1
|
Li Z, Yuan D. Global performance and trends of research on emerging contaminants in sewage sludge: A Bibliometric Analysis from 1990 to 2023. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116597. [PMID: 38880005 DOI: 10.1016/j.ecoenv.2024.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
The pervasive occurrence of emerging contaminants (ECs) in sewage sludge (SWS) poses significant safety challenges concerning the processing, disposal, and secure application, ultimately jeopardizing both human health and the ecological environment. To comprehensively comprehend the evolutionary trajectories, present state, and research advancements in the field of ECs in SWS, a systematic was conducted, scrutinizing the annual publication quantity, disciplinary distribution, core authors, involved nations/regions, pertinent keywords, and citation status of 2082 research publications related to ECs in SWS from 1990 to 2023. The results indicate a substantial upward trajectory in the research literature pertaining to ECs in SWS. The study of ECs in SWS encompasses 78 disciplines, including Environmental Sciences, Environmental Engineering, and Water Resources. China, Spain, and the USA ranked among the top three countries in terms of both total publications and citation frequency. The majority of publications were published in reputable high-impact journals such as Science of the Total Environment, Chemosphere, and Bioresource Technology. Based on high-frequency keywords, co-occurrence networks of keywords, and keywords burst analysis, it is found that the occurrence and environment behavior of ECs in SWS (ARGs, microplastics, PPCPs, and POPs), the detection and analytical methods, the impact on SWS treatment and disposal processes, and the accumulation and ecological risks in plants and soil during SWS land utilization, are the main research directions and hot topics in this field. In the future, the study of the impact of SWS treatment technologies on ECs removal is expected to receive increased research attention.
Collapse
Affiliation(s)
- Zhonghong Li
- School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Donghai Yuan
- School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
2
|
Nasi F, Vesal SE, Relitti F, Bazzaro M, Teixidó N, Auriemma R, Cibic T. Taxonomic and functional macrofaunal diversity along a gradient of sewage contamination: A three-year study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121022. [PMID: 36621717 DOI: 10.1016/j.envpol.2023.121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
We investigated the structural and functional changes of the soft-bottom macrofaunal community following the improvement of a wastewater treatment-WWT plant. The macrofauna was collected at increasing distance from the main outfall in 2018, 2019, and 2021. Organic matter and nutrients were analysed in the water column near the outfalls to detect possible changes due to the improved treatment. We examined Functional Entities-FEs (i.e. a unique combination of species functional traits), species richness, Shannon-Wiener diversity-H', and taxonomic and functional β-diversity. From 2018 (before the year of the treatment change), to 2021, we noted a gradual decrease of organic carbon in the water column. In contrast, sediment characteristics (i.e. grain-size) did not change before and after treatment enhancement, with the exception of redox potential. Species richness and FEs gradually increased moving far from the source of organic contamination and after wastewater treatment enhancement, especially near the outfall. We observed different phases of macrofaunal succession stage after the WWT amelioration. A 'normal stage', i.e. slightly lower species richness, was reflected in decreasing functional richness. Higher taxonomic β-diversity values with significant turnover components indicated that the community was subjected to broad changes in species composition. However, functional β-diversity did not follow the same pattern. After treatment improvement, modified environmental conditions led to the establishment of new species, but with the same functions. Towards 2021, the community improved its resilience by increasing functional redundancy and reduction of vulnerability, which enhanced community stability. The latter was also reflected in the well-balanced proportion of macrofaunal feeding habits after the WWT upgrade. Integrating the classical taxonomic approach with the analysis of FEs, and environmental characteristics can provide an accurate insight into macrofauna sensitivity to stressors that are likely to lead to changes in the ecological state of an area.
Collapse
Affiliation(s)
- Federica Nasi
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard 54, I-34151 Trieste, Italy.
| | - Seyed Ehsan Vesal
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard 54, I-34151 Trieste, Italy; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Federica Relitti
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard 54, I-34151 Trieste, Italy
| | - Matteo Bazzaro
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard 54, I-34151 Trieste, Italy; Dipartimento di Scienze Fisiche, della Terra e Dell'Ambiente, Università Degli Studi di Siena, Strada Laterina, 53100 Siena, Italy
| | - Nuria Teixidó
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Ischia, Naples, Italy; Laboratoire D'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Rocco Auriemma
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard 54, I-34151 Trieste, Italy
| | - Tamara Cibic
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard 54, I-34151 Trieste, Italy
| |
Collapse
|
3
|
Kazimierowicz J, Dębowski M, Zieliński M. Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010271. [PMID: 36612592 PMCID: PMC9819895 DOI: 10.3390/ijerph20010271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 05/02/2023]
Abstract
Sewage sludge is successfully used in anaerobic digestion (AD). Although AD is a well-known, universal and widely recognized technology, there are factors that limit its widespread use, such as the presence of substances that are resistant to biodegradation, inhibit the fermentation process or are toxic to anaerobic microorganisms. Sewage sludge generated by the pharmaceutical sector is one such substance. Pharmaceutical sewage sludge (PSS) is characterized by high concentrations of biocides, including antibiotics and other compounds that have a negative effect on the anaerobic environment. The aim of the present research was to determine the feasibility of applying Advanced Oxidation Processes (AOP) harnessing Fenton's (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) reaction to PSS pre-treatment prior to AD. The method was analyzed in terms of its impact on limiting PSS toxicity and improving methane fermentation. The use of AOP led to a significant reduction of PSS toxicity from 53.3 ± 5.1% to 35.7 ± 3.2%, which had a direct impact on the taxonomic structure of anaerobic bacteria, and thus influenced biogas production efficiency and methane content. Correlations were found between PSS toxicity and the presence of Archaea and biogas yields in the Fe2+/H2O2 group. CH4 production ranged from 363.2 ± 11.9 cm3 CH4/g VS in the control PSS to approximately 450 cm3/g VS. This was 445.7 ± 21.6 cm3 CH4/g VS (1.5 g Fe2+/dm3 and 6.0 g H2O2/dm3) and 453.6 ± 22.4 cm3 CH4/g VS (2.0 g Fe2+/dm3 and 8.0 g H2O2/dm3). The differences between these variants were not statistically significant. Therefore, due to the economical use of chemical reagents, the optimal tested dose was 1.5 g Fe2+/6.0 g H2O2. The use of a Fenton-like reagent (Fe3+/H2O2) resulted in lower AD efficiency (max. 393.7 ± 12.1 cm3 CH4/g VS), and no strong linear relationships between the analyzed variables were found. It is, therefore, a more difficult method to estimate the final effects. Research has proven that AOP can be used to improve the efficiency of AD of PSS.
Collapse
Affiliation(s)
- Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
- Correspondence: ; Tel.: +48-571-443-143
| | - Marcin Dębowski
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Marcin Zieliński
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| |
Collapse
|
4
|
Guo Y, Zheng Y, Wang Y, Zhao Y, Gao M, Giesy JP, Guo L. Enhancing two-phase anaerobic digestion of mixture of primary and secondary sludge by adding granular activated carbon (GAC): Evaluating acidogenic and methanogenic efficiency. BIORESOURCE TECHNOLOGY 2022; 363:127900. [PMID: 36075345 DOI: 10.1016/j.biortech.2022.127900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Although the granular activated carbon (GAC) has been proved to enhance conventional single-phase anaerobic digestion (AD), how it impacts on acidogenic and methanogenic fermentation is still unknown. In this study, GAC was introduced to elevate the efficiency of two-phase AD, with mixture of primary and secondary sludge as substrate. Five dosages: 0, 0.1, 0.3, 0.5 and 0.7 g GAC/g TSS (Total Suspended Solids) were investigated to determine influences of GAC. The variations of biogas (hydrogen and methane), volatile fatty acids (VFAs), organics degradation and transformation in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed. Modified Gompertz model and first-order reaction equation was applied to analyze the kinetics of biogas yield and VFAs utilization, respectively. Sludge reduction, electrical conductance and pH were also quantified to evaluate the system performance. The results showed that GAC could improve two-phase AD performance by enhancing methane production and organics conversion.
Collapse
Affiliation(s)
- Yiding Guo
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongkang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Educatin, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Kuşçu ÖS, Çömlekçi S, Çört N. Disintegration of sewage sludge using pulsed electrical field technique: PEF optimization, simulation, and anaerobic digestion. ENVIRONMENTAL TECHNOLOGY 2022; 43:2809-2824. [PMID: 33754952 DOI: 10.1080/09593330.2021.1906324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
A Pulsed Electrical Field (PEF) reactor was developed to process biological sludge as a pretreatment method prior to anaerobic digestion. This study focuses on the effects of operational parameters such as applied voltage, pH, conductivity, flow-rate, and temperature affecting the treatment of waste active sludge (WAS) by PEF, the simulation of reactor process conditions and anaerobic biodegradation of PEF pretreated sludge. The effects of the sludge conductivity, flow-rate, and temperature on the Soluble Chemical Oxygen Demand (SCOD) of WAS treated by PEF reactor were investigated by using a Box-Wilson statistical experiment design. Simulations of the PEF process conditions were performed to verify experimental results. After PEF optimization study, the PEF operational conditions for maximum SCOD were obtained at 4 mS/cm conductivity, 5 mL/min flow-rate, and 40 °C temperature during PEF treatment. The measured and predicted SCOD showed a good consistency (R2 = 0.92). After it was pretreated by the PEF, the SCOD, total nitrogen, total phosphorus, polysaccharide and protein contents of WAS increased. However filterability property also decreased. In the anaerobic digestion study, the reactor fed with the PEF pretreated WAS provided 1.70 times higher methane production compared with raw sludge. In addition to this situation, 18% and 19% improvements, respectively, were observed in SCOD and VSS reductions when it was compared with raw sludge in the 23 days of anaerobic operation. Sixteen percent decrease in CST showed that the PEF enhanced the filterability of WAS during the anaerobic stabilization.
Collapse
Affiliation(s)
- Özlem Selçuk Kuşçu
- Faculty of Engineering, Department of Environmental Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Selçuk Çömlekçi
- Faculty of Engineering, Department of Electronic & Telecommunication Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Nihal Çört
- Faculty of Engineering, Department of Environmental Engineering, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
6
|
Liew CS, Kiatkittipong W, Lim JW, Lam MK, Ho YC, Ho CD, Ntwampe SKO, Mohamad M, Usman A. Stabilization of heavy metals loaded sewage sludge: Reviewing conventional to state-of-the-art thermal treatments in achieving energy sustainability. CHEMOSPHERE 2021; 277:130310. [PMID: 33774241 DOI: 10.1016/j.chemosphere.2021.130310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge has long been regarded as a hazardous waste by virtue of the loaded heavy metals and pathogens. Recently, more advanced technologies are introduced to make use of the nutrients from this hazardous sludge. Successful recovery of sludge's carbon content could significantly convert waste to energy and promote energy sustainability. Meanwhile, the recovery of nitrogen and trace minerals allows the production of fertilizers. This review is elucidating the performances of modern thermal treatment technologies in recovering resources from sewage sludge while reducing its environmental impacts. Exhaustive investigations show that most modern technologies are capable of recovering sludge's carbon content for energy generation. Concurrently, the technologies could as well stabilize heavy metals, destroy harmful pathogens, and reduce the volume of sludge to minimize the environmental impacts. Nevertheless, the high initial investment cost still poses a huge hurdle for many developing countries. Since the initial investment cost is inevitable, the future works should focus on improving the profit margin of thermal technologies; so that it would be more financially attractive. This can be done through process optimization, improved process design as well as the use of suitable co-substrates, additives, and catalyst as propounded in the review.
Collapse
Affiliation(s)
- Chin-Seng Liew
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Man-Kee Lam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek-Chia Ho
- Department of Civil and Environmental Engineering, Centre of Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei, 251, Taiwan
| | - Seteno K O Ntwampe
- School of Chemical and Minerals Engineering, North West University, Private BagX1290, Potchefstroom, 2520, South Africa
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Kelantan, Malaysia
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| |
Collapse
|
7
|
Abid M, Wu J, Seyedsalehi M, Hu YY, Tian G. Novel insights of impacts of solid content on high solid anaerobic digestion of cow manure: Kinetics and microbial community dynamics. BIORESOURCE TECHNOLOGY 2021; 333:125205. [PMID: 33932808 DOI: 10.1016/j.biortech.2021.125205] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
High solid anaerobic digestion has become the mainstream technology for sustainable on-farm treatment of solid wastes but has not been optimized with respect to increasing solid content in cow manure (CM). In the present study, CM was batch digested at total solid (TS) of 5%, 10%, 15% and 20% and microbial communities were investigated. The process remained stable up to 15% TS. The biomethane production rate at TS of 10% and 15% was reported to be 352.2 mL g-1 VS and 318.6 mL g-1 VS, reaching up to 83% and 75% of TS 5% biomethane, respectively. Kinetics results disclosed that the biodegradable organics could be utilized at increasing solid content with decreasing hydrolysis rate. The abundances of hydrogenotrophic and methylotrophic methanogens increased significantly with increasing solid content. This study is of great importance for understanding and application of high solid anaerobic digestion of cow manure.
Collapse
Affiliation(s)
- Muhammad Abid
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Mahdi Seyedsalehi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu-Ying Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
| | - Guangliang Tian
- Institute of New Rural Development, Guizhou University, Guizhou Province 550025, China
| |
Collapse
|
8
|
Kakar FL, Purohit N, Okoye F, Liss SN, Elbeshbishy E. Combined hydrothermal and free nitrous acid, alkali and acid pretreatment for biomethane recovery from municipal sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:376-385. [PMID: 34246034 DOI: 10.1016/j.wasman.2021.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
This study focused on investigating the effect of combined chemical and hydrothermal pretreatment (HTP) on the anaerobic digestibility of thickened waste activated sludge (TWAS). Three different combined pretreatment conditions of HTP + free nitrous acid (FNA), HTP + Acid, and HTP + Alkaline were applied to TWAS. To control and compare the effect of combined pretreatments and a single pretreatment, Acid, Alkaline, FNA and HTP pretreatments were applied done prior to AD. The results of this study revealed that combined pretreatments have higher potential to improve methane production yield and rate but not in the solubilization of COD. The highest methane yield of 275 mL CH4/g TCOD added was achieved for the combined pretreatment with FNA and HTP. HTP + FNA pretreatment was found to produce higher methane yields compared to the combination of other typical acid and alkaline reagents with hydrothermal pretreatment. Methane yields of 594, 527, and 544 L CH4/g VSS added, were achieved for HTP + FNA, HTP + ALK, and HTP + ACID pretreatments, respectively. The preliminary economic analysis showed that out of the combined pretreatment, only combining HTP with FNA is economically feasible.
Collapse
Affiliation(s)
- Farokh Laqa Kakar
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Neha Purohit
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Frances Okoye
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Steven N Liss
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada; Department of Microbiology, Stellenbosch University, Private Bag, XI, Matieland, 7602 Stellenbosch, South Africa
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
9
|
Pessoa M, Sobrinho MM, Kraume M. The use of biomagnetism for biogas production from sugar beet pulp. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Liu Z, Zhou A, Liu H, Wang S, Liu W, Wang A, Yue X. Extracellular polymeric substance decomposition linked to hydrogen recovery from waste activated sludge: Role of peracetic acid and free nitrous acid co-pretreatment in a prefermentation-bioelectrolysis cascading system. WATER RESEARCH 2020; 176:115724. [PMID: 32222546 DOI: 10.1016/j.watres.2020.115724] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Free nitrous acid (FNA) has been recently reported to be an effective and eco-friendly inactivator for waste activated sludge (WAS), while the limited decomposition of the extracellular polymeric substance (EPS) matrix hampers resource recovery from WAS. This work employed peracetic acid (PAA) to assist FNA and explored the contribution of co-pretreatment to hydrogen recovery in a prefermentation-bioelectrolysis cascading system. The results showed that co-pretreatment led to approximately 8.8% and 20.4% increases in the exfoliation of particulate proteins and carbohydrates, respectively, from tightly bound EPS (TB-EPS) over that of sole FNA pretreatment. Electron paramagnetic resonance analysis verified that the synergistic effect of FNA, PAA and various generated free radicals was the essential process. This effect further promoted the accumulation of volatile fatty acids (VFAs) after 96 h of prefermentation, and the peak concentration in co-pretreated WAS (AD-FPWAS) was approximately 2.5-fold that in sole FNA-pretreated WAS (AD-FWAS). Subsequently, the cascading utilization of organics in the bioelectrolysis step contributed to efficient hydrogen generation. A total of 10.8 ± 0.3 mg H2/g VSS was harvested in microbial electrolysis cells (MECs) fed with AD-FPWAS, while 6.2 ± 0.1 mg H2/g VSS was obtained from AD-FWAS. X-ray photoelectron spectroscopy (XPS) revealed the effective decomposition of the phospholipid bilayer in the cytomembrane and the transformation of macromolecular organics into VFAs and hydrogen in the cascading system. Further microbial community analysis demonstrated that co-pretreatment enhanced the accumulation of functional consortia, including anaerobic fermentative bacteria (AFB, 28.1%), e.g., Macellibacteroides (6.3%) and Sedimentibacter (6.9%), and electrochemically active bacteria (EAB, 57.0%), e.g., Geobacter (39.0%) and Pseudomonas (13.6%), in the prefermentation and MEC steps, respectively. The possible synergetic and competitive relationships among AFB, EAB, homo-acetogens, nitrate-reducing bacteria and methanogens were explored by molecular ecological network analysis. From an environmental and economic perspective, this promising FNA and PAA co-pretreatment approach provides new insight for energy recovery from WAS biorefineries.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Hongyan Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Wenzong Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan, China.
| |
Collapse
|
11
|
Siami S, Aminzadeh B, Karimi R, Hallaji SM. Process optimization and effect of thermal, alkaline, H 2O 2 oxidation and combination pretreatment of sewage sludge on solubilization and anaerobic digestion. BMC Biotechnol 2020; 20:21. [PMID: 32375744 PMCID: PMC7201573 DOI: 10.1186/s12896-020-00614-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study investigated the feasibility of enhancing anaerobic digestion of sewage sludge with triple, dual, and individual pretreatment of waste activated sludge with heat, alkalinity, and hydrogen peroxide. These pretreatments disrupt sludge flocs, organisms' cell walls, extracellular polymeric substance, and intracellular organic matter, which increase biodegradability and hydrolysis rate of activate sludge. In addition, the influence of various variables on methane production was analyzed using the response surface methodology with the quadratic model. Eventually, an optimized temperature and chemical concentration for the highest methane production and lowest chemical usage is suggested. RESULTS The highest amount of methane production was obtained from the sludge pretreated with triple pretreatment (heat (90 °C), alkaline (pH = 12), and hydrogen peroxide (30 mg H2O2/g TS)), which had better performance with 96% higher methane production than that of the control sample with temperature of 25 °C approximately and a pH = 8. Response surface methodology with a quadratic model was also used for analyzing the influence of temperature, pH, and hydrogen peroxide concentration on anaerobic digestion efficiency. It was revealed that the optimized temperature, pH, and hydrogen peroxide concentration for maximizing methane production and solubilization of sludge and minimizing thermal energy and chemical additives of the pretreatments are 83.2 °C, pH = 10.6 and 34.8 mg H2O2/g TS, respectively, has the desirability of 0.67. CONCLUSION This study reveals that triple pretreatment of waste activated sludge performed better than dual and individual pretreatment, respectively, in all desirable output parameters including increasing methane production as the most important output, increasing in COD solubilization, protein and polysaccharide, and decreasing in VSS solubilization.
Collapse
Affiliation(s)
- Salar Siami
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Behnoush Aminzadeh
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Razieh Karimi
- Gorgan University of Agricultural Sciences & Natural Resources, Golestan, Iran
| | - Seyed Mostafa Hallaji
- Faculty of Engineeringss, Department of Civil Engineering, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Karimi R, Hallaji SM, Siami S, Torabian A, Aminzadeh B, Eshtiaghi N, Zahedi S. Synergy of combined free nitrous acid and Fenton technology in enhancing anaerobic digestion of actual sewage waste activated sludge. Sci Rep 2020; 10:5027. [PMID: 32193461 PMCID: PMC7081239 DOI: 10.1038/s41598-020-62008-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, actual swage waste activated sludge in batch reactors was employed to assess the synergistic effect of free nitrous acid and Fenton pre-treatments on enhancing methane production in the anaerobic digestion process. In addition to methane enhancement, the mechanisms driving the enhancement were also investigated via measuring enzymes activity and solubilisation of organic matter. This study revealed that the combined pre-treatments solubilised organic matter significantly more than the bioreactors pre-treated with individual FNA and Fenton. For understanding the influence of pre-treatments on solubilisation of organic matter, soluble protein, soluble polysaccharide and soluble chemical oxygen demand (SCOD) were measured before and after the treatments and it was shown that they respectively increased by 973%, 33% and 353% after the treatments. Protease and cellulase activity, as the key constituents of the microbial community in activated sludge, decreased considerably after the combined pre-treatments 42% and 32% respectively, which resulted in considerable methane enhancement. The results corroborate the synergy of the combined FNA and Fenton pre-treatment in degrading the organic and microbial constituents in waste activated sludge, paving the way for the big-scale implementation of these technologies.
Collapse
Affiliation(s)
- Razieh Karimi
- Gorgan University of Agricultural Sciences & Natural Resources, Golestan, Iran
| | - Seyed Mostafa Hallaji
- Faculty of Engineering, Department of Civil Engineering, Monash University, Melbourne, Australia.
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Salar Siami
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Torabian
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Behnoush Aminzadeh
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Nicky Eshtiaghi
- School of Engineering, Chemical and Environmental Engineering, RMIT University, Melbourne, Australia
| | - Soraya Zahedi
- Catalan Institute for Water Research (ICRA), Girona, Spain
| |
Collapse
|
13
|
Hallaji SM, Kuroshkarim M, Moussavi SP. Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC Biotechnol 2019; 19:19. [PMID: 30922275 PMCID: PMC6437933 DOI: 10.1186/s12896-019-0513-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, it has been indicated that anaerobic co-digestion of waste activated sludge with other waste streams at wastewater treatment plants is a promising strategy for enhancing methane production and materials recovery. The enhanced methane production can be used as a renewable source of energy in wastewater treatment plants. It can also reduce the amount of greenhouse gas emission in landfilling of the waste streams. RESULTS According to the results obtained in this study, anaerobic co-digestion of waste activated sludge with mixed fruit waste and cheese whey improves methane production and the quality of digested sludge in comparison to the anaerobic digestion of waste activated sludge individually. It was indicated that carbon/nitrogen ratio (C/N) in the mixture of waste activated sludge, fruit waste and cheese whey improved considerably, leading to better anaerobic organisms' activity during digestion. With assessing the activity of protease and cellulase, as the main enzymes hydrolyzing organic matter in anaerobic digestion, it was indicated that co-digestion of waste activated sludge with mixed fruit waste and cheese whey enhances the activity of these enzymes by 22 and 9% respectively. At the end of digestion, the amount of cumulative methane production significantly increased by 31% in the reactor with 85% waste activated sludge and 15% mixed fruit waste and cheese whey, compared to the reactor with 100% waste activated sludge. In addition, chemical oxygen demand (COD) and volatile solid (VS) in digested sludge was improved respectively by 9 and 7% when mixed fruit waste and cheese whey was used. CONCLUSIONS This study revealed that mixed fruit waste and cheese whey is potentially applicable to anaerobic digestion of waste activated sludge, as fruit waste and cheese whey have high C/N ratio that enhance low C/N in waste activated sludge and provide a better diet for anaerobic organisms. This is of significant importance because not only could higher amount of renewable energy be generated from the enhanced methane production in wastewater treatment plants, but also capital costs of the companies whose waste streams are being transported to wastewater treatments plants could be reduced considerably.
Collapse
Affiliation(s)
| | - Mohammad Kuroshkarim
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyede Parvin Moussavi
- Environmental Health Research Center, International Branch of Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
14
|
Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production. ENERGIES 2018. [DOI: 10.3390/en12010021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to rapid urbanization, the number of wastewater treatment plants (WWTP) has increased, and so has the associated waste generated by them. Sustainable management of this waste can lead to the creation of energy-rich biogas via fermentation processes. This review presents recent advances in the anaerobic digestion processes that have led to greater biogas production. Disintegration techniques for enhancing the fermentation of waste activated sludge can be apportioned into biological, physical and chemical means, which are included in this review; they were mainly compared and contrasted in terms of the ensuing biogas yield. It was found that ultrasonic- and microwave-assisted disintegration provides the highest biogas yield (>500%) although they tend to be the most energy demanding processes (>10,000 kJ kg−1 total solids).
Collapse
|