygenases (LPMOs) are copper-dependent metalloenzymes that play a major role in cellulose degradation and plant infection. Understanding the AA9 LPMO mechanism would facilitate the improvement of plant pathogen control and the industrial application of LPMOs. Herein, via point mutation, we investigated the role of glycine 2 residue in cellulose degradation by Thermoascus aurantiacus AA9 LPMOs (TaAA9). A computational simulation showed that increasing the steric properties of this residue by replacing glycine with threonine or tyrosine altered the H-bonding network of the copper center and copper coordination geometry, decreased the surface charge of the catalytic center, weakened the TaAA9-substrate interaction, and enhanced TaAA9-product binding. Compared with wild-type TaAA9, G2T-TaAA9 and G2Y-TaAA9 variants showed attenuated copper affinity, reduced oxidative product diversity and decreased substrate Avicel binding, as determined using ITC, MALDI-TOF/TOF MS and cellulose binding analyses, respectively. Consistently, the enzymatic activity and synergy with cellulase of the G2T-TaAA9 and G2Y-TaAA9 variants were lower than those of TaAA9. Hence, the investigated residue crucially affects the catalytic activity of AA9 LPMOs, and we propose that the electropositivity of copper may correlate with AA9 LPMO activity. Thus, the relationship among the amino acid at position 2, surface charge and catalytic activity may facilitate an understanding of the proteins in AA9 LPMOs.
Collapse
Affiliation(s)
- Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
8
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
9
|
Gao D, Chen H, Liu H, Yang X, Guo P, Cao X, Cai Y, Xu H, Yang J. Structure characterization and antioxidant activity analysis of polysaccharides from Lanzhou Lily. Front Nutr 2022; 9:976607. [PMID: 35990335 PMCID: PMC9389332 DOI: 10.3389/fnut.2022.976607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
Lanzhou Lily (Lilium davidii var. unicolor) is a traditional medicinal plant and popular edible vegetable bulb in China. In this study, the polysaccharides of Lanzhou Lily (LLPs) were extracted by polyethylene glycol-based ultrasonic-assisted enzymatic extraction method (PEG-UAEE). The optimum process conditions were obtained by single-factor experiments and response surface methodology (RSM). Then, the preliminarily structure of LLPs was characterized by HPLC, FT-IR, and SEM, and its antioxidant activities were evaluated. The results showed that LLPs yield reached 14.75% under the optimized conditions: E/S ratio 1,400 U/g; pH 5.0, ultrasonic time 30 min; and ultrasonic temperature 50 °C. The LLPs has pyranoid ring, uronic acid, and the characteristic absorption peaks of -OH, C = O, and C-H. The results of scanning electron microscope indicated that the LLPs had irregular distribution, dispersed structure, and many holes. The HPLC analysis showed that the LLPs were heteropolysaccharide containing galactose (6.36%), glucose (76.03%), rhamnose (2.02%), and arabinose (7.09%). Moreover, the LLPs showed obvious antioxidant effect in vitro.
Collapse
Affiliation(s)
- Dandan Gao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Honghai Liu
- Technology Research and Development Center, Gansu Tobacco Industry Co. Ltd, Lanzhou, China
| | - Xuhua Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Penghui Guo
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xin Cao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yong Cai
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hongwei Xu
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
10
|
Ru Y, Liu J, Xu P, Gao W, Sun D, Zhu J, Liu C, Liu W. Application of the biosurfactant produced by
Bacillus velezensis
MMB
‐51 as an efficient synergist of sweet potato foliar fertilizer. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yunrui Ru
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Peijing Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Wenhui Gao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| |
Collapse
|
11
|
Gong C, Cao L, Fang D, Zhang J, Kumar Awasthi M, Xue D. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. BIORESOURCE TECHNOLOGY 2022; 352:127105. [PMID: 35378286 DOI: 10.1016/j.biortech.2022.127105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.
