1
|
Barla RJ, Gupta S, Raghuvanshi S. Sustainable synergistic approach to chemolithotrophs-supported bioremediation of wastewater and flue gas. Sci Rep 2024; 14:16529. [PMID: 39019921 PMCID: PMC11254919 DOI: 10.1038/s41598-024-67053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Flue gas emissions are the waste gases produced during the combustion of fuel in industrial processes, which are released into the atmosphere. These identical processes also produce a significant amount of wastewater that is released into the environment. The current investigation aims to assess the viability of simultaneously mitigating flue gas emissions and remediating wastewater in a bubble column bioreactor utilizing bacterial consortia. A comparative study was done on different growth media prepared using wastewater. The highest biomass yield of 3.66 g L-1 was achieved with the highest removal efficiencies of 89.80, 77.30, and 80.77% for CO2, SO2, and NO, respectively. The study investigated pH, salinity, dissolved oxygen, and biochemical and chemical oxygen demand to assess their influence on the process. The nutrient balance validated the ability of bacteria to utilize compounds in flue gas and wastewater for biomass production. The Fourier Transform-Infrared Spectrometry (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses detected commercial-use long-chain hydrocarbons, fatty alcohols, carboxylic acids, and esters in the biomass samples. The nuclear magnetic resonance (NMR) metabolomics detected the potential mechanism pathways followed by the bacteria for mitigation. The techno-economic assessment determined a feasible total capital investment of 245.74$ to operate the reactor for 288 h. The bioreactor's practicability was determined by mass transfer and thermodynamics assessment. Therefore, this study introduces a novel approach that utilizes bacteria and a bioreactor to mitigate flue gas and remediate wastewater.
Collapse
Affiliation(s)
- Rachael J Barla
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India
| | - Suresh Gupta
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
2
|
Ortíz-Sánchez E, Guillén-Garcés RA, Morales-Arrieta S, Ugochukwu Okoye P, Olvera-Vargas H, Sebastian PJ, Arias DM. Cultivation of carbohydrate-rich microalgae with great settling properties using cooling tower wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38999-39014. [PMID: 37410327 PMCID: PMC11186883 DOI: 10.1007/s11356-023-28432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Wastewater treatment and simultaneous production of value-added products with microalgae represent a sustainable alternative. Industrial wastewater, characterized by high C/N molar ratios, can naturally improve the carbohydrate content in microalgae without the need for any external source of carbon while degrading the organic matter, macro-nutrients, and micro-nutrients. This study aimed to understand the treatment, reuse, and valorization mechanisms of real cooling tower wastewater (CWW) from a cement-processing industry mixed with domestic wastewater (DW) to produce microalgal biomass with potential for synthesis of biofuels or other value-added products. For this purpose, three photobioreactors with different hydraulic retention times (HRT) were inoculated simultaneously using the CWW-DW mixture. Macro- and micro-nutrient consumption and accumulation, organic matter removal, algae growth, and carbohydrate content were monitored for 55 days. High COD (> 80%) and macronutrient removals (> 80% of N and P) were achieved in all the photoreactors, with heavy metals below the limits established by local standards. The best results showed maximum algal growth of 1.02 g SSV L-1 and 54% carbohydrate accumulation with a C/N ratio of 31.24 mol mol-1. Additionally, the harvested biomass presented a high Ca and Si content, ranging from 11 to 26% and 2 to 4%, respectively. Remarkably, big flocs were produced during microalgae growth, which enhanced natural settling for easy biomass harvesting. Overall, this process represents a sustainable alternative for CWW treatment and valorization, as well as a green tool for generating carbohydrate-rich biomass with the potential to produce biofuels and fertilizers.
Collapse
Affiliation(s)
- Edwin Ortíz-Sánchez
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, 62550, Jiutepec, Morelos, CP, Mexico
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico
| | - Rosa Angélica Guillén-Garcés
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, 62550, Jiutepec, Morelos, CP, Mexico
| | - Sandra Morales-Arrieta
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, 62550, Jiutepec, Morelos, CP, Mexico
| | - Patrick Ugochukwu Okoye
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico
| | - Dulce María Arias
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico.
| |
Collapse
|
3
|
Ghosh S, Kar D. Biohythane: a Potential Biofuel of the Future. Appl Biochem Biotechnol 2024; 196:2957-2975. [PMID: 36576653 DOI: 10.1007/s12010-022-04291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Today, the world is becoming more dependent on fossil fuels. The major drawbacks of these non-renewable energy resources include an extreme environmental pollution and an extinction threat. Several technologies including microalgal biodiesel production, biomass gasification, and bioethanol production have been explored for the generation of renewable energy especially, biofuels. One such promising research has been carried out in the generation of biohythane which has the potential to become an alternative fuel to the existing non-renewable ones. It has been reported that biohydrogen can be produced from organic wastes or agricultural feedstocks with the help of acidogens. Dark fermentation can be carried out by acidogens to produce biohydrogen under anaerobic conditions by utilizing lignocellulosic biomass or sugarcane feedstocks in the absence of light. The spent medium contains volatile short-chain fatty acids like acetate, butyrate, and propionate that can serve as substrates for acetogenesis followed by methane biosynthesis by methanogens. Therefore, the sequential two-stage anaerobic digestion (AD) involves a production of biohydrogen followed by the biosynthesis of methane. This combined process is termed as a single eponym "Biohythane" (hydrogen + methane). Several studies have demonstrated about the effectiveness of biofuel, and it is believed to have a greater energy recovery, environmental friendliness, and shorter fermentation time. Biohythane can serve as an alternative future green biofuel and solve the present energy crisis in India as well as the entire world.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Debasish Kar
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bangalore, India.
| |
Collapse
|
4
|
Barla RJ, Raghuvanshi S, Gupta S. A comprehensive review of flue gas bio-mitigation: chemolithotrophic interactions with flue gas in bio-reactors as a sustainable possibility for technological advancements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33165-33189. [PMID: 38668951 DOI: 10.1007/s11356-024-33407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Flue gas mitigation technologies aim to reduce the environmental impact of flue gas emissions, particularly from industrial processes and power plants. One approach to mitigate flue gas emissions involves bio-mitigation, which utilizes microorganisms to convert harmful gases into less harmful or inert substances. The review thus explores the bio-mitigation efficiency of chemolithotrophic interactions with flue gas and their potential application in bio-reactors. Chemolithotrophs are microorganisms that can derive energy from inorganic compounds, such as carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2), present in the flue gas. These microorganisms utilize specialized enzymatic pathways to oxidize these compounds and produce energy. By harnessing the metabolic capabilities of chemolithotrophs, flue gas emissions can be transformed into value-added products. Bio-reactors provide controlled environments for the growth and activity of chemolithotrophic microorganisms. Depending on the specific application, these can be designed as suspended or immobilized reactor systems. The choice of bio-reactor configuration depends on process efficiency, scalability, and ease of operation. Factors influencing the bio-mitigation efficiency of chemolithotrophic interactions include the concentration and composition of the flue gas, operating conditions (such as temperature, pH, and nutrient availability), and reactor design. Chemolithotrophic interactions with flue gas in bio-reactors offer a potentially efficient approach to mitigating flue gas emissions. Continued research and development in this field are necessary to optimize reactor design, microbial consortia, and operating conditions. Advances in understanding the metabolism and physiology of chemolithotrophic microorganisms will contribute to developing robust and scalable bio-mitigation technologies for flue gas emissions.
Collapse
Affiliation(s)
- Rachael Jovita Barla
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| |
Collapse
|
5
|
Lima ADSP, Cahú TB, Dantas DMM, Veras BO, Oliveira CYB, Souza RS, Moraes LBS, Silva FCO, Araújo MIF, Gálvez AO, Souza RB. Accessing the biotechnological potential of a novel isolated microalga from a semi-arid region of Brazil. FOOD SCI TECHNOL INT 2023:10820132231186171. [PMID: 37408365 DOI: 10.1177/10820132231186171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The use of microalgae as a source of food and pharmaceutical ingredients has garnered growing interest in recent years. Despite the rapid growth of the nutraceutical market, knowledge about the potential of bioactive molecules from microalgae remains insufficient. The present study aimed to investigate the biotechnological potential of the green microalga Desmodesmus armatus isolated from a semi-arid region of Brazil. The algal biomass was characterized in terms of gross biochemical composition, exopolysaccharide content, enzymatic inhibition capacity, and antioxidant, antibacterial, and hemolytic activities from solvents of different polarities (water, ethanol, acetone, and hexane). D armatus biomass had 40% of crude protein content, 25.94% of lipids, and 25.03% of carbohydrates. The prebiotic potential of exopolysaccharides from D armatus was demonstrated, which stimulated the growth of Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum bacteria strains. Moreover, the enzyme inhibition capacity for the proteases chymotrypsin (34.78%-45.8%) and pepsin (16.64%-27.27%), in addition to α-amylase (24.79%) and lipase (31.05%) was confirmed. The antioxidant potential varied between the different extracts, with 2,2-diphenyl-1-picrylhydrazyl sequestration values varying between 17.51% and 63.12%, and those of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method between 6.82% and 22.89%. In the antibacterial activity test, only the ethanolic extract showed inhibition against Listeria sp. (at minimum inhibitory concentration [MIC] = 256 µg mL-1). This fraction also presented the highest significant levels of hemolysis (31.88%-52.45%). In summary, the data presented in the study suggest the presence of biocompounds with biotechnological and nutraceutical potential in the D armatus biomass. Future studies may evaluate the inclusion of this biomass in foods in order to increase their biological value.
Collapse
Affiliation(s)
- Alysson de Sá P Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Thiago B Cahú
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Danielli M M Dantas
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Bruno O Veras
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Carlos Y B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Rayanna S Souza
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Laenne B S Moraes
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Francisca C O Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Maria I F Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Ranilson B Souza
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
6
|
Yaashikaa PR, Senthil Kumar P, Saravanan A, Karishma S, Rangasamy G. A biotechnological roadmap for decarbonization systems combined into bioenergy production: Prelude of environmental life-cycle assessment. CHEMOSPHERE 2023; 329:138670. [PMID: 37054843 DOI: 10.1016/j.chemosphere.2023.138670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Decarbonization has become a critical issue in recent years due to rising energy demands and diminishing oil resources. Decarbonization systems based on biotechnology have proven to be a cost-effective and environmentally benign technique of lowering carbon emissions. Bioenergy generation is an environmentally friendly technique for mitigating climate change in the energy industry, and it is predicted to play an important role in lowering global carbon emissions. This review essentially provides a new perspective on the unique biotechnological approaches and strategies based decarbonization pathways. Furthermore, the application of genetically engineered microbes in CO2 biomitigation and energy generation is particularly emphasized. The production of biohydrogen and biomethane via anaerobic digestion techniques has been highlighted in the perspective. In this review, role of microorganisms in bioconversion of CO2 into different types of bioproducts such as biochemical, biopolymers, biosolvents and biosurfactant was summarized. The current analysis, which includes an in-depth discussion of a biotechnology-based roadmap for the bioeconomy, provides a clear picture of sustainability, forthcoming challenges, and perspectives.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
7
|
Ren H, Zhou D, Lu J, Show PL, Sun FF. Mapping the field of microalgae CO 2 sequestration: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27850-0. [PMID: 37311860 DOI: 10.1007/s11356-023-27850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
Microalgae CO2 sequestration has gained considerable attention in the last three decades as a promising technology to slow global warming caused by CO2 emissions. To provide a comprehensive and objective analysis of the research status, hot spots, and frontiers of CO2 fixation by microalgae, a bibliometric approach was recently chosen for review. In this study, 1561 articles (1991-2022) from the Web of Science (WOS) on microalgae CO2 sequestration were screened. A knowledge map of the domain was presented using VOSviewer and CiteSpace. It visually demonstrates the most productive journals (Bioresource Technology), countries (China and USA), funding sources, and top contributors (Cheng J, Chang JS, and their team) in the field of CO2 sequestration by microalgae. The analysis also revealed that research hotspots changed over time and that recent research has focused heavily on improving carbon sequestration efficiency. Finally, commercialization of carbon fixation by microalgae is a key hurdle, and supports from other disciplines could improve carbon sequestration efficiency.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China.
| | - Duan Zhou
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Jiawen Lu
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
A novel tubular photobioreactor immersed in open waters for passive temperature control and operated with the microalga Tetradesmus obliquus. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. BIOLOGY 2022; 11:biology11081146. [PMID: 36009773 PMCID: PMC9405046 DOI: 10.3390/biology11081146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Microalgae-based biorefineries allow the simultaneous production of microalgae biomass enriched in a particular macromolecule and high-added and low-value products if a proper selection of the microalgae species and the cultivation conditions are adequate for the purpose. This review discusses the challenges and future trends related to microalgae-based biorefineries stressing the multi-product approach and the use of raw wastewater or pretreated wastewater to improve the cost-benefit ratio of biomass and products. Emphasis is given to the production of biomass enriched in carbohydrates. Microalgae-bioactive compounds as potential therapeutical and health promoters are also discussed. Future and novel trends following the circular economy strategy are also discussed. Abstract Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.
Collapse
|
10
|
Tamil Selvan S, Dakshinamoorthi BM, Chandrasekaran R, Muthusamy S, Ramamurthy D, Balasundaram S. Integrating eco-technological approach for textile dye effluent treatment and carbon dioxide capturing from unicellular microalga Chlorella vulgaris RDS03: a synergistic method. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:466-482. [PMID: 35790387 DOI: 10.1080/15226514.2022.2090497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A pilot-scale treatment method was used in the present study to test the biosorption of textile dye from textile effluent and carbon dioxide using Chlorella vulgaris RDS03. The textile dye effluent treatment achieved that textile dye biosorption capacity (qmax) rate of 98.84% on 15 days of treatment using Chlorella vulgaris RDS03. The Langmuir and Freundlich isotherm kinetics model indicated that the higher R2 value 0.98. The microalga Chlorella vulgaris RDS03 was captured-96.86% of CO2 analyzed by CO2 utilization and biofixation kinetics, 4.65 mgmL-1 of biomass, 189.26 mgg-1 of carbohydrate, 233.89 mgg-1 of lipid, 4.3 mLg-1 of bioethanol and 4.9 mLg-1 of biodiesel produced. We performed fatty acid methyl ester (FAME) profiling using gas chromatography-mass spectrometry (GCMS). We found 40 types of biodiesel compounds, specifically myristic acid, pentadecanoic acid, octadecanoic acid, palmitic acid, and oleic acid. The high-performance liquid chromatography (HPLC) validated and analyzed the produced bioethanol.Novelty of the Research• Unicellular microalga Chlorella vulgaris RDS03 was isolated from the freshwater region and investigated their biosorption efficiency against hazardous synthetic azo textile dyes.• Chlorella vulgaris RDS03 ability to biosorption 96.86% of environmental polluted carbon dioxide• Treated biomass was used to produce ecofriendly, unpolluted and green energy such as biofuels (biodiesel and bioethanol).
Collapse
Affiliation(s)
- Silambarasan Tamil Selvan
- Department of Microbiology, School of Allied Health Sciences, Vinayaka Missions Research Foundation (DU), Salem, India
| | | | | | | | | | - Sendilkumar Balasundaram
- Department of Microbiology, School of Allied Health Sciences, Vinayaka Missions Research Foundation (DU), Salem, India
| |
Collapse
|
11
|
Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang BI, Sim SJ, Kim SH, Pandey A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-28. [PMID: 35095355 PMCID: PMC8783767 DOI: 10.1007/s11101-021-09784-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
In the current global scenario, the world is under a serious dilemma due to the increasing human population, industrialization, and urbanization. The ever-increasing need for fuels and increasing nutritional problems have made a serious concern on the demand for nutrients and renewable and eco-friendly fuel sources. Currently, the use of fossil fuels is creating ecological and economic problems. Microalgae have been considered as a promising candidate for high-value metabolites and alternative renewable energy sources. Microalgae offer several advantages such as rapid growth rate, efficient land utilization, carbon dioxide sequestration, ability to cultivate in wastewater, and most importantly, they do not participate in the food crop versus energy crop dilemma or debate. An efficient microalgal biorefinery system for the production of lipids and subsequent byproduct for nutraceutical applications could well satisfy the need. But, the current microalgal cultivation systems for the production of lipids and nutraceuticals do not offer techno-economic feasibility together with energy and environmental sustainability. This review article has its main focus on the production of lipids and nutraceuticals from microalgae, covering the current strategies used for lipid production and the major high-value metabolites from microalgae and their nutraceutical importance. This review also provides insights on the future strategies for enhanced microalgal lipid production and subsequent utilization of microalgal biomass. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram, Kerala 695 004 India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sung Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sang Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
| |
Collapse
|
12
|
Rajput A, Singh DP, Khattar JS, Swatch GK, Singh Y. Evaluation of growth and carotenoid production by a green microalga Scenedesmus quadricauda PUMCC 4.1.40. under optimized culture conditions. J Basic Microbiol 2021; 62:1156-1166. [PMID: 34491598 DOI: 10.1002/jobm.202100285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Microalgae are a potential source of a wide range of food and novel value-added products. The versatility of microalgae to produce different kind of pigments is gaining interest as a sustainable source of natural carotenoids. Currently, commercial production of carotenoids from selected microalgae requires special culture conditions which are difficult to maintain. The present study has been undertaken to optimize culture conditions for growth and carotenoid production by a new isolate Scenedesmus quadricauda PUMCC 4.1.40. The results revealed that test organism produced 1.54 mg dry biomass/ml with a content of 40 μg carotenoids/mg dry biomass during stationary phase. The growth and carotenoid production was increased by 2.4-fold under combined optimized culture conditions. The optimized conditions were growth medium, Chu-10; pH 8.5; temperature, 30°C; nitrogen, 20 mM nitrate; phosphate, 0.22 mM; NaCl, 0.42 mM and blue light. Separation and identification of four important carotenoids through high-performance thin-layer chromatography (HPTLC) followed by purification using flash chromatography and quantification by HPLC revealed 23.8, 19.0, 6.5, and 4.0 μg astaxanthin, β-carotene, lutein, and canthaxanthin /mg dry biomass, respectively. The amount of total carotenoids (98 μg/mg dry biomass) containing 40% valuable astaxanthin and β-carotene produced under optimized conditions was significantly higher than control cultures. This justifies that S. quadricauda is a promising candidate for scale-up production of carotenoid.
Collapse
Affiliation(s)
- Alka Rajput
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Davinder P Singh
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | | | - Gurdeep K Swatch
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Yadvinder Singh
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|
13
|
Static Magnetic Fields Effects on Polysaccharides Production by Different Microalgae Strains. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microalgae are able to produce many valuable biomolecules, such as polysaccharides, that presents a large diversity of biochemical structures and functions as antioxidant, antifungal, anticancer, among others. Static magnetic fields (SMF) influence the metabolism of microorganisms and has been shown as an alternative to increase microalgae biomass, yield and compounds production. Especially, some studies have highlighted that SMF application could enhance carbohydrate content. This study aimed to evaluate different conditions of SMF on Spirulina and Chlorella in indoor and outdoor conditions, in order to confirm the influence of SMF on polysaccharides production, evaluating which polysaccharidic fraction could be enhanced by SMF and highlighting a possible modification in EPS composition. Starch from Chlorella and exopolysaccharides (EPS) from Spirulina were quantified and characterized. SMF increased the starch content in Chorella fusca biomass. EPS productions from A. platensis and Spirulina sp. were not significantly increased, and global composition appeared similar to the controls (constituted basically of 80–86% neutral sugars and 13–19% uronic acids). However, the monosaccharide composition analysis revealed a significant modification of composition, i.e., the amount of fucose, arabinose, rhamnose, galactose and glucuronic acid was increased, while the glucose content was decreased. SMF application led to significant modification of polysaccharides production and this study demonstrate that combining the outdoor conditions with SMF, the starch content and EPS composition was positively affected.
Collapse
|
14
|
Sarkar A, Rajarathinam R, Venkateshan RB. A comparative assessment of growth, pigment and enhanced lipid production by two toxic freshwater cyanobacteria Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of nitrogen and phosphorous inputs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15923-15933. [PMID: 33247403 DOI: 10.1007/s11356-020-11754-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen and phosphorous are important nutritional regulators for the growth of cyanobacteria, thereby having a significant impact in bloom formation by toxic species. Usage of toxic cyanobacteria for increasing valuable metabolite production by nutrient manipulation is still unexplored. Hence, the current work is aimed to estimate and compare growth, pigment, and increased lipid production coupled with the identification of fatty acids between two toxic strains-Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of these two nutrients. Low level of nitrogen and phosphorous enhanced lipid content in both strains (˃ 20% and 30% respectively) and C. raciborskii, respectively. Lipid productivity in low phosphorous concentration (P0.5) was achieved significantly high in C. raciborskii. Similarly, a substantial amount of carotenoids was obtained at reduced nitrogen and phosphorous in C. raciborskii accompanied by lessened growth and Chl a concentration. Unlikely, enough biomass (˃ 2 g L-1) was produced at high nutrient levels in both species. Comparative statistical significance (p < 0.05) was found between two species regarding biomass production, chlorophyll concentration, lipid content, and productivity and between these factors in each species under both nutrient variations. FAME of Cylindrospermopsis is composed of saturated fatty acids (˃ 50%) and MUFA (˃ 25%) while Anabaena contains PUFA (˃ 21%) additionally. However, the study highlights C. raciborskii as potential lipid and carotenoid producer at nutrient stress and finds a novel way to utilize these cyanobacterial biomasses, which cause immense environmental hazards and life threats.
Collapse
Affiliation(s)
- Aratrika Sarkar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India
| | - Ravikumar Rajarathinam
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India.
| | - Ranganathan Budhi Venkateshan
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India
| |
Collapse
|
15
|
Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Tamil Selvan S, Velramar B, Ramamurthy D, Balasundaram S, Sivamani K. Pilot scale wastewater treatment, CO 2 sequestration and lipid production using microalga, Neochloris aquatica RDS02. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1462-1479. [PMID: 32615792 DOI: 10.1080/15226514.2020.1782828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In present investigation carried out large-scale treatment of tannery effluent by the cultivation of microalgae, Neochloris aquatica RDS02. The tannery effluent treatment revealed that significant reduction heavy metals were chromium-3.59, lead-2.85, nickel-1.9, cadmium-10.68, zinc-4.49, copper-0.95 and cobalt-1.86 mg/L on 15th day of treatment using N. aquatica RDS02. The microalgal biosorption capacity q max rate was Cr-88.66, Pb-75.87, Ni-87.61, Cd-60.44, Co-52.86, Zn-84.90 and Cu-54.39, and isotherm model emphasized that the higher R 2 value 0.99 by Langmuir and Freundlich kinetics model. The microalga utilized highest CO2 (90%) analyzed by CO2 biofixation and utilization kinetics, biomass (3.9 mg/mL), lipid (210 mg mL-1), carbohydrate (102.75 mg mL-1), biodiesel (4.9 mL g-1) and bioethanol (4.1 mL g-1). The microalgal-lipid content was analyzed through Nile red staining. Gas chromatography mass spectrometric (GCMS) analysis confirmed that the presence of a biodiesel and major fatty acid methyl ester (FAME) profiling viz., tridecanoic acid methyl ester, pentadecanoic acid methyl ester, octadecanoic acid methyl ester, myristic acid methyl ester, palmitic acid methyl ester and oleic acid methyl ester. Fourier transform infrared (FTIR) analysis confirmed that the presence of a functional groups viz., phenols, alcohols, alkynes, carboxylic acids, ketones, carbonyl and ester groups. The bioethanol production was confirmed by high-performance liquid chromatography (HPLC) analyze.
Collapse
Affiliation(s)
- Silambarasan Tamil Selvan
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
- Department of Microbiology, School of Biosciences, Periyar University, Salem, India
| | | | | | - Sendilkumar Balasundaram
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
- School of Allied Health Sciences, VIMS Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, India
| | - Kanimozhi Sivamani
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
| |
Collapse
|
17
|
Ran W, Xiang Q, Pan Y, Xie T, Zhang Y, Yao C. Enhancing Photosynthetic Starch Production by γ-Aminobutyric Acid Addition in a Marine Green Microalga Tetraselmis subcordiformis under Nitrogen Stress. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunyun Pan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
18
|
Chen W, Xu J, Yu Q, Yuan Z, Kong X, Sun Y, Wang Z, Zhuang X, Zhang Y, Guo Y. Structural insights reveal the effective Spirulina platensis cell wall dissociation methods for multi-output recovery. BIORESOURCE TECHNOLOGY 2020; 300:122628. [PMID: 31918297 DOI: 10.1016/j.biortech.2019.122628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
In this work, Spirulina platensis cells harvested in the exponential and equilibrium phases with intact and broken cell walls were treated through a set of alkaline or acidic conditions including alkalis and acids, with solutions of pH 0.0-14.0. The effective Spirulina platensis cell wall dissociation methods for multi-output recovery were obtained. SEM and FTIR were applied to characterize the alkaline and acid treatment details, and Spirulina platensis cell wall dissociation mechanisms, via attacks by OH- or H+, were then proposed. Overall, this study highlights the synthesized multi-output algal product in an integrated strategy with ultracellular structural insight and is valuable for understanding the specific roles of attack ions.
Collapse
Affiliation(s)
- Wangsun Chen
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, PR China
| | - Jingliang Xu
- Zhengzhou University, Henan, Zhengzhou 450001, PR China
| | - Qiang Yu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhenhong Yuan
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiaoying Kong
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yongming Sun
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhongming Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xinshu Zhuang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yu Zhang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Ying Guo
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
19
|
Tan KM, Kassim MA, Ng ZJ, Lalung J. Isolation and characterization of novel acidophilic microalgae from abandoned mining site area for carbohydrate biosynthesis and its kinetic growth study in photobioreactor. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/716/1/012011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Covell L, Machado M, Vaz MGMV, Soares J, Batista AD, Araújo WL, Martins MA, Nunes-Nesi A. Alternative fertilizer-based growth media support high lipid contents without growth impairment in Scenedesmus obliquus BR003. Bioprocess Biosyst Eng 2020; 43:1123-1131. [PMID: 32020445 DOI: 10.1007/s00449-020-02301-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Nitrogen (N) sources have been target in microalgae cultivation studies, considering their nutritional impact on growth and high costs. Here, we have evaluated the growth of Scenedesmus obliquus BR003, applying alternative low-cost culture media containing ammonium and urea, or combinations of both N sources. The culture media were applied for indoor and outdoor cultivation, followed by growth analyses and metabolic characterization. The alternative culture media B4 and L4 supported higher biomass production (1.4 g L-1) compared to BG11 (nitrate-based medium). In addition, the lipid percentage was higher for B4 (ammonium-based culture medium), reaching up to 25% DW. High contents of carbohydrates (60%) and proteins (40%) were also obtained in media with ammonium and urea, respectively. Considering the lower costs of alternative fertilizer-based media, using ammonium and/or urea as N sources, and the high lipid content observed, we suggest these media as viable for large-scale production of S. obliquus.
Collapse
Affiliation(s)
- Lidiane Covell
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Mariana Machado
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | | | - Jimmy Soares
- Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Aline Duarte Batista
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Marcio Arêdes Martins
- Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.
| |
Collapse
|
21
|
Unsterilized sewage treatment and carbohydrate accumulation in Tetradesmus obliquus PF3 with CO2 supplementation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Ran W, Wang H, Liu Y, Qi M, Xiang Q, Yao C, Zhang Y, Lan X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. BIORESOURCE TECHNOLOGY 2019; 291:121894. [PMID: 31387839 DOI: 10.1016/j.biortech.2019.121894] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
Microalgae accumulate starch and lipid as storage metabolites under nutrient depletion, which can be used as sustainable feedstock for biorefinery. Omics analysis coupled with enzymatic and genetic verifications uncovered a partial picture of pathways and important enzymes or regulators related to starch and lipid biosynthesis as well as the carbon partitioning between them under nutrient depletion conditions. Depletion of macronutrients (N, P, and S) resulted in considerable enhancement of starch and/or lipid content in microalgae, but the accompanying declined photosynthesis hampered the achievements of high concentrations. This review summarized the current knowledge on the pathways and the committed steps as well as their carbon allocation involved in starch and lipid biosynthesis, and focused on the manipulation of different nutrients and the alleviation of oxidative stress for enhanced storage metabolites production. The biological and engineering approaches to cope with the conflict between biomass production and storage metabolites accumulation are proposed.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haitao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yinghui Liu
- Information Management Center of Sichuan University, Chengdu, Sichuan 610065, China
| | - Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
23
|
Ma S, Li D, Yu Y, Li D, Yadav RS, Feng Y. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:344-351. [PMID: 31158663 DOI: 10.1016/j.envpol.2019.05.084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/23/2019] [Accepted: 05/16/2019] [Indexed: 05/26/2023]
Abstract
Nitrogen oxide (NOx) emissions from flue gas lead to a series of environmental problems. Biological removal of Nitrogen oxide (NOx) from flue gas by microalgae is a potential approach for reducing the problems caused by these emissions. However, few microalgal strains are reported to remove NOx from flue gas. Here, a microalga strain PF3 (identified as Scenedesmus obliquus), which can remove NOx and fix CO2 from flue gas is isolated. The tolerance of Scenedesmus obliquus PF3 to CO2, NO, SO2 and its adaptabilities to environmental factors (pH and temperature), and its performance in the removal of NO and CO2 are investigated. Scenedesmus obliquus PF3 showed biomass accumulation when sparged with 15% CO2 or 500 ppm NO or 50 ppm SO2, and bisulfite less than 2 mM showed no toxicity to Scenedesmus obliquus PF3. Additionally, PF3 grew well in a wide range of pH and temperatures from 4.5 to 10.5 and 15 °C-30 °C, respectively. When sparged with simulated flue gas (100 ppm NO, 10% CO2, (N2 as balance gas)), the microalgae culture system removed NO and CO2 at a rate of 2.86 ± 0.23 mg L-1 d-1 and 1.48 ± 0.12 g L-1 d-1, respectively, where up to 96.9 ± 0.03% (2.77 ± 0.08 mg L-1 d-1) and 87.7 ± 6.22% (1.29 ± 0.01 mg L-1 d-1) of the removed NO and CO2, respectively, were assimilated in algal biomass. These results suggest that Scenedesmus obliquus PF3 is a promising candidate for NOx removal and carbon fixation of flue gas.
Collapse
Affiliation(s)
- Shanshan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yanling Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Dianlin Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ravi S Yadav
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
24
|
Bioethanol production from microalgae polysaccharides. Folia Microbiol (Praha) 2019; 64:627-644. [PMID: 31352666 DOI: 10.1007/s12223-019-00732-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022]
Abstract
The worldwide growing demand for energy permanently increases the pressure on industrial and scientific community to introduce new alternative biofuels on the global energy market. Besides the leading role of biodiesel and biogas, bioethanol receives more and more attention as first- and second-generation biofuel in the sustainable energy industry. Lately, microalgae (green algae and cyanobacteria) biomass has also remarkable potential as a feedstock for the third-generation biofuel production due to their high lipid and carbohydrate content. The third-generation bioethanol production technology can be divided into three major processing ways: (i) fermentation of pre-treated microalgae biomass, (ii) dark fermentation of reserved carbohydrates and (iii) direct "photo-fermentation" from carbon dioxide to bioethanol using light energy. All three technologies provide possible solutions, but from a practical point of view, traditional fermentation technology from microalgae biomass receives currently the most attention. This study mainly focusses on the latest advances in traditional fermentation processes including the steps of enhanced carbohydrate accumulation, biomass pre-treatment, starch and glycogen downstream processing and various fermentation approaches.
Collapse
|
25
|
Liu Q, Yao C, Sun Y, Chen W, Tan H, Cao X, Xue S, Yin H. Production and structural characterization of a new type of polysaccharide from nitrogen-limited Arthrospira platensis cultivated in outdoor industrial-scale open raceway ponds. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:131. [PMID: 31143244 PMCID: PMC6533678 DOI: 10.1186/s13068-019-1470-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Carbohydrates are major biomass source in fuel-targeted biorefinery. Arthrospira platensis is the largest commercialized microalgae with good environmental tolerance and high biomass production. However, the traditional target of A. platensis cultivation is the protein, which is the downstream product of carbohydrates. Aiming to provide the alternative non-food carbohydrates source, the feasible manipulation technology on the cultivation is needed, as well as new separation methodology to achieve maximum utilization of overall biomass. RESULTS The present study aimed to demonstrate the feasibility of industrially producing carbohydrate-enriched A. platensis and characterize the structure of the polysaccharide involved. Cultivated in industrial-scale outdoor open raceway ponds under nitrogen limitation, A. platensis accumulated maximally 64.3%DW of carbohydrate. The maximum biomass and carbohydrate productivity reached 27.5 g m-2 day-1 and 26.2 g m-2 day-1, respectively. The efficient extraction and purification of the polysaccharides include a high-pressure homogenization-assisted hot water extraction followed by flocculation with a non-toxic flocculant ZTC1 + 1, with the polysaccharide purity and total recovery reaching 81% and 75%, respectively. The purified polysaccharide was mainly composed of (1→3)(1→4)- or (1→3)(1→2)-α-glucan with a molecular weight of 300-700 kDa, which differed from the commonly acknowledged glycogen. CONCLUSIONS By the way of controlled nitrogen limitation, the high carbohydrate production of A. platensis in the industrial scale was achieved. The α-glucan from A. platensis could be a potential glucose source for industrial applications. A non-toxic separation method of carbohydrate was applied to maintain the possibility of utilization of residue in high-value field.
Collapse
Affiliation(s)
- Qishun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Changhong Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Yongxin Sun
- Dalian Biotechnology Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024 China
| | - Wei Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Haidong Tan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Xupeng Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Song Xue
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Heng Yin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- Liaoning Provincial Key Laboratory of Carbohydrates; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
26
|
Mousavi S, Najafpour GD, Mohammadi M. CO 2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO 2 concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30139-30150. [PMID: 30151786 DOI: 10.1007/s11356-018-3037-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Microalgae cultivation is a promising approach to remove ambient CO2 via photosynthesis process. This paper investigates the impact of high CO2 concentrations (6, 12, and 16%) on algae growth, CO2 biofixation, lipid and carbohydrate contents, and nutrient removal of newly isolated microalgae, Coelastrum sp. SM. In addition, the ability of microalgae to produce biodiesel at optimal condition was studied. The microalgae were cultivated in wastewater using an airlift photobioreactor. Under 12% CO2, the maximum biomass productivity and CO2 fixation rate were 0.267 g L-1 day-1 and 0.302 g L-1 h-1, respectively. Total Kjeldahl nitrogen (TKN), total phosphorous (TP), nitrate, and sCOD removal efficiency were 84.01, 100, 86.811, and 73.084%, respectively. Under 12% CO2 and at the same condition for cell growth, the highest lipid and carbohydrate contents were 3 7.91 and 58.45%, respectively. The composition of fatty acids methyl ester (FAME) of the microalga lipid was defined. Based on the obtained results and FAME profile, Coelastrum sp. SM was a suitable feedstock for biodiesel production and also, the organism had a great potential for CO2 biofixation, which is also more suitable than any other reported strains in other related studies.
Collapse
Affiliation(s)
- Shokouh Mousavi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Ghasem D Najafpour
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Maedeh Mohammadi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
27
|
Russel M, Liu C, Alam A, Wang F, Yao J, Daroch M, Shah MR, Wang Z. Exploring an in situ LED-illuminated isothermal micro-calorimetric method to investigating the thermodynamic behavior of Chlorella vulgaris during CO 2 bio-fixation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18519-18527. [PMID: 29700746 DOI: 10.1007/s11356-018-1926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Much endeavor has been dispensed recently to evaluate the potential of CO2 mitigation by microalgae. We introduce an alternative, novel, LED-illumination isothermal microcalorimetric method to assess the thermodynamic behaviors of microalgae for better understanding of their carbon sequestration capacity. Microalgae thermodynamic behaviors were recorded as power-time curves, and their indices such as total heat evolution (QT), maximum power output (Pmax) and heat generated by per algae cell (JN/Q) were obtained. The values for highest (74.80 g L-1) and control sample (0.00 g L-1) of QT, Pmax and JN/Q were 20.85 and 2.32 J; 252.17 and 57.67 μW; 7.91 × -06 and 8.80 × -07 J cell-1, respectively. According to the values of QT, a general order to promote the CO2 sequestration was found at 74.8 g L-1 > 29.92 g L-1 > 14.96 g L-1 > 7.48 g L-1 > 0 g L-1 of C sources, which directly corresponded to carbon availability in the growth medium. Chlorella vulgaris GIEC-179 showed the highest peak Pmax at 74.8 g L-1 concentration which was directly transformed to their biomass during bio-fixation of CO2 process. This study is applicable for better understanding of CO2 fixation performance of algae.
Collapse
Affiliation(s)
- Mohammad Russel
- School of Food and Environment, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Panjin, 124221, Liaoning, People's Republic of China.
| | - Changrui Liu
- School of Food and Environment, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Panjin, 124221, Liaoning, People's Republic of China
| | - Asraful Alam
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Fei Wang
- School of Civil and Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China
| | - Jun Yao
- School of Water Resource and Environmental Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Chinese University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University-Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Mahfuzur Rahman Shah
- School of Environment and Energy, Peking University-Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| |
Collapse
|
28
|
Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. Curr Opin Biotechnol 2018; 50:25-31. [DOI: 10.1016/j.copbio.2017.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023]
|
29
|
Aikawa S, Inokuma K, Wakai S, Sasaki K, Ogino C, Chang JS, Hasunuma T, Kondo A. Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl 2 addition. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:50. [PMID: 29492105 PMCID: PMC5828149 DOI: 10.1186/s13068-018-1050-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The cyanobacterium Arthrospira platensis shows promise as a carbohydrate feedstock for biofuel production. The glycogen accumulated in A. platensis can be extracted by lysozyme-degrading the peptidoglycan layer of the bacterial cell walls. The extracted glycogen can be converted to ethanol through hydrolysis by amylolytic enzymes and fermentation by the yeast Saccharomyces cerevisiae. Thus, in the presence of lysozyme, a recombinant yeast expressing α-amylase and glucoamylase can convert A. platensis directly to ethanol, which would simplify the procedure for ethanol production. However, the ethanol titer and productivity in this process are lower than in ethanol production from cyanobacteria and green algae in previous reports. RESULTS To increase the ethanol titer, a high concentration of A. platensis biomass was employed as the carbon source for the ethanol production using a recombinant amylase-expressing yeast. The addition of lysozyme to the fermentation medium increased the ethanol titer, but not the ethanol productivity. The addition of CaCl2 increased both the ethanol titer and productivity by causing the delamination of polysaccharide layer on the cell surface of A. platensis. In the presence of lysozyme and CaCl2, ethanol titer, yield, and productivity improved to 48 g L-1, 93% of theoretical yield, and 1.0 g L-1 h-1 from A. platensis, corresponding to 90 g L-1 of glycogen. CONCLUSIONS We developed an ethanol conversion process using a recombinant amylase-expressing yeast from A. platensis with a high titer, yield, and productivity by adding both lysozyme and CaCl2. The direct and highly productive conversion process from A. platensis via yeast fermentation could be applied to multiple industrial bulk chemicals.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan
- Present Address: Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Chiaki Ogino
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 701 Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, 230-0045 Japan
| |
Collapse
|
30
|
Yang H, He Q, Hu C. Feasibility of biodiesel production and CO 2 emission reduction by Monoraphidium dybowskii LB50 under semi-continuous culture with open raceway ponds in the desert area. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:82. [PMID: 29619078 PMCID: PMC5879568 DOI: 10.1186/s13068-018-1068-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/07/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO2 emission. RESULTS Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO2 fixation rate were maintained at 18 and 33 g m-2 day-1, respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m-2 day-1, which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. CONCLUSION This study demonstrates the feasibility of combining biodiesel production and CO2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO2 emission reduction and biofuel production.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, 430072 China
| | - Qiaoning He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, 430072 China
| |
Collapse
|
31
|
Morales M, Sánchez L, Revah S. The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiol Lett 2017; 365:4705896. [DOI: 10.1093/femsle/fnx262] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/04/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marcia Morales
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, colonia Santa Fe Cuajimalpa, CP 05300, Ciudad de México, Mexico
| | - León Sánchez
- Doctorado en Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, CP 09340, Ciudad de México, Mexico
| | - Sergio Revah
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, colonia Santa Fe Cuajimalpa, CP 05300, Ciudad de México, Mexico
| |
Collapse
|