1
|
Inoue Y, Yamada R, Matsumoto T, Ogino H. Enhancing D-lactic acid production by optimizing the expression of D-LDH gene in methylotrophic yeast Komagataella phaffii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:149. [PMID: 39710696 DOI: 10.1186/s13068-024-02596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Currently, efficient technologies producing useful chemicals from alternative carbon resources, such as methanol, to replace petroleum are in demand. The methanol-utilizing yeast, Komagataella phaffii, is a promising microorganism to produce chemicals from methanol using environment-friendly microbial processes. In this study, to achieve efficient D-lactic acid production from methanol, we investigated a combination of D-lactate dehydrogenase (D-LDH) genes and promoters in K. phaffii. The yeast strain was constructed by integrating a gene cassette containing the identified gene and promoter into the rDNA locus of K. phaffii, followed by post-transformational gene amplification. Subsequently, D-lactic acid production from methanol was evaluated. RESULTS Among the five D-LDH genes and eight promoters tested, the combination of LlDLDH derived from Leuconostoc lactis and CAT1 and FLD1 promoters was suitable for expression in K. phaffii. GS115_CFL/Z3/04, the best-engineered strain constructed via integration of LlDLDH linked to CAT1 and FLD1 promoters into the rDNA locus and post-transformational gene amplification, produced 5.18 g/L D-lactic acid from methanol. To the best of our knowledge, the amount of D-lactic acid from methanol produced by this engineered yeast is the highest reported value to date when utilizing methanol as the sole carbon source. CONCLUSIONS This study demonstrated the effectiveness of combining different enzyme genes and promoters using multiple promoters with different induction and repression conditions, integrating the genes into the rDNA locus, and further amplifying the genes after transformation in K. phaffii. Using our established method, other K. phaffii strains can be engineered to produce various useful chemicals in the future.
Collapse
Affiliation(s)
- Yoshifumi Inoue
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan.
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
2
|
Mota MN, Palma M, Sá-Correia I. Candida boidinii isolates from olive curation water: a promising platform for methanol-based biomanufacturing. AMB Express 2024; 14:93. [PMID: 39198272 PMCID: PMC11358584 DOI: 10.1186/s13568-024-01754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Methanol is a promising feedstock for biomanufacturing, but the efficiency of methanol-based bioprocesses is limited by the low rate of methanol utilization pathways and methanol toxicity. Yeast diversity is an attractive biological resource to develop efficient bioprocesses since any effort with strain improvement is more deserving if applied to innate robust strains with relevant catabolic and biosynthetic potential. The present study is in line with such rational and describes the isolation and molecular identification of seven isolates of the methylotrophic species Candida boidinii from waters derived from the traditional curation of olives, in different years, and from contaminated superficial soil near fuel stations. The yeast microbiota from those habitats was also characterized. The four C. boidinii isolates obtained from the curation of olives' water exhibited significantly higher maximum specific growth rates (range 0.15-0.19 h-1), compared with the three isolates obtained from the fuel contaminated soils (range 0.05-0.06 h-1) when grown on methanol as the sole C-source (1% (v/v), in shake flasks, at 30°C). The isolates exhibit significant robustness towards methanol toxicity that increases as the cultivation temperature decreases from 30°C to 25°C. The better methanol-based growth performance exhibited by C. boidinii isolates from olives´ soaking waters could not be essentially attributed to higher methanol tolerance. These methanol-efficient catabolizing isolates are proposed as a promising platform to develop methanol-based bioprocesses.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Margarida Palma
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
| |
Collapse
|
3
|
Ma ZX, Feng CX, Song YZ, Sun J, Shao Y, Song SZ, Wan B, Zhang C, Fan H, Bao K, Yang S. Engineering photo-methylotrophic Methylobacterium for enhanced 3-hydroxypropionic acid production during non-growth stage fermentation. BIORESOURCE TECHNOLOGY 2024; 393:130104. [PMID: 38008225 DOI: 10.1016/j.biortech.2023.130104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.
Collapse
Affiliation(s)
- Zeng-Xin Ma
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Chen-Xi Feng
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Ya-Zhen Song
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Jing Sun
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yi Shao
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Shu-Zhen Song
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Bin Wan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Cong Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Huan Fan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, People's Republic of China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
4
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
5
|
Bachleitner S, Ata Ö, Mattanovich D. The potential of CO 2-based production cycles in biotechnology to fight the climate crisis. Nat Commun 2023; 14:6978. [PMID: 37914683 PMCID: PMC10620168 DOI: 10.1038/s41467-023-42790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023] Open
Abstract
Rising CO2 emissions have pushed scientists to develop new technologies for a more sustainable bio-based economy. Microbial conversion of CO2 and CO2-derived carbon substrates into valuable compounds can contribute to carbon neutrality and sustainability. Here, we discuss the potential of C1 carbon sources as raw materials to produce energy, materials, and food and feed using microbial cell factories. We provide an overview of potential microbes, natural and synthetic C1 utilization pathways, and compare their metabolic driving forces. Finally, we sketch a future in which C1 substrates replace traditional feedstocks and we evaluate the costs associated with such an endeavor.
Collapse
Affiliation(s)
- Simone Bachleitner
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria
| | - Özge Ata
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, 1190, Austria
| | - Diethard Mattanovich
- University of Natural Resources and Life Sciences, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, 1190, Austria.
- Austrian Centre of Industrial Biotechnology, Vienna, 1190, Austria.
| |
Collapse
|
6
|
Gan Y, Meng X, Gao C, Song W, Liu L, Chen X. Metabolic engineering strategies for microbial utilization of methanol. ENGINEERING MICROBIOLOGY 2023; 3:100081. [PMID: 39628934 PMCID: PMC11611044 DOI: 10.1016/j.engmic.2023.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 12/06/2024]
Abstract
The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol. However, most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals. Thus, the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications. In this review, we provide an in-depth discussion on the properties of natural and synthetic methylotrophs, and summarize the natural and synthetic methanol assimilation pathways. Further, we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals. Finally, we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.
Collapse
Affiliation(s)
- Yamei Gan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xin Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Tan Y, Stein LY, Sauvageau D. Methanol bioconversion in Methylotuvimicrobium buryatense 5GB1C through self-cycling fermentation. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02876-3. [PMID: 37160768 DOI: 10.1007/s00449-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Methanol is an abundant and low-cost next-generation carbon source. While many species of methanotrophic bacteria can convert methanol into valuable bioproducts in bioreactors, Methylotuvimicrobium buryatense 5GB1C stands out as one of the most promising strains for industrialization. It has a short doubling time compared to most methanotrophs, remarkable resilience against contamination, and a suite of tools enabling genetic engineering. When approaching industrial applications, growing M. buryatense 5GB1C on methanol using common batch reactor operation has important limitations; for example methanol toxicity leads to mediocre biomass productivity. Advanced bioreactor operation strategies, such as fed-batch and self-cycling fermentation, have the potential to greatly improve the industrial prospects of methanotrophs growing on methanol. Herein, implementation of fed-batch operation led to a 26-fold increase in biomass density, while two different self-cycling fermentation (SCF) strategies led to 3-fold and 10-fold increases in volumetric biomass productivity. Interestingly, while synchronization is a typical trait of microbial populations undergoing SCF, M. buryatense 5GB1C cultures growing under this mode of operation led to stable, reproducible cycles but no significant synchronization.
