1
|
Abrha GT, Makaranga A, Jutur PP. Enhanced lipid accumulation in microalgae Scenedesmus sp. under nitrogen limitation. Enzyme Microb Technol 2024; 182:110546. [PMID: 39531895 DOI: 10.1016/j.enzmictec.2024.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Microalgae-based biofuel production is cost-effective only in a biorefinery, where valuable co-products offset high costs. Fatty acids produced by photosynthetic microalgae can serve as raw materials for bioenergy and pharmaceuticals. This study aims to understand the metabolic imprints of Scenedesmus sp. CABeR52, to decipher the physiological mechanisms behind lipid accumulation under nitrogen deprivation. Metabolomics profiles were generated using gas chromatography-mass spectrometry (GC-MS) of Scenedesmus sp. CABeR52 subjected to nutrient deprivation. Our initial data sets indicate that deprived cells have an increased accumulation of lipids (278.31 mg.g-1 dcw), 2.0 times higher than the control. The metabolomic profiling unveils a metabolic reprogramming, highlighting the upregulation of key metabolites involved in fatty acid biosynthesis, such as citric acid, succinic acid, and 2-ketoglutaric acid. The accumulation of trehalose, a stress-responsive metabolite, further underscores the microalga's adaptability. Interestingly, we found that a new fatty acid, nervonic acid, was identified in the complex, which has a significant role in brain development. These findings provide valuable insights into the metabolic pathways governing lipid accumulation in Scenedesmus sp., paving the way for its exploitation as a sustainable biofuel feedstock.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA; Department of Biotechnology, CoDANR, Mekelle University, Mekelle, Ethiopia
| | - Abdalah Makaranga
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA.
| |
Collapse
|
2
|
Pritam P, Manjre S, Shukla MR, Srivastava M, Prasannan CB, Jaiswal D, Davis R, Dasgupta S, Wangikar PP. Intracellular metabolomic profiling of Picochlorum sp. under diurnal conditions mimicking outdoor light, temperature, and seasonal variations. Metabolomics 2024; 20:107. [PMID: 39306586 DOI: 10.1007/s11306-024-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION This study focuses on metabolic profiling of a robust marine green algal strain Picochlorum sp. MCC39 that exhibits resilient growth under diverse outdoor open pond conditions. Given its potential for producing high-value chemicals through metabolic engineering, understanding its metabolic dynamics is crucial for pathway modification. OBJECTIVES This study primarily aimed to investigate the metabolic response of Picochlorum sp. to environmental changes. Unlike heterotrophs, algae are subject to diurnal light and temperature, which affect their growth rates and metabolism. Using an environmental photobioreactor (ePBR), we explored how the algal strain adapts to fluctuations in light intensities and temperature within a simulated pond environment. METHODS We performed a reverse phase ion pairing-LC/MS-MS based metabolome profiling of the MCC39 strain cultivated in simulated pond conditions in ePBR. The experimental setup included diurnal and bi-seasonal variations in light intensities and temperature. RESULTS The metabolome profile revealed significant differences in 85 metabolites, including amino acids, carboxylic acids, sugar phosphates, purines, pyrimidines, and dipeptides, which exhibited up to 25-fold change in relative concentration with diurnal variations. Seasonal variations also influenced the production of storage molecules, revealing a discernible pattern. The accumulation pattern of metabolites involved in cellular wall formation and energy generation indicated a well-coordinated initiation of photosynthesis and the Calvin cycle with the onset of light. CONCLUSION The results contribute to a deeper understanding of the adaptability and metabolic response of Picochlorum sp., laying the groundwork for future advancements in algal strain modification.
Collapse
Affiliation(s)
- Prem Pritam
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarna Manjre
- Synthetic Biology Research and Development Group, Reliance Technology Group R&D Center, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, Maharashtra, 400701, India
| | - Manish R Shukla
- Synthetic Biology Research and Development Group, Reliance Technology Group R&D Center, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, Maharashtra, 400701, India
| | - Meghna Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Charulata B Prasannan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Rose Davis
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Santanu Dasgupta
- Synthetic Biology Research and Development Group, Reliance Technology Group R&D Center, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, Maharashtra, 400701, India.