Collapse
Affiliation(s)
- Chunjie Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Liping Cao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Donglai Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dongsheng Xue
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
12
|
Xu S, Xu S, Ge X, Tan L, Liu T. Low-cost and highly efficient production of bacterial cellulose from sweet potato residues: Optimization, characterization, and application. Int J Biol Macromol 2022; 196:172-179. [PMID: 34914912 DOI: 10.1016/j.ijbiomac.2021.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
Bacterial cellulose (BC) is an emerging biological material with unique properties and structure, which has attracted more and more attention. In this study, Gluconacetobacter xylinus was used to convert sweet potato residues (SPR) hydrolysate to BC. SPR was directly used without pretreatment, and almost no inhibitors were generated, which was beneficial to subsequent glucan conversion and SPR-BC synthesis. SPR-BC production was 11.35 g/L under the optimized condition. The comprehensive structural characterization and mechanical analysis demonstrated that the crystallinity, maximum thermal degradation temperature, and tensile strength of SPR-BC were 87.39%, 263 °C, and 6.87 MPa, respectively, which were superior to those of BC produced with the synthetic medium. SPR-BC was added to rice straw pulp to enhance the bonding force between fibers and the indices of tensile, burst, and tear of rice straw paper. The indices were increased by 83.18%, 301.27%, and 169.58%, respectively. This research not only expanded the carbon source of BC synthesis, reduced BC production cost, but also improved the quality of rice straw paper.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shujie Xu
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaoli Ge
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Liping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tongjun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
13
|
The effects of enzymatic modification on the functional ingredient - Dietary fiber extracted from potato residue. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
15
|
Benefits and Trade-Offs of Smallholder Sweet Potato Cultivation as a Pathway toward Achieving the Sustainable Development Goals. SUSTAINABILITY 2021. [DOI: 10.3390/su13020552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 2030 Agenda for Sustainable Development, including the 17 Sustainable Development Goals (SDGs), will shape national development plans up to 2030. SDGs 1 (No Poverty), 2 (Zero Hunger) and 7 (Affordable and Clean Energy) are particularly crucial for the poor, given they target the basic human needs for development and fundamental human rights. The majority of poor and malnourished people in the developing world live in rural areas and engage in farming as a key part of their livelihoods, with food and agriculture at the heart of their development concerns. Crops that can provide both food and energy without detrimental impacts on soil or water resources can be particularly beneficial for local development and smallholder farmers. Sweet potato, in particular, is starting to attract growing attention from researchers and policymakers as it has the potential to address these global problems and promote a sustainable society. We systematically review the literature to assess how sweet potato can support smallholder farmers to make progress towards the SDGs. We find that sweet potato has important untapped potential to advance progress, particularly linked to its versatility as a crop and its multiple end-uses. However, further research is paramount in order to better recognise and harness its potential to address the issues of food, nutrition and energy security in the context of a changing global climate. Further investigation is also needed into the trade-offs that occur in the use of sweet potato to support progress towards the SDGs.
Collapse
|
16
|
He D, Yan Z, Sun X, Yang P. Leaf development and energy yield of hydroponic sweetpotato seedlings using single-node cutting as influenced by light intensity and LED spectrum. JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153274. [PMID: 32961477 DOI: 10.1016/j.jplph.2020.153274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 05/23/2023]
Abstract
Vine cuttings with six to eight unfolded leaves are utilized as is conventional in sweetpotato (Ipomoea batatas (L.) Lam.) seedling production. However, most vine cuttings wilt after transplanting into the field. Moreover, few researchers have examined the influence of photon flux density (PFD) provided by white or white plus red light-emitting diodes (LEDs) on sweetpotato plantlets. In this study, hydroponic sweetpotato (cv. Beniharuka) seedlings using single-node cutting were grown under 20 combinations of five levels of PFDs of 150, 200, 250, 300, and 350 μmol m-2 d-1 and four light qualities: white LEDs with a red light to blue light ratio (R:B ratio) of 0.9, white plus red LEDs with R:B ratios of 1.2 and 2.2, respectively, and fluorescent lamp with an R:B ratio of 1.8 as control, for 20 days under a controlled enviroment. Results showed that the number of newly developed leaves on hydroponic sweetpotato seedlings increased with time in a quadratic function, regardless of light quality. Fluorescent lamps led to greater numbers of new leaves on hydroponic sweetpotato seedlings compared with those grown under LEDs. Plant height, leaf area, and fresh and dry weights increased initially and then decreased with increasing daily light integral (DLI) in quadratic funcitons with a highest value under a PFD of 250 μmol m-2 d-1. However, no significant differences were observed in fresh and dry weights of hydroponic sweetpotato seedlings grown under PFDs of 200 and 250 μmol m-2 s-1. The quantum yield of photosystem II (ФPSII) decreased linearly as DLI increased from 8.6-20.2 mol m-2 d-1. Power consumptions based on fresh and dry weights were lowest in sweetpotato seedlings grown under a PFD of 200 μmol m-2 s-1 provided by white LEDs with an R:B ratio of 0.9. White LEDs also showed higher light energy use efficiency than white plus red LEDs. In summary, it is recommended that a PFD of 200 μmol m-2 s-1 with DLI at 11.5 mol m-2 d-1 provided by white LEDs with an R:B ratio of 0.9 is suitable for hydroponic sweetpotato (cv. Beniharuka) seedling production under a controlled environment.