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB, T6G 1H9, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
8
|
Claveau EE, Sader S, Jackson BA, Khan SN, Miliordos E. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire? Phys Chem Chem Phys 2023; 25:5313-5326. [PMID: 36723253 DOI: 10.1039/d2cp05480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transition metal oxides have been extensively used in the literature for the conversion of methane to methanol. Despite the progress made over the past decades, no method with satisfactory performance or economic viability has been detected. The main bottleneck is that the produced methanol oxidizes further due to its weaker C-H bond than that of methane. Every improvement in the efficiency of a catalyst to activate methane leads to reduction of the selectivity towards methanol. Is it therefore prudent to keep studying (both theoretically and experimentally) metal oxides as catalysts for the quantitative conversion of methane to methanol? This perspective focuses on molecular metal oxide complexes and suggests strategies to bypass the current bottlenecks with higher weight on the computational chemistry side. We first discuss the electronic structure of metal oxides, followed by assessing the role of the ligands in the reactivity of the catalysts. For better selectivity, we propose that metal oxide anionic complexes should be explored further, while hydrophylic cavities in the vicinity of the metal oxide can perturb the transition-state structure for methanol increasing appreciably the activation barrier for methanol. We also emphasize that computational studies should target the activation reaction of methanol (and not only methane), the study of complete catalytic cycles (including the recombination and oxidation steps), and the use of molecular oxygen as an oxidant. The titled chemical conversion is an excellent challenge for theory and we believe that computational studies should lead the field in the future. It is finally shown that bottom-up approaches offer a systematic way for exploration of the chemical space and should still be applied in parallel with the recently popular machine learning techniques. To answer the question of the title, we believe that metal oxides should still be considered provided that we change our focus and perform more systematic investigations on the activation of methanol.
Collapse
Affiliation(s)
- Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
9
|
Detz H, Butera V. Insights into the mechanistic CO2 conversion to methanol on single Ru atom anchored on MoS2 monolayer. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Wegat V, Fabarius JT, Sieber V. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:113. [PMID: 36273178 PMCID: PMC9587593 DOI: 10.1186/s13068-022-02210-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Global energy-related emissions, in particular carbon dioxide, are rapidly increasing. Without immediate and strong reductions across all sectors, limiting global warming to 1.5 °C and thus mitigating climate change is beyond reach. In addition to the expansion of renewable energies and the increase in energy efficiency, the so-called Carbon Capture and Utilization technologies represent an innovative approach for closing the carbon cycle and establishing a circular economy. One option is to combine CO2 capture with microbial C1 fermentation. C1-molecules, such as methanol or formate are considered as attractive alternative feedstock for biotechnological processes due to their sustainable production using only CO2, water and renewable energy. Native methylotrophic microorganisms can utilize these feedstock for the production of value-added compounds. Currently, constraints exist regarding the understanding of methylotrophic metabolism and the available genetic engineering tools are limited. For this reason, the development of synthetic methylotrophic cell factories based on the integration of natural or artificial methanol assimilation pathways in biotechnologically relevant microorganisms is receiving special attention. Yeasts like Saccharomyces cerevisiae and Yarrowia lipolytica are capable of producing important products from sugar-based feedstock and the switch to produce these in the future from methanol is important in order to realize a CO2-based economy that is independent from land use. Here, we review historical biotechnological applications, the metabolism and the characteristics of methylotrophic yeasts. Various studies demonstrated the production of a broad set of promising products from fine chemicals to bulk chemicals by applying methylotrophic yeasts. Regarding synthetic methylotrophy, the deep understanding of the methylotrophic metabolism serves as the basis for microbial strain engineering and paves the way towards a CO2-based circular bioeconomy. We highlight design aspects of synthetic methylotrophy and discuss the resulting chances and challenges using non-conventional yeasts as host organisms. We conclude that the road towards synthetic methylotrophic yeasts can only be achieved through a combination of methods (e.g., metabolic engineering and adaptive laboratory evolution). Furthermore, we presume that the installation of metabolic regeneration cycles such as supporting carbon re-entry towards the pentose phosphate pathway from C1-metabolism is a pivotal target for synthetic methylotrophy.
Collapse
Affiliation(s)
- Vanessa Wegat
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Jonathan T. Fabarius
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany
| | - Volker Sieber
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| |
Collapse
|
11
|
Monterrey DT, Ayuso-Fernández I, Oroz-Guinea I, García-Junceda E. Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol Adv 2022; 60:108016. [PMID: 35781046 DOI: 10.1016/j.biotechadv.2022.108016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Fusion proteins, understood as those created by joining two or more genes that originally encoded independent proteins, have numerous applications in biotechnology, from analytical methods to metabolic engineering. The use of fusion enzymes in biocatalysis may be even more interesting due to the physical connection of enzymes catalyzing successive reactions into covalently linked complexes. The proximity of the active sites of two enzymes in multi-enzyme complexes can make a significant contribution to the catalytic efficiency of the reaction. However, the physical proximity of the active sites does not guarantee this result. Other aspects, such as the nature and length of the linker used for the fusion or the order in which the enzymes are fused, must be considered and optimized to achieve the expected increase in catalytic efficiency. In this review, we will relate the new advances in the design, creation, and use of fused enzymes with those achieved in biocatalysis over the past 20 years. Thus, we will discuss some examples of genetically fused enzymes and their application in carbon‑carbon bond formation and oxidative reactions, generation of chiral amines, synthesis of carbohydrates, biodegradation of plant biomass and plastics, and in the preparation of other high-value products.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Iván Ayuso-Fernández
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
12
|
Hu W, Zhou L, Chen JH. Conversion sweet sorghum biomass to produce value-added products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:72. [PMID: 35765054 PMCID: PMC9241265 DOI: 10.1186/s13068-022-02170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Currently, most biotechnological products are produced from sugar- or starch-containing crops via microbial conversion, but accelerating the conflict with food supply. Thus, it has become increasingly interesting for industrial biotechnology to seek alternative non-food feedstock, such as sweet sorghum. Value-added chemical production from sweet sorghum not only alleviates dependency and conflict for traditional starch feedstocks (especially corn), but also improves efficient utilization of semi-arid agricultural land resources, especially for China. Sweet sorghum is rich in components, such as fermentable carbohydrates, insoluble lignocellulosic parts and bioactive compounds, making it more likely to produce value-added chemicals. Thus, this review highlights detailed bioconversion methods and its applications for the production of value-added products from sweet sorghum biomass. Moreover, strategies and new perspectives on improving the production economics of sweet sorghum biomass utilization are also discussed, aiming to develop a competitive sweet sorghum-based economy.