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
3
|
Barla RJ, Gupta S, Raghuvanshi S. Sustainable synergistic approach to chemolithotrophs-supported bioremediation of wastewater and flue gas. Sci Rep 2024; 14:16529. [PMID: 39019921 PMCID: PMC11254919 DOI: 10.1038/s41598-024-67053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Flue gas emissions are the waste gases produced during the combustion of fuel in industrial processes, which are released into the atmosphere. These identical processes also produce a significant amount of wastewater that is released into the environment. The current investigation aims to assess the viability of simultaneously mitigating flue gas emissions and remediating wastewater in a bubble column bioreactor utilizing bacterial consortia. A comparative study was done on different growth media prepared using wastewater. The highest biomass yield of 3.66 g L-1 was achieved with the highest removal efficiencies of 89.80, 77.30, and 80.77% for CO2, SO2, and NO, respectively. The study investigated pH, salinity, dissolved oxygen, and biochemical and chemical oxygen demand to assess their influence on the process. The nutrient balance validated the ability of bacteria to utilize compounds in flue gas and wastewater for biomass production. The Fourier Transform-Infrared Spectrometry (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses detected commercial-use long-chain hydrocarbons, fatty alcohols, carboxylic acids, and esters in the biomass samples. The nuclear magnetic resonance (NMR) metabolomics detected the potential mechanism pathways followed by the bacteria for mitigation. The techno-economic assessment determined a feasible total capital investment of 245.74$ to operate the reactor for 288 h. The bioreactor's practicability was determined by mass transfer and thermodynamics assessment. Therefore, this study introduces a novel approach that utilizes bacteria and a bioreactor to mitigate flue gas and remediate wastewater.
Collapse
Affiliation(s)
- Rachael J Barla
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India
| | - Suresh Gupta
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
4
|
Mariam I, Bettiga M, Rova U, Christakopoulos P, Matsakas L, Patel A. Ameliorating microalgal OMEGA production using omics platforms. TRENDS IN PLANT SCIENCE 2024; 29:799-813. [PMID: 38350829 DOI: 10.1016/j.tplants.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
5
|
Ajithkumar V, Arunkumar M, Philomina A, Sakthi Vignesh N, Vimali E, Dey D, Ganesh Moorthy IM, Ashokkumar B, Varalakshmi P. Deciphering Bisphenol A degradation by Coelastrella sp. M60: unravelling metabolic insights through metabolomics analysis. BIORESOURCE TECHNOLOGY 2024; 401:130701. [PMID: 38621609 DOI: 10.1016/j.biortech.2024.130701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Microalgae, owing to their efficacy and eco-friendliness, have emerged as a promising solution for mitigating the toxicity of Bisphenol A (BPA), a hazardous environmental pollutant. This current study was focused on the degradation of BPA by Coelastrella sp. M60 at various concentrations (10-50 mg/L). Further, the metabolic profiling of Coelastrella sp. M60 was performed using GC-MS analysis, and the results were revealed that BPA exposure modulated the metabolites profile with the presence of intermediates of BPA. In addition, highest lipid (43%) and pigment content (40%) at 20 and 10 mg/L of BPA respectively exposed to Coelastrella sp. M60 was achieved and enhanced fatty acid methyl esters recovery was facilitated by Cuprous oxide nanoparticles synthesised using Spatoglossum asperum. Thus, this study persuades thepotential of Coelastrella sp. M60 for BPA degradation and suggesting new avenues to remove the emerging contaminants in polluted water bodies and targeted metabolite expression in microalgae.
Collapse
Affiliation(s)
- Velmurugan Ajithkumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Appaiyan Philomina
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Elamathi Vimali
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Drishanu Dey
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
6
|
Maltsev Y, Kulikovskiy M, Maltseva S. Nitrogen and phosphorus stress as a tool to induce lipid production in microalgae. Microb Cell Fact 2023; 22:239. [PMID: 37981666 PMCID: PMC10658923 DOI: 10.1186/s12934-023-02244-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023] Open
Abstract
Microalgae, capable of accumulating large amounts of lipids, are of great value for biodiesel production. The high cost of such production stimulates the search for cultivation conditions that ensure their highest productivity. Reducing the content of nitrogen and phosphorus in the culture medium is widely used to change the content and productivity of lipids in microalgae. Achieving the right balance between maximum growth and maximum lipid content and productivity is the primary goal of many experimental works to ensure cost-effective biodiesel production from microalgae. The content of nitrogen and phosphorus in nutrient media for algal cultivation after converted to nitrogen (-N) and phosphorus (-P) lies in an extensive range: from 0.007 g L- 1 to 0.417 g L- 1 and from 0.0003 g L- 1 to 0.227 g L- 1 and N:P ratio from 0.12:1 to 823.33:1. When studying nutritional stress in microalgae, no single approach is used to determine the experimental concentrations of nitrogen and phosphorus. This precludes the possibility of correct interpretation of the data and may lead to erroneous conclusions. This work results from the systematisation of information on using nitrogen and phosphorus restriction to increase the lipid productivity of microalgae of different taxonomic and ecological groups to identify future research directions. The results of 301 experiments were included in the analysis using the principal components method. The investigation considered various divisions and classes: Cyanobacteria, Rhodophyta, Dinophyta, Haptophyta, Cryptophyta, Heterokontophyta/Ochrophyta (Bacillariophyceae, Eustigmatophyceae, Xanthophyceae), Chlorophyta, and also the ratio N:P, the time of the experiment, the light intensity during cultivation. Based on the concentrations of nitrogen and phosphorus existing in various nutrient media, a general scheme for designating the supply of nutrient media for nitrogen (as NO3- or NH4+, N g L- 1) and phosphorus (as РO4-, P g L- 1) has been proposed: replete -N (˃0.4 g L- 1), moderate -N (0.4-0.2), moderate N-limitation (0.19-0.1), strong N-limitation (˂0.1), without nitrogen (0), replete -Р (˃0.2), moderate -P (0.2-0.02), moderate P-limitation (0.019-0.01), strong P-limitation (˂0.01), without phosphorus (0).
Collapse
Affiliation(s)
- Yevhen Maltsev
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia.
| | - Maxim Kulikovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Svetlana Maltseva
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| |
Collapse
|
7
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
8
|
Makaranga A, Jutur PP. Dynamic metabolomic crosstalk between Chlorella saccharophila and its new symbiotic bacteria enhances lutein production in microalga without compromising its biomass. Enzyme Microb Technol 2023; 170:110291. [PMID: 37481992 DOI: 10.1016/j.enzmictec.2023.110291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
The microalgae Chlorella saccharophila UTEX247 was co-cultured with its symbiotic indigenous isolated bacterial strain, Exiguobacterium sp., to determine the possible effects of bacteria on microalgae growth and lutein productivity. Under optimal conditions, the lutein productivity of co-culture was 298.97 µg L-1 d-1, which was nearly 1.45-fold higher compared to monocultures i.e., 103.3 µg L-1 d-1. The highest lutein productivities were obtained in co-cultures, accompanied by a significant increase in cell biomass up to 0.84-fold. These conditions were analyzed using an untargeted metabolomics approach to identify metabolites enhancing valuable renewables, i.e., lutein, without compromising growth. Our qualitative metabolomic analysis identified nearly 30 (microalgae alone), 41 (bacteria alone), and 75 (co-cultures) metabolites, respectively. Among these, 46 metabolites were unique in the co-culture alone. The co-culture interactions significantly altered the role of metabolites such as thiamine precursors, reactive sugar anomers like furanose and branched-chain amino acids (BCAA). Nevertheless, the central metabolism cycle upregulation depicted increased availability of carbon skeletons, leading to increased cell biomass and pigments. In conclusion, the co-cultures induce the production of relevant metabolites which regulate growth and lutein simultaneously in C. saccharophila UTEX247, which paves the way for a new perspective in microalgal biorefineries.
Collapse
Affiliation(s)
- Abdalah Makaranga
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
9
|
Kumar A, Baldia A, Rajput D, Kateriya S, Babu V, Dubey KK. Multiomics and optobiotechnological approaches for the development of microalgal strain for production of aviation biofuel and biorefinery. BIORESOURCE TECHNOLOGY 2023; 369:128457. [PMID: 36503094 DOI: 10.1016/j.biortech.2022.128457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.
Collapse
Affiliation(s)
- Akshay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vikash Babu
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kashyap Kumar Dubey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Elshobary ME, Zabed HM, Qi X, El-Shenody RA. Enhancing biomass and lipid productivity of a green microalga Parachlorella kessleri for biodiesel production using rapid mutation of atmospheric and room temperature plasma. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:122. [PMID: 36372889 PMCID: PMC9655907 DOI: 10.1186/s13068-022-02220-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microalgae, with their high adaptability to various stress conditions and rapid growth, are considered excellent biomass resources for lipid production and biodiesel feedstocks. However, lipid yield and productivity of the natural strains are common bottlenecks in their large-scale use for lipid production, which can be overcome by evolving new strains using conventional and advanced mutagenic techniques. It is challenging to generate microalgae strains capable of high lipid synthesis through natural selection. As a result, random mutagenesis is currently considered a viable option in many scenarios. The objective of this study was to explore atmospheric and room temperature plasma (ARTP) as a random mutagenesis technique