Collapse
Affiliation(s)
- Dongxian He
- Key Lab. Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
| | - Zhengnan Yan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Sun
- Key Lab. Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Po Yang
- Beijing Lighting Valley Technology Company, Beijing 100083, China
| |
Collapse
|
17
|
Coelho ALS, Arraes AA, Abreu-Lima TLDE, Carreiro SC. Hydrolysis of sweet potato (Ipomoea batatas (L.) Lam.) flour by Candida homilentoma strains: effects of pH and temperature using Central Composite Rotatable Design. AN ACAD BRAS CIENC 2020; 92:e20180410. [PMID: 32667509 DOI: 10.1590/0001-3765202020180410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/18/2019] [Indexed: 11/21/2022] Open
Abstract
The current study focuses on the evaluation of culture parameters on the enzymatic hydrolysis of Ipomoea batatas (L.) Lam flour by Candida homilentoma strains. A 2-factor-5-level CCRD was used to evaluate the effect of pH and temperature on the hydrolysis process. For the S-47 strain, pH and both studied parameters were significant at 48 h and 96 h, respectively. Regarding S-81 strain, temperature was the only factor affecting the process, at 96 hours. The regression models were significant, and no lack of fit was observed for them.
Collapse
Affiliation(s)
- Ana LetÍcia S Coelho
- Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina/UFSC, Florianópolis, SC, Brazil
| | - Agelles A Arraes
- Programa de Graduação em Engenharia de Alimentos, Universidade Federal do Tocantins/UFT, Palmas, TO, Brazil
| | - Thiago Lucas DE Abreu-Lima
- Programa de Graduação em Engenharia de Alimentos, Universidade Federal do Tocantins/UFT, Palmas, TO, Brazil
| | - Solange Cristina Carreiro
- Programa de Graduação em Engenharia de Alimentos, Universidade Federal do Tocantins/UFT, Palmas, TO, Brazil
| |
Collapse
|
18
|
Guo W, Huang Q, Feng Y, Tan T, Niu S, Hou S, Chen Z, Du Z, Shen Y, Fang X. Rewiring central carbon metabolism for tyrosol and salidroside production in
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:2410-2419. [DOI: 10.1002/bit.27370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Wei Guo
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Qiulan Huang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Yuhui Feng
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Taicong Tan
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Suhao Niu
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Shaoli Hou
- Yantai Huakangrongzan Biotechnology Co., Ltd.Yantai China
| | - Zhigang Chen
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Zhi‐Qiang Du
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Yu Shen
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Xu Fang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
- National Glycoengineering Research CenterShandong University Qingdao China
| |
Collapse
|
19
|
Zhu T, Li R, Sun J, Cui Y, Wu B. Characterization and efficient production of a thermostable, halostable and organic solvent-stable cellulase from an oil reservoir. Int J Biol Macromol 2020; 159:622-629. [PMID: 32387598 DOI: 10.1016/j.ijbiomac.2020.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 05/03/2020] [Indexed: 01/28/2023]
Abstract
The manufacture of biofuels from cellulose is regarded as one of practicable strategies to meet increasing energy demand and alleviate environmental issues. Cellulases, which play an important role in the production of second-generation biofuels, are expected to be highly thermostable, halostable and organic solvent-stable to adapt to the harsh conditions in practical application. Here we cloned and characterized a novel cellulase (MaCel) from Mahella australiensis 50-1 BON, an anaerobic thermophile isolated from an oil reservoir. MaCel exhibited excellent thermostability, halostability as well as organic solvent stability, and could be efficiently produced in a yield of 1.7 × 106 U/L in 15 h with inexpensive culture medium. These results indicate that MaCel may be a suitable candidate for industrial applications, illustrating the potential benefits of enzymes from oil reservoir extremophiles in the manufacture of biofuels.
Collapse
Affiliation(s)
- Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jinyuan Sun
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
20
|
Qin LZ, He YC. Chemoenzymatic Synthesis of Furfuryl Alcohol from Biomass in Tandem Reaction System. Appl Biochem Biotechnol 2019; 190:1289-1303. [PMID: 31754985 DOI: 10.1007/s12010-019-03154-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/23/2019] [Indexed: 01/27/2023]
Abstract
In this study, chemoenzymatic synthesis of furfuryl alcohol from biomass (e.g., corncob, bamboo shoot shell, and rice straw) was attempted by the tandem catalysis with Lewis acid (SnCl4 or solid acid SO42-/SnO2-bentonite) and biocatalyst in one-pot manner. Compared with SnCl4, solid acid SO42-/SnO2-bentonite had higher catalytic activity for converting biomass into furfural, which could be biologically converted into furfuryl alcohol with Escherichia coli CCZU-H15 whole-cell harboring reductase activity. Sequential catalysis of biomass into furfural with SO42-/SnO2-bentonite (3.0 wt%) at 170 °C for 0.5 h and bioreduction of furfural with whole cells at 30 °C for 4.5 h were used for the effective synthesis of furfuryl alcohol in one-pot media. Corncob, bamboo shoot shell, and rice straw (3.0 g, dry weight) could be converted into 65.7, 50.3, and 58.5 mM furfuryl alcohol with the yields of 0.26, 0.25, and 0.23 g furfuryl alcohol/(g xylan in biomass) in 40 mL reaction media. Finally, an efficient process of recycling and reusing of SO42-/SnO2-bentonite catalyst and immobilized whole-cell biocatalyst was developed for the chemoenzymatic synthesis of furfuryl alcohol from biomass in the one-pot reaction system.
Collapse
Affiliation(s)
- Li-Zhen Qin
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China.,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Yu-Cai He
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China. .,State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
21
|
Xia J, Shu J, Yao K, Xu J, Yu X, Xue X, Ma D, Lin X. Synergism of cellulase, pectinase and xylanase on hydrolyzing differently pretreated sweet potato residues. Prep Biochem Biotechnol 2019; 50:181-190. [PMID: 31647386 DOI: 10.1080/10826068.2019.1680390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The synergism of cellulase (C), pectinase (P), and xylanase (X) for the saccharification of sweet potato residues (SPR) was investigated. The removal of starch from SPR was easily achieved by using amylase, but the cellulose conversion of de-starched SPR was relatively low, thus dilute H2SO4, NaOH, and H2O2 pretreatment was conducted to improve the enzymatic digestibility. The lignin content of NaOH pretreated SPR was the lowest, whereas H2SO4 pretreatment resulted in the lowest contents of hemicellulose and pectin. The combination of C, P, and X exhibited different sugar production patterns, C-P displayed synergistic action on glucose and galactose production from each type of SPR, C-X also exhibited synergistic effect on glucose production except when H2SO4 pretreated SPR was used, whereas no synergism between P-X on monosaccharide production was observed. The presence of synergism between cellulase and mixed accessory enzymes [C-(PX)] on glucose formation was determined by C-X, and the degree of synergism between C-P and C-(PX) on glucose production had a positive relationship with pectin content. The highest cellulose conversion of 96.2% was obtained from NaOH pretreated SPR using mixed enzymes comprising C, P, and X with the ratio of 8:1:1.
Collapse
Affiliation(s)
- Jun Xia
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, P. R. China
| | - Jingyi Shu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, P. R. China
| | - Kangwei Yao
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, P. R. China
| | - Jiming Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, P. R. China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Xiang Xue
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, P. R. China
| | - Decao Ma
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, P. R. China
| | - Xueqi Lin
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, P. R. China
| |
Collapse
|
22
|
Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R. A critical review on production of bioethanol from macroalgal biomass. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101606] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation. Appl Microbiol Biotechnol 2019; 103:5739-5750. [DOI: 10.1007/s00253-019-09928-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 11/27/2022]
|
24
|
P V, Dash SK, Rayaguru K. Post-Harvest Processing and Utilization of Sweet Potato: A Review. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1600540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vithu P
- Department of Agricultural Processing and Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar, India
| | - Sanjaya K Dash
- College of Agricultural Engineering and Technology, OUAT, Bhubaneswar, India
| | - Kalpana Rayaguru
- Department of Agricultural Processing and Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar, India
| |
Collapse
|
25
|
Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A. J Biosci Bioeng 2018; 125:371-376. [DOI: 10.1016/j.jbiosc.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/22/2017] [Accepted: 11/19/2017] [Indexed: 11/19/2022]
|
26
|
Chong GG, Huang XJ, Di JH, Xu DZ, He YC, Pei YN, Tang YJ, Ma CL. Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess Biosyst Eng 2017; 41:501-510. [PMID: 29279999 DOI: 10.1007/s00449-017-1884-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/14/2017] [Indexed: 01/25/2023]
Abstract
Based on the Prussian blue spectrophotometric method, one high-throughput screening strategy for screening lignin-degrading microorganisms was built on 24-well plate at room temperature. One high activity of alkali lignin-degrading strain Rhodococcus pyridinivorans CCZU-B16 was isolated from soil. After the optimization of biodegradation, 30.2% of alkali lignin (4 g/L) was degraded under the nitrogen-limited condition (30/1 of C/N ratio; g/g) at 30 °C for 72 h. It was found that syringyl (S) units and guaiacyl (G) in lignin decreased after biodegradation. Moreover, the accumulated lipid in cells had a fatty acid profile rich in C16 and C18 with four major constituent fatty acids including palmitic acid (C16:0; 22.4%), palmitoleic acid (C16:1; 21.1%), stearic acid (C18:0; 16.2%), and oleic acid (C18:1; 23.1%). In conclusion, Rhodococcus pyridinivorans CCZU-B16 showed high potential application in future.
Collapse
Affiliation(s)
- Gang-Gang Chong
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Xiao-Jun Huang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Jun-Hua Di
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Dao-Zhu Xu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People's Republic of China. .,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, People's Republic of China.
| | - Ya-Nan Pei
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, People's Republic of China
| | - Cui-Luan Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
27
|
Lopes ML, Paulillo SCDL, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, Amorim Neto HBD, Amorim HVD. Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 2016; 47 Suppl 1:64-76. [PMID: 27818090 PMCID: PMC5156502 DOI: 10.1016/j.bjm.2016.10.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022] Open
Abstract
In the last 40 years, several scientific and technological advances in microbiology of the fermentation have greatly contributed to evolution of the ethanol industry in Brazil. These contributions have increased our view and comprehension about fermentations in the first and, more recently, second-generation ethanol. Nowadays, new technologies are available to produce ethanol from sugarcane, corn and other feedstocks, reducing the off-season period. Better control of fermentation conditions can reduce the stress conditions for yeast cells and contamination by bacteria and wild yeasts. There are great research opportunities in production processes of the first-generation ethanol regarding high-value added products, cost reduction and selection of new industrial yeast strains that are more robust and customized for each distillery. New technologies have also focused on the reduction of vinasse volumes by increasing the ethanol concentrations in wine during fermentation. Moreover, conversion of sugarcane biomass into fermentable sugars for second-generation ethanol production is a promising alternative to meet future demands of biofuel production in the country. However, building a bridge between science and industry requires investments in research, development and transfer of new technologies to the industry as well as specialized personnel to deal with new technological challenges.
Collapse
|
28
|
Tang Y, Dou X, Jiang J, Lei F, Liu Z. Yield-determining components in high-solid integrated first and second generation bioethanol production from cassava residues, furfual residues and corn. RSC Adv 2016. [DOI: 10.1039/c6ra08036g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein, cellulose, and starch were yield-determining components in high-solids integration process for ethanol production from cassava residuals, furfural residuals and corn.
Collapse
Affiliation(s)
- Yong Tang
- Department of Chemistry and Chemical Engineering
- Beijing Forestry University
- Beijing
- China
- Department of Chemical and Biological Engineering
| | - Xiaoli Dou
- Forest Products Biotechnology
- Department of Wood Science
- The University of British Columbia
- Vancouver
- Canada
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering
- Beijing Forestry University
- Beijing
- China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products
- Nanning 530006
- China
| | - Zuguang Liu
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products
- Nanning 530006
- China
| |
Collapse
|