Collapse
Affiliation(s)
- Wei Hu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Libin Zhou
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ji-Hong Chen
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a new mangrove-isolated Methylopila oligotropha strain MCSUBH. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Cai P, Li Y, Zhai X, Yao L, Ma X, Jia L, Zhou YJ. Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris. BIORESOUR BIOPROCESS 2022; 9:58. [PMID: 38647822 PMCID: PMC10991524 DOI: 10.1186/s40643-022-00551-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
α-Alkenes (terminal alkenes) are important fuel and platform chemicals that are mainly produced from petroleum. Microbial synthesis might provide a sustainable approach for α-alkenes. In this work, we engineered the methylotrophic yeast Pichia pastoris to produce long-chain (C15:1, C17:1 and C17:2) α-alkenes via a decarboxylation of fatty acids. Combinatorial engineering, including enzyme selection, expression optimization and peroxisomal compartmentalization, enabled the production of 1.6 mg/L α-alkenes from sole methanol. This study represents the first case of α-alkene biosynthesis from methanol and also provides a reference for the construction of methanol microbial cell factories of other high-value chemicals.
Collapse
Affiliation(s)
- Peng Cai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Lun Yao
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiaojun Ma
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Lingyun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
15
|
Ju SB, Seo MJ, Yeom SJ. In Vitro One-Pot 3-Hydroxypropanal Production from Cheap C1 and C2 Compounds. Int J Mol Sci 2022; 23:ijms23073990. [PMID: 35409349 PMCID: PMC8999356 DOI: 10.3390/ijms23073990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/02/2022] [Accepted: 04/02/2022] [Indexed: 12/04/2022] Open
Abstract
One- or two-carbon (C1 or C2) compounds have been considered attractive substrates because they are inexpensive and abundant. Methanol and ethanol are representative C1 and C2 compounds, which can be used as bio-renewable platform feedstocks for the biotechnological production of value-added natural chemicals. Methanol-derived formaldehyde and ethanol-derived acetaldehyde can be converted to 3-hydroxypropanal (3-HPA) via aldol condensation. 3-HPA is used in food preservation and as a precursor for 3-hydroxypropionic acid and 1,3-propanediol that are starting materials for manufacturing biocompatible plastic and polytrimethylene terephthalate. In this study, 3-HPA was biosynthesized from formaldehyde and acetaldehyde using deoxyribose-5-phosphate aldolase from Thermotoga maritima (DERATma) and cloned and expressed in Escherichia coli for 3-HPA production. Under optimum conditions, DERATma produced 7 mM 3-HPA from 25 mM substrate (formaldehyde and acetaldehyde) for 60 min with 520 mg/L/h productivity. To demonstrate the one-pot 3-HPA production from methanol and ethanol, we used methanol dehydrogenase from Lysinibacillus xylanilyticus (MDHLx) and DERATma. One-pot 3-HPA production via aldol condensation of formaldehyde and acetaldehyde from methanol and ethanol, respectively, was investigated under optimized reaction conditions. This is the first report on 3-HPA production from inexpensive alcohol substrates (methanol and ethanol) by cascade reaction using DERATma and MDHLx.
Collapse
Affiliation(s)
- Su-Bin Ju
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yong-bong-ro 77, Gwangju 61186, Korea;
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Ju Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Soo-Jin Yeom
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yong-bong-ro 77, Gwangju 61186, Korea;
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
- Correspondence:
| |
Collapse
|
16
|
Development of Methylorubrum extorquens AM1 as a promising platform strain for enhanced violacein production from co-utilization of methanol and acetate. Metab Eng 2022; 72:150-160. [PMID: 35301124 DOI: 10.1016/j.ymben.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Violacein, a blue-violet compound with a wide range of beneficial bioactivities, is an attractive product for microbial production. Currently, violacein production has been demonstrated in several sugar heterotrophs through metabolic engineering; however, the cost of production remains an obstacle for business ventures. To address this issue, the development of host strains that can utilize inexpensive alternative substrates to reduce production costs would enable the commercialization of violacein. In this study, we engineered a facultative methylotroph, Methylorubrum extorquens AM1, to develop a methanol-based platform for violacein production. By optimizing expression vectors as well as inducer concentrations, 11.7 mg/L violacein production was first demonstrated using methanol as the sole substrate. Considering that unidentified bottlenecks for violacein biosynthesis in the shikimate pathway of M. extorquens AM1 would be difficult to address using generic metabolic engineering approaches, random mutagenesis and site-directed mutagenesis were implemented, and a 2-fold improvement in violacein production was achieved. Finally, by co-utilization of methanol and acetate, a remarkable enhancement of violacein production to 118 mg/L was achieved. Our results establish a platform strain for violacein production from non-sugar feedstocks, which may contribute to the development of an economically efficient large-scale fermentation system for violacein production.
Collapse
|
17
|
Wendisch VF, Kosec G, Heux S, Brautaset T. Aerobic Utilization of Methanol for Microbial Growth and Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:169-212. [PMID: 34761324 DOI: 10.1007/10_2021_177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methanol is a reduced one-carbon (C1) compound. It supports growth of aerobic methylotrophs that gain ATP from reduced redox equivalents by respiratory phosphorylation in their electron transport chains. Notably, linear oxidation of methanol to carbon dioxide may yield three reduced redox equivalents if methanol oxidation is NAD-dependent as, e.g., in Bacillus methanolicus. Methanol has a higher degree of reduction per carbon than glucose (6 vs. 4), and thus, lends itself as an ideal carbon source for microbial production of reduced target compounds. However, C-C bond formation in the RuMP or serine cycle, a prerequisite for production of larger molecules, requires ATP and/or reduced redox equivalents. Moreover, heat dissipation and a high demand for oxygen during catabolic oxidation of methanol may pose challenges for fermentation processes. In this chapter, we summarize metabolic pathways for aerobic methanol utilization, aerobic methylotrophs as industrial production hosts, strain engineering, and methanol bioreactor processes. In addition, we provide technological and market outlooks.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.
| | | | - Stéphanie Heux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
18
|
Gruenberg M, Irla M, Myllek S, Draths K. Characterization of two 3-deoxy-d-Arabino-Heptulosonate 7-phosphate synthases from Bacillusmethanolicus. Protein Expr Purif 2021; 188:105972. [PMID: 34517109 DOI: 10.1016/j.pep.2021.105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase catalyzes the condensation of phosphoenolpyruvate (PEP) with d-erythrose 4-phosphate (E4P) and plays an important role in regulating carbon flux toward aromatic amino acid biosynthesis in bacteria and plants. Sequence analysis of the DAHP synthases AroG1 and AroG2 from Bacillus methanolicus MGA3 suggested this thermophilic, methylotrophic bacterium possesses two type Iβ DAHP synthases. This study describes production of AroG1 and AroG2 in Escherichia coli as hexa-histidine fused proteins, which were purified by affinity chromatography. Treatment with TEV protease afforded native proteins for characterization and kinetic analysis. AroG1 and AroG2 are, respectively, 30.1 kDa and 40.0 kDa proteins. Both enzymes have maximal activity over a pH range of 6.3-7.2. The apparent kinetic parameters at 50 °C and pH 7.2 for AroG1 are KmPEP 1100 ± 100 μM, KmE4P 530 ± 100 μM, and kcat 10.3 ± 1.2 s-1. The kinetic parameters for AroG2 are KmPEP 90 ± 20 μM, KmE4P 130 ± 40 μM, and kcat 2.0 ± 0.2 s-1. At 50 °C AroG2 retains 50% of its activity after 96 min whereas AroG1 retains less than 5% of its activity after 10 min. AroG2, which contains an N-terminal regulatory domain, is inhibited by chorismate and prephenate but not l-phenylalanine, l-tyrosine, or l-tryptophan. AroG1 is not inhibited by any of the molecules examined. Understanding DAHP synthase regulation in B. methanolicus is a first step toward generating biocatalysts that exploit the target-rich aromatic amino acid biosynthetic pathway for synthesis of chemicals from methanol.
Collapse
Affiliation(s)
- Megan Gruenberg
- Department of Chemistry, 578 S. Shaw Lane, Michigan State University, East Lansing, MI, 48824, USA.
| | - Marta Irla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway.
| | - Sebastian Myllek
- Department of Chemistry, 578 S. Shaw Lane, Michigan State University, East Lansing, MI, 48824, USA.
| | - Karen Draths
- Department of Chemistry, 578 S. Shaw Lane, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Godinho CP, Palma M, Oliveira J, Mota MN, Antunes M, Teixeira MC, Monteiro PT, Sá-Correia I. The N.C.Yeastract and CommunityYeastract databases to study gene and genomic transcription regulation in non-conventional yeasts. FEMS Yeast Res 2021; 21:6356955. [PMID: 34427650 DOI: 10.1093/femsyr/foab045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 11/14/2022] Open
Abstract
Responding to the recent interest of the yeast research community in non-Saccharomyces cerevisiae species of biotechnological relevance, the N.C.Yeastract (http://yeastract-plus.org/ncyeastract/) was associated to YEASTRACT + (http://yeastract-plus.org/). The YEASTRACT + portal is a curated repository of known regulatory associations between transcription factors (TFs) and target genes in yeasts. N.C.Yeastract gathers all published regulatory associations and TF-binding sites for Komagataellaphaffii (formerly Pichia pastoris), the oleaginous yeast Yarrowia lipolytica, the lactose fermenting species Kluyveromyces lactis and Kluyveromyces marxianus, and the remarkably weak acid-tolerant food spoilage yeast Zygosaccharomyces bailii. The objective of this review paper is to advertise the update of the existing information since the release of N.C.Yeastract in 2019, and to raise awareness in the community about its potential to help the day-to-day work on these species, exploring all the information available in the global YEASTRACT + portal. Using simple and widely used examples, a guided exploitation is offered for several tools: (i) inference of orthologous genes; (ii) search for putative TF binding sites and (iii) inter-species comparison of transcription regulatory networks and prediction of TF-regulated networks based on documented regulatory associations available in YEASTRACT + for well-studied species. The usage potentialities of the new CommunityYeastract platform by the yeast community are also discussed.
Collapse
Affiliation(s)
- Cláudia P Godinho
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Palma
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | - Marta N Mota
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Antunes
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel C Teixeira
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro T Monteiro
- INESC-ID, Lisbon, Portugal.,Department of Computer Science and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
20
|
Selection of methanotrophic platform for methanol production using methane and biogas. J Biosci Bioeng 2021; 132:460-468. [PMID: 34462232 DOI: 10.1016/j.jbiosc.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
To develop biotechnological process for methane to methanol conversion, selection of a suitable methanotrophic platform is an important aspect. Systematic approach based on literature and public databases was developed to select representative methanotrophs Methylotuvimicrobium alcaliphilum, Methylomonas methanica, Methylosinus trichosporium and Methylocella silvestris. Selected methanotrophs were further investigated for methanol tolerance and methanol production on pure methane as well as biogas along with key enzyme activities involved in methane utilization. Among selected methanotrophs M. alcaliphilum showed maximum methanol tolerance of 6% v/v along with maximum methanol production of 307.90 mg/L and 247.37 mg/L on pure methane and biogas respectively. Activity of methane monooxygenase and formate dehydrogenase enzymes in M.alcaliphilum was significantly higher up to 98.40 nmol/min/mg cells and 0.87 U/mg protein, respectively. Biotransformation trials in 14 L fermentor resulted in increased methanol production up to 418 and 331.20 mg/L, with yield coefficient 0.83 and 0.71 mg methanol/mg of pure methane and biogas respectively. The systematic selection resulted in haloalkaliphilic strain M. alcaliphilum as one of the potential methanotroph for bio-methanol production.
Collapse
|
21
|
Kremp F, Müller V. Methanol and methyl group conversion in acetogenic bacteria: biochemistry, physiology and application. FEMS Microbiol Rev 2021; 45:5903270. [PMID: 32901799 DOI: 10.1093/femsre/fuaa040] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
The production of bulk chemicals mostly depends on exhausting petroleum sources and leads to emission of greenhouse gases. Within the last decades the urgent need for alternative sources has increased and the development of bio-based processes received new attention. To avoid the competition between the use of sugars as food or fuel, other feedstocks with high availability and low cost are needed, which brought acetogenic bacteria into focus. This group of anaerobic organisms uses mixtures of CO2, CO and H2 for the production of mostly acetate and ethanol. Also methanol, a cheap and abundant bulk chemical produced from methane, is a suitable substrate for acetogenic bacteria. In methylotrophic acetogens the methyl group is transferred to the Wood-Ljungdahl pathway, a pathway to reduce CO2 to acetate via a series of C1-intermediates bound to tetrahydrofolic acid. Here we describe the biochemistry and bioenergetics of methanol conversion in the biotechnologically interesting group of anaerobic, acetogenic bacteria. Further, the bioenergetics of biochemical production from methanol is discussed.
Collapse
Affiliation(s)
- Florian Kremp
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
22
|
Fan L, Wang Y, Qian J, Gao N, Zhang Z, Ni X, Sun L, Yuan Q, Zheng P, Sun J. Transcriptome analysis reveals the roles of nitrogen metabolism and sedoheptulose bisphosphatase pathway in methanol-dependent growth of Corynebacterium glutamicum. Microb Biotechnol 2021; 14:1797-1808. [PMID: 34132489 PMCID: PMC8313271 DOI: 10.1111/1751-7915.13863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
Methanol is a promising feedstock for biomanufacturing of fuels and chemicals. Although efforts have been made to engineer platform microorganisms for methanol bioconversion, the substrate uptake and cell growth rates on methanol are still unsatisfactory, suggesting certain limiting factors remain unsolved. Herein, we analysed the global metabolic regulation changes between an evolved methanol-dependent Corynebacterium glutamicum mutant and its ancestral strain by transcriptome analysis. Many genes involved in central metabolism including glycolysis, amino acid biosynthesis and energy generation were regulated, implying the adaptive laboratory evolution reprogrammed the cellular metabolism for methanol utilization. We then demonstrated that nitrate could serve as a complementary electron acceptor for aerobic methanol metabolism, and the biosynthesis of several amino acids limited methylotrophic growth. Finally, the sedoheptulose bisphosphatase pathway for generating methanol assimilation acceptor was found effective in C. glutamicum. This study identifies limiting factors of methanol metabolism and provides engineering targets for developing superior synthetic methylotrophs.
Collapse
Affiliation(s)
- Liwen Fan
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Yu Wang
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jin Qian
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- College of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Ning Gao
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Letian Sun
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qianqian Yuan
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Ping Zheng
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jibin Sun
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
23
|
Ma P, Takashima S, Fujita C, Yamada S, Oshima Y, Cai HL, Yurimoto H, Sakai Y, Hayakawa T, Shimada M, Ning X, Wei B, Nakagawa T. Fatty acid composition of the methylotrophic yeast Komagataella phaffii grown under low- and high-methanol conditions. Yeast 2021; 38:541-548. [PMID: 34089530 DOI: 10.1002/yea.3655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 11/11/2022] Open
Abstract
In this study, we analysed the intracellular fatty acid profiles of Komagataella phaffii during methylotrophic growth. K. phaffii grown on methanol had significantly lower total fatty acid contents in the cells compared with glucose-grown cells. C18 and C16 fatty acids were the predominant fatty acids in K. phaffii, although the contents of odd-chain fatty acids such as C17 fatty acids were also relatively high. Moreover, the intracellular fatty acid composition of K. phaffii changed in response to not only carbon sources but also methanol concentrations: C17 fatty acids and C18:2 content increased significantly as methanol concentration increased, whereas C18:1 and C18:3 contents were significantly lower in methanol-grown cells. The intracellular content of unidentified compounds (Cn H2n O4 ), on the other hand, was significantly greater in cells grown on methanol. As the intracellular contents of these Cn H2n O4 compounds were significantly higher in a gene-disrupted strain for glutathione peroxidase (gpx1Δ) than in the wild-type strain, we presume that the Cn H2n O4 compounds are fatty acid peroxides. These results indicate that K. phaffii can coordinate intracellular fatty acid composition during methylotrophic growth in order to adapt to high-methanol conditions and that certain fatty acid species such as C17:0, C17:1, C17:2 and C18:2 may be related to the physiological functions by which K. phaffii adapts to high-methanol conditions.
Collapse
Affiliation(s)
- Pengli Ma
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Chikako Fujita
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Saya Yamada
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yusuke Oshima
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan
| | - Hao-Liang Cai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Hayakawa
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Masaya Shimada
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Xia Ning
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Tomoyuki Nakagawa
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| |
Collapse
|
24
|
Methylotrophic bacterium-based molecular sensor for the detection of low concentrations of methanol. J Biosci Bioeng 2021; 132:247-252. [PMID: 34092492 DOI: 10.1016/j.jbiosc.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Methylotrophic bacterium Methylorubrum extorquens is a promising microorganism for the production of value-added compounds from methanol. This study focused on the development of a single-cell level biosensor system that detects methanol by using the intrinsic regulatory machinery which responds to the presence of methanol in this bacterium. A green fluorescent protein (GFP) gene located downstream of the promoter region of the serine glyoxylate aminotransferase gene (Psga) or the methanol dehydrogenase subunit 1 precursor gene (PmxaF) was inserted into the chromosome of M. extorquens wild-type strain AM1. The expression of GFP upon methanol exposure was measured by spectrofluorometer and fluorescence-activated cell sorting (FACS). The strain harboring Psga-gfp emitted fluorescence only when methanol was supplied to the culture medium, while the other strain harboring PmxaF-gfp showed high basal fluorescence even in the absence of methanol. The fluorescence intensity of the Psga-gfp strain depended on a methanol concentration higher than 25 μM, and the sensitivity and dose-dependency of this strain were much higher than previous systems using Escherichia coli. The methanol-sensing properties of the engineered M. extorquens strain were comparable to those of a methylotrophic yeast-based biosensor, suggesting the usefulness of methylotrophic microorganisms as platforms for single-cell sensing of C1 compounds. The constructed methanol sensor strain, coupled with flow cytometry techniques, provides a high-throughput and highly sensitive screening method for the selection of functional methanol-producing enzymes.
Collapse
|
25
|
Chwastek G, Surma MA, Rizk S, Grosser D, Lavrynenko O, Rucińska M, Jambor H, Sáenz J. Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling. Cell Rep 2021; 32:108165. [PMID: 32966790 DOI: 10.1016/j.celrep.2020.108165] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cells, from microbes to mammals, adapt their membrane lipid composition in response to environmental changes to maintain optimal properties. Global patterns of lipidome remodeling are poorly understood, particularly in organisms with simple lipid compositions that can provide insight into fundamental principles of membrane adaptation. Using shotgun lipidomics, we examine the simple yet, as we show here, adaptive lipidome of the plant-associated Gram-negative bacterium Methylobacterium extorquens. We observe that minimally 11 lipids account for 90% of total variability, thus constraining the upper limit of variable lipids required for an adaptive living membrane. Through lipid features analysis, we reveal that acyl chain remodeling is not evenly distributed across lipid classes, resulting in headgroup-specific effects of acyl chain variability on membrane properties. Results herein implicate headgroup-specific acyl chain remodeling as a mechanism for fine-tuning the membrane's physical state and provide a resource for using M. extorquens to explore the design principles of living membranes.
Collapse
Affiliation(s)
- Grzegorz Chwastek
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany
| | | | - Sandra Rizk
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany
| | - Daniel Grosser
- DZD-Paul Langerhans Institute Dresden, Fetscherstraße 74, Dresden, Germany
| | - Oksana Lavrynenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, Germany
| | | | - Helena Jambor
- Technische Universität Dresden, Medizinische Fakultät, Fetscherstraße 74, Dresden, Germany
| | - James Sáenz
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany.
| |
Collapse
|
26
|
Meng H, Wang C, Yuan Q, Ren J, Zeng AP. An Aldolase-Based New Pathway for Bioconversion of Formaldehyde and Ethanol into 1,3-Propanediol in Escherichia coli. ACS Synth Biol 2021; 10:799-809. [PMID: 33729768 DOI: 10.1021/acssynbio.0c00597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Formaldehyde (HCHO) is a reactive one-carbon compound that is interesting for biosynthesis. The assimilation of HCHO depends on the catalysis of aldolase. Here, we present a novel synthetic pathway in E. coli to convert HCHO and ethanol into 1,3-propanediol (PDO) using a deoxyribose-5-phosphate aldolase (DERA). DERA condenses HCHO and acetaldehyde to form 3-hydroxypropionaldehyde, the direct precursor of PDO formation. This new pathway opens up the possibility to synthesize an appealing C3 compound from a C1 compound and a C2 compound without carbon loss in contrast to all the other known PDO synthetic pathways where typically 30-50% of the carbons are lost as CO2 and other byproducts. The pathway is successfully demonstrated by elaborating three metabolic modules. First, DERA from Thermotoga maritima was found to be efficient for the aldol condensation and PDO production module. For the module of acetaldehyde supply from ethanol, an alcohol dehydrogenase from Hansenula polymorpha was selected. For the HCHO supply module, the control of HCHO concentration and its utilization were shown to be important for achieving the assimilation of HCHO in recombinant E. coli cells. By deleting the gene frmA for endogenous conversion of HCHO to formate and controlling HCHO at a level of about 0.6 mM, the concentration and yield of PDO were increased from initially 5.67 mM (0.43 g/L) and 0.057 mol/mol to 17.35 mM (1.32 g/L) and 0.096 mol/mol in bioconversion of ethanol and HCHO with resting E. coli cells. Further engineering of DERA and the HCHO supply module is necessary to realize the potential of this promising metabolic pathway.
Collapse
Affiliation(s)
- Hao Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029 Beijing, China
| | - Chuang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029 Beijing, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029 Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agriproduct Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029 Beijing, China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| |
Collapse
|
27
|
Vassilev I, Averesch NJH, Ledezma P, Kokko M. Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnol Adv 2021; 48:107728. [PMID: 33705913 DOI: 10.1016/j.biotechadv.2021.107728] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
In nature as well as in industrial microbiology, all microorganisms need to achieve redox balance. Their redox state and energy conservation highly depend on the availability of a terminal electron acceptor, for example oxygen in aerobic production processes. Under anaerobic conditions in the absence of an electron acceptor, redox balance is achieved via the production of reduced carbon-compounds (fermentation). An alternative strategy to artificially stabilize microbial redox and energy state is the use of anodic electro-fermentation (AEF). This emerging biotechnology empowers respiration under anaerobic conditions using the anode of a bioelectrochemical system as an undepletable terminal electron acceptor. Electrochemical control of redox metabolism and energy conservation via AEF can steer the carbon metabolism towards a product of interest and avoid the need for continuous and cost-inefficient supply of oxygen as well as the production of mixed reduced by-products, as is the case in aerobic production and fermentation processes, respectively. The great challenge for AEF is to establish efficient extracellular electron transfer (EET) from the microbe to the anode and link it to central carbon metabolism to enhance the synthesis of a target product. This article reviews the advantages and challenges of AEF, EET mechanisms, microbial energy gain, and discusses the rational choice of substrate-product couple as well as the choice of microbial catalyst. Besides, it discusses the potential of the industrial model-organism Bacillus subtilis as a promising candidate for AEF, which has not been yet considered for such an application. This prospective review contributes to a better understanding of how industrial microbiology can benefit from AEF and analyses key-factors required to successfully implement AEF processes. Overall, this work aims to advance the young research field especially by critically revisiting the fundamental aspects of AEF.
Collapse
Affiliation(s)
- Igor Vassilev
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Nils J H Averesch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States.
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia.
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
28
|
Carvalho FM, Kiametis AS, de Araújo Oliveira AL, Pirani F, Gargano R. Spectroscopy, lifetime, and charge-displacement of the methanol-noble gas complexes: An integrated experimental-theoretical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119049. [PMID: 33080517 DOI: 10.1016/j.saa.2020.119049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 05/26/2023]
Abstract
An integrated experimental-theoretical investigation was employed to determine rovibrational energies, spectroscopic constants, lifetime as a function of temperature in gas phase complexes of methanol with noble gas (NgHe, Ne, Ar, Kr, Xe, and Rn). Beside that, a parallel effort has been addressed to theoretically characterize the nature of intermolecular interactions determining the dissociation energy and equilibrium distance of the formed adducts. Dynamics and lifetime results reveal that, except for the CH3OH-He aggregate, all other methanol-Ng compounds are sufficiently stable under thermal conditions. Their lifetimes are larger than 1 ps for the temperature of the bulk in the range between 200 and 500 K. In addition, the current lifetime results suggest that the aggregates formed by methanol and Ng are globally more stable than corresponding complexes formed by water with Ng. From the point of view of the CCSD(T)/aug-cc-pVTZ level calculation, in all compounds, the electron densities of Ng partners are weakly polarized in the presence of CH3OH molecule. The charge-displacement curves and NBO analysis indicate that the charge transfer from Ng to methanol molecule, in general, plays a minor role, being appreciable only in the aggregate involving Ar. Finally, it was verified from the SAPT2 + (CCD)-δMP2/aug-cc-pVTZ calculations and NCI analysis that the dispersion is the essential long-range attractive contribution to the interaction energy for all studied complexes. This feature strongly suggests that these compounds are held bonded substantially by van der Waals forces. Then non-covalent intermolecular bonds are effectively formed in the gas phase, which is disturbed by small stabilizing charge-transfer contributions.
Collapse
Affiliation(s)
- Fernando M Carvalho
- Institute of Physics, University of Braslia, Campus Darcy Ribeiro, Braslia, DF, Brazil
| | | | | | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá degli studi di Perugia, via Elce di Sotto 8, Perugia, Italy; Istituto CNR di Scienze e Tecnologie Chimiche (CNR-SCITEC), via Elce di Sotto 8, Perugia, Italy
| | - Ricardo Gargano
- Institute of Physics, University of Braslia, Campus Darcy Ribeiro, Braslia, DF, Brazil.
| |
Collapse
|
29
|
Mota MN, Martins LC, Sá-Correia I. The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering. J Fungi (Basel) 2021; 7:90. [PMID: 33513997 PMCID: PMC7911966 DOI: 10.3390/jof7020090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Methanol is a promising feedstock for metabolically competent yeast strains-based biorefineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 °C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, such as chromatin remodeling, DNA repair and fatty acid biosynthesis. Several genes involved in DNA repair (eight RAD genes), identified as specific for methanol toxicity, were previously reported as tolerance determinants for formaldehyde, a methanol detoxification pathway intermediate. This study provides new valuable information on genes and potential regulatory networks involved in overcoming methanol toxicity. This knowledge is an important starting point for the improvement of methanol tolerance in yeasts capable of catabolizing and copying with methanol concentrations present in promising bioeconomy feedstocks, including industrial residues.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
30
|
Zhang Y, Nielsen J, Liu Z. Yeast based biorefineries for oleochemical production. Curr Opin Biotechnol 2020; 67:26-34. [PMID: 33360103 DOI: 10.1016/j.copbio.2020.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/04/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
Biosynthesis of oleochemicals enables sustainable production of natural and unnatural alternatives from renewable feedstocks. Yeast cell factories have been extensively studied and engineered to produce a variety of oleochemicals, focusing on both central carbon metabolism and lipid metabolism. Here, we review recent progress towards oleochemical synthesis in yeast based biorefineries, as well as utilization of alternative renewable feedstocks, such as xylose and l-arabinose. We also review recent studies of C1 compound utilization or co-utilization and discuss how these studies can lead to third generation yeast based biorefineries for oleochemical production.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark.
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
31
|
Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J, Dong W, Xin F, Zhang W, Jiang M. Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng 2020; 118:357-371. [PMID: 32965690 DOI: 10.1002/bit.27575] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 09/19/2020] [Indexed: 01/03/2023]
Abstract
The application of rational design in reallocating metabolic flux to accumulate desired chemicals is always restricted by the native regulatory network. In this study, recombinant Pichia pastoris was constructed for malic acid production from sole methanol through rational redistribution of metabolic flux. Different malic acid accumulation modules were systematically evaluated and optimized in P. pastoris. The recombinant PP-CM301 could produce 8.55 g/L malic acid from glucose, which showed a 3.45-fold increase compared to the parent strain. To improve the efficiency of site-directed gene knockout, NHEJ-related protein Ku70 was destroyed, whereas leading to the silencing of heterogenous genes. Hence, genes related to by-product generation were deleted via a specially designed FRT/FLP system, which successfully reduced succinic acid and ethanol production. Furthermore, a key node in the methanol assimilation pathway, glucose-6-phosphate isomerase was knocked out to liberate metabolic fluxes trapped in the XuMP cycle, which finally enabled 2.79 g/L malic acid accumulation from sole methanol feeding with nitrogen source optimization. These results will provide guidance and reference for the metabolic engineering of P. pastoris to produce value-added chemicals from methanol.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
32
|
Synthetic Methylotrophy in Yeasts: Towards a Circular Bioeconomy. Trends Biotechnol 2020; 39:348-358. [PMID: 33008643 DOI: 10.1016/j.tibtech.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
Mitigating climate change is a key driver for the development of sustainable and CO2-neutral production processes. In this regard, connecting carbon capture and utilization processes to derive microbial C1 fermentation substrates from CO2 is highly promising. This strategy uses methylotrophic microbes to unlock next-generation processes, converting CO2-derived methanol. Synthetic biology approaches in particular can empower synthetic methylotrophs to produce a variety of commodity chemicals. We believe that yeasts have outstanding potential for this purpose, because they are able to separate toxic intermediates and metabolic reactions in organelles. This compartmentalization can be harnessed to design superior synthetic methylotrophs, capable of utilizing methanol and other hitherto largely disregarded C1 compounds, thus supporting the establishment of a future circular economy.
Collapse
|
33
|
Affiliation(s)
- Cláudio J. R. Frazão
- TU Dresden Institute of Natural Materials Technology Bergstraße 120 01062 Dresden Germany
| | - Thomas Walther
- TU Dresden Institute of Natural Materials Technology Bergstraße 120 01062 Dresden Germany
| |
Collapse
|
34
|
Cardoso LOB, Karolski B, Gracioso LH, do Nascimento CAO, Perpetuo EA. Increased P3HB Accumulation Capacity of Methylorubrum sp. in Response to Discontinuous Methanol Addition. Appl Biochem Biotechnol 2020; 192:846-860. [PMID: 32607898 DOI: 10.1007/s12010-020-03369-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
An alternative for non-biodegradable oil-based plastics has been the focus of many researchers throughout the years. Polyhydroxyalkanoates (PHAs) are potential substitutes due to their biodegradable characteristic and diversity of monomers that allow different biopolymer compositions and physical-chemical properties suitable for a variety of applications. The most well-known biopolymer from this class, poly(3-hydroxybutyrate) (P3HB), is already produced industrially, but its final price cannot compete with the oil-based plastics. As a low-volume high-value bioproduct, P3HB must be produced through a cheap and abundant feedstock, with high productivity and a feasible purity process in order to become an economically attractive bioproduct. In this scenario, we report a methylotrophic strain isolated from an estuarine contaminated site identified as Methylorubrum sp. highly tolerant to methanol and with great accumulation capacity of 60% (CDW) in 48 h through a simple strategy of batch fermentation with discontinuous methanol addition that could help lower P3HB's processing costs and final price.
Collapse
Affiliation(s)
- Letícia Oliveira Bispo Cardoso
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil. .,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil. .,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil.
| | - Bruno Karolski
- Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Louise Hase Gracioso
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Claudio Augusto Oller do Nascimento
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Elen Aquino Perpetuo
- Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Institute of Marine Sciences (IMar-UNIFESP), Federal University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway. Int J Mol Sci 2020; 21:ijms21103617. [PMID: 32443885 PMCID: PMC7279501 DOI: 10.3390/ijms21103617] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered Corynebacterium glutamicum for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from Bacillus methanolicus and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from Bacillus subtilis enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of C. glutamicum to unleash the full potential of methanol as a carbon source in biotechnological processes.
Collapse
|
36
|
Wang Y, Fan L, Tuyishime P, Liu J, Zhang K, Gao N, Zhang Z, Ni X, Feng J, Yuan Q, Ma H, Zheng P, Sun J, Ma Y. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun Biol 2020; 3:217. [PMID: 32382107 PMCID: PMC7205612 DOI: 10.1038/s42003-020-0954-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/03/2020] [Indexed: 12/26/2022] Open
Abstract
Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform microorganisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol concentrations rebalance methylotrophic metabolism by down-regulating glycolysis and up-regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-l-homoserine sulfhydrylase Cgl0653 catalyzing formation of l-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of tolerance engineering in developing superior synthetic methylotrophs. Wang et al. improve the methanol tolerance for the synthetic methylotroph, Corynebacterium glutamicum. They generate 3 new strains by directed evolution and use biochemical, transcriptomic, and genetic approaches to characterize the pathways underlying the enhanced methanol metabolism. Their findings are important for biomanufacturing purposes.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Philibert Tuyishime
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Kun Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Gao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qianqian Yuan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
37
|
Wang Y, Fan L, Tuyishime P, Zheng P, Sun J. Synthetic Methylotrophy: A Practical Solution for Methanol-Based Biomanufacturing. Trends Biotechnol 2020; 38:650-666. [PMID: 31932066 DOI: 10.1016/j.tibtech.2019.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
The increasing availability and affordability of natural gas has renewed interest in using methanol for bioproduction of useful chemicals. Engineering synthetic methylotrophy based on natural or artificial methanol assimilation pathways and genetically tractable platform microorganisms for methanol-based biomanufacturing is drawing particular attention. Recently, intensive efforts have been devoted to demonstrating the feasibility and improving the efficiency of synthetic methylotrophy. Various fuel, bulk, and fine chemicals have been synthesized using methanol as a feedstock. However, fully synthetic methylotrophs utilizing methanol as the sole carbon source and commercially viable bioproduction from methanol remain to be developed. Here, we review ongoing efforts to identify limiting factors, optimize synthetic methylotrophs, and implement methanol-based biomanufacturing. Future challenges and prospects are also discussed.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Philibert Tuyishime
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
38
|
Wang C, Ren J, Zhou L, Li Z, Chen L, Zeng AP. An Aldolase-Catalyzed New Metabolic Pathway for the Assimilation of Formaldehyde and Methanol To Synthesize 2-Keto-4-hydroxybutyrate and 1,3-Propanediol in Escherichia coli. ACS Synth Biol 2019; 8:2483-2493. [PMID: 31603652 DOI: 10.1021/acssynbio.9b00102] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Formaldehyde (HCHO) is an important intermediate in the metabolism of one-carbon (C1) compounds such as methanol, formate, and methane. The ribulose monophosphate (RuMP) pathway is the most-studied HCHO assimilation route and the 3-hexulose-6-phosphate synthase (Hps) plays an important role for HCHO fixation. In this study, we proposed and selected a pyruvate-dependent aldolase to channel HCHO into 2-keto-4-hydroxybutyrate as an important intermediate for biosynthesis. By combining this reaction with three further enzymes we demonstrated a pyruvate-based C1 metabolic pathway for biosynthesis of the appealing compound 1,3-propanediol (1,3-PDO). This novel pathway is first confirmed in vitro using HCHO and pyruvate as substrates. It is then demonstrated in vivo in E. coli for 1,3-PDO production from HCHO and methanol with glucose as a cosubstrate. This de novo pathway has several decisive advantages over the known metabolic pathways for 1,3-PDO: (1) C1 carbon is directly channeled into a precursor of 1,3-PDO; (2) the use of pyruvate as an acceptor of HCHO is glycerol-independent, circumventing thus the need of coenzyme B12 as cofactor for glycerol dehydration; (3) the pathway is much shorter and more simple than the recently proposed l-homoserine-dependent pathway, thus avoiding complicated regulations involving precursors for essential amino acids. In addition to proof-of-concept we further improved the host strain by deleting a gene (frmA) responsible for the conversion of HCHO to formate, thereby increasing the production of 1,3-PDO from 298.3 ± 11.4 mg/L to 508.3 ± 9.1 mg/L and from 3.8 mg/L to 32.7 ± 0.8 mg/L with HCHO and methanol as cosubstrate of glucose fermentation, respectively. This work is the first study demonstrating a genetically engineered E. coli that can directly use HCHO or methanol for the synthesis of 2-keto-4-hydroxybutyrate and its further conversion to 1,3-PDO.
Collapse
Affiliation(s)
- Chuang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, 100193, Beijing, China
| | - Libang Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Zhidong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Lin Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology Denickestrasse 15, D-21073 Hamburg, Germany
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology Denickestrasse 15, D-21073 Hamburg, Germany
| |
Collapse
|
39
|
Nguyen AD, Park JY, Hwang IY, Hamilton R, Kalyuzhnaya MG, Kim D, Lee EY. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol. Metab Eng 2019; 57:1-12. [PMID: 31626985 DOI: 10.1016/j.ymben.2019.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022]
Abstract
Methylotuvimicrobium alcaliphilum 20Z is a promising platform strain for bioconversion of one-carbon (C1) substrates into value-added products. To carry out robust metabolic engineering with methylotrophic bacteria and to implement C1 conversion machinery in non-native hosts, systems-level evaluation and understanding of central C1 metabolism in methanotrophs under various conditions is pivotal but yet elusive. In this study, a genome-scale integrated approach was used to provide in-depth knowledge on the metabolic pathways of M. alcaliphilum 20Z grown on methane and methanol. Systems assessment of core carbon metabolism indicated the methanol assimilation pathway is mostly coupled with the efficient Embden-Meyerhof-Parnas (EMP) pathway along with the serine cycle. In addition, an incomplete TCA cycle operated in M. alcaliphilum 20Z on methanol, which might only supply precursors for de novo synthesis but not reducing powers. Instead, it appears that the direct formaldehyde oxidation pathway supply energy for the whole metabolic system. Additionally, a comparative transcriptomic analysis in multiple gammaproteobacterial methanotrophs also revealed the transcriptional responses of central metabolism on carbon substrate change. These findings provided a systems-level understanding of carbon metabolism and new opportunities for strain design to produce relevant products from different C1-feedstocks.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - In Yeub Hwang
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Richard Hamilton
- Biology Department, San Diego State University, San Diego, CA, 92182-4614, United States
| | - Marina G Kalyuzhnaya
- Biology Department, San Diego State University, San Diego, CA, 92182-4614, United States
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
40
|
Zeng AP. New bioproduction systems for chemicals and fuels: Needs and new development. Biotechnol Adv 2019; 37:508-518. [DOI: 10.1016/j.biotechadv.2019.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/17/2022]
|
41
|
Lim CK, Villada JC, Chalifour A, Duran MF, Lu H, Lee PKH. Designing and Engineering Methylorubrum extorquens AM1 for Itaconic Acid Production. Front Microbiol 2019; 10:1027. [PMID: 31143170 PMCID: PMC6520949 DOI: 10.3389/fmicb.2019.01027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
Methylorubrum extorquens (formerly Methylobacterium extorquens) AM1 is a methylotrophic bacterium with a versatile lifestyle. Various carbon sources including acetate, succinate and methanol are utilized by M. extorquens AM1 with the latter being a promising inexpensive substrate for use in the biotechnology industry. Itaconic acid (ITA) is a high-value building block widely used in various industries. Given that no wildtype methylotrophic bacteria are able to utilize methanol to produce ITA, we tested the potential of M. extorquens AM1 as an engineered host for this purpose. In this study, we successfully engineered M. extorquens AM1 to express a heterologous codon-optimized gene encoding cis-aconitic acid decarboxylase. The engineered strain produced ITA using acetate, succinate and methanol as the carbon feedstock. The highest ITA titer in batch culture with methanol as the carbon source was 31.6 ± 5.5 mg/L, while the titer and productivity were 5.4 ± 0.2 mg/L and 0.056 ± 0.002 mg/L/h, respectively, in a scaled-up fed-batch bioreactor under 60% dissolved oxygen saturation. We attempted to enhance the carbon flux toward ITA production by impeding poly-β-hydroxybutyrate accumulation, which is used as carbon and energy storage, via mutation of the regulator gene phaR. Unexpectedly, ITA production by the phaR mutant strain was not higher even though poly-β-hydroxybutyrate concentration was lower. Genome-wide transcriptomic analysis revealed that phaR mutation in the ITA-producing strain led to complex rewiring of gene transcription, which might result in a reduced carbon flux toward ITA production. Besides poly-β-hydroxybutyrate metabolism, we found evidence that PhaR might regulate the transcription of many other genes including those encoding other regulatory proteins, methanol dehydrogenases, formate dehydrogenases, malate:quinone oxidoreductase, and those synthesizing pyrroloquinoline quinone and thiamine co-factors. Overall, M. extorquens AM1 was successfully engineered to produce ITA using acetate, succinate and methanol as feedstock, further supporting this bacterium as a feasible host for use in the biotechnology industry. This study showed that PhaR could have a broader regulatory role than previously anticipated, and increased our knowledge of this regulator and its influence on the physiology of M. extorquens AM1.
Collapse
Affiliation(s)
- Chee Kent Lim
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Juan C Villada
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Annie Chalifour
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Maria F Duran
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Hongyuan Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| |
Collapse
|