1
|
Sun C, Meng X, Sun F, Zhang J, Tu M, Chang JS, Reungsang A, Xia A, Ragauskas AJ. Advances and perspectives on mass transfer and enzymatic hydrolysis in the enzyme-mediated lignocellulosic biorefinery: A review. Biotechnol Adv 2023; 62:108059. [PMID: 36402253 DOI: 10.1016/j.biotechadv.2022.108059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic hydrolysis is a critical process for the cellulase-mediated lignocellulosic biorefinery to produce sugar syrups that can be converted into a whole range of biofuels and biochemicals. Such a process operating at high-solid loadings (i.e., scarcely any free water or roughly ≥ 15% solids, w/w) is considered more economically feasible, as it can generate a high sugar concentration at low operation and capital costs. However, this approach remains restricted and incurs "high-solid effects", ultimately causing the lower hydrolysis yields with increasing solid loadings. The lack of available water leads to a highly viscous system with impaired mixing that exhibits strong transfer resistance and reaction limitation imposed on enzyme action. Evidently, high-solid enzymatic hydrolysis involves multi-scale mass transfer and multi-phase enzyme reaction, and thus requires a synergistic perspective of transfer and biotransformation to assess the interactions among water, biomass components, and cellulase enzymes. Porous particle characteristics of biomass and its interface properties determine the water form and distribution state surrounding the particles, which are summarized in this review aiming to identify the water-driven multi-scale/multi-phase bioprocesses. Further aided by the cognition of rheological behavior of biomass slurry, solute transfer theories, and enzyme kinetics, the coupling effects of flow-transfer-reaction are revealed under high-solid conditions. Based on the above basic features, this review lucidly explains the causes of high-solid hydrolysis hindrances, highlights the mismatched issues between transfer and reaction, and more importantly, presents the advanced strategies for transfer and reaction enhancements from the viewpoint of process optimization, reactor design, as well as enzyme/auxiliary additive customization.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee, Knoxville, TN 37996, USA; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
2
|
Akbari Fakhrabadi E, Kajzer C, Stickel JJ, Liberatore MW. Transport of Compressed Woody Biomass: Correlating Rheology and Microcompounder Measurements. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Chris Kajzer
- Mechanical Pulping Lines, Valmet Inc., Norcross, Georgia 30071, United States
| | - Jonathan J. Stickel
- Bioenergy Science and Technology, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Matthew W. Liberatore
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
3
|
Lu M, Li J, Han L, Xiao W. High-solids enzymatic hydrolysis of ball-milled corn stover with reduced slurry viscosity and improved sugar yields. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:77. [PMID: 32336988 PMCID: PMC7171840 DOI: 10.1186/s13068-020-01717-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/13/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND High-solids enzymatic hydrolysis has attracted increasing attentions for the production of bioethanol from lignocellulosic biomass with its advantages of high product concentration, water saving, and low energy and capital costs. However, the increase of solids content would worsen the rheological properties, resulting in heat/mass transfer limitation and higher mixing energy. To address these issues, ball milling was applied to corn stover prior to enzymatic hydrolysis, and the rheological behaviors and digestibility of ball-milled corn stover under high-solids loading were investigated. RESULTS Ball milling significantly modified the physicochemical properties of corn stover. The apparent viscosity of slurries at 30% solid loading decreased by a factor of 500 after milling for 60 min, and the yield stress was less than 10 Pa. The dramatic decrease of viscosity and yield stress enabled the hydrolysis process to be conducted in shake flask, and remained good mixing. Meanwhile, the estimated energy consumption for mixing during saccharification decreased by 400-fold compared to the untreated one. The resultant hydrolysate using 10 FPU g-1 solids was determined to contain 130.5 g L-1 fermentable sugar, and no fermentation inhibitors were detected. CONCLUSIONS The proposed ball milling pretreatment improved rheological behavior and sugar yield of high-solids corn stover slurry. Ball milling enables high-solids slurry to maintain low viscosity and yield stress while obtaining a non-toxic high-concentration fermentable syrup, which is undoubtedly of great significance for inter-unit processing, mixing and downstream process. In addition, the energy input for ball milling could be balanced by the reduced mixing energy. Our study indicates ball milling a promising pretreatment process for industrial bioethanol production.
Collapse
Affiliation(s)
- Minsheng Lu
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Junbao Li
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Weihua Xiao
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| |
Collapse
|
4
|
Kadhum HJ, Mahapatra DM, Murthy GS. A novel method for real-time estimation of insoluble solids and glucose concentrations during enzymatic hydrolysis of biomass. BIORESOURCE TECHNOLOGY 2019; 275:328-337. [PMID: 30594844 DOI: 10.1016/j.biortech.2018.12.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The study describes a novel method using instantaneous mixing torque and rotational speed to estimate insoluble solids and glucose concentrations during enzymatic hydrolysis of biomass. This method is cost-effective for real-time monitoring and control of enzymatic hydrolysis and potentially scalable. The model was developed using biomass slurries at three solids loading (20, 30 and 45%) at various rotational speeds from 50 to 400 rpm. The results showed a significant drop in mixing torque at 12 h with high solids loading. Maximum glucose concentration (205 g/l) during hydrolysis was achieved at 45% solids loading. Insoluble solids and glucose concentration as a function of torque and rotational speeds were modeled using a modified Herschell-Bulkley model. The model describes the experimental observations with high fidelity (R2 = 0.84) and can be used for real time monitoring of many multiphase reaction systems as enzymatic hydrolysis of lignocellulosic biomass and dry grind corn ethanol processes.
Collapse
Affiliation(s)
- Haider Jawad Kadhum
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, United States; College of Agriculture, Al-Qasim Green University, Babylon, Iraq
| | - Durga Madhab Mahapatra
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Ganti S Murthy
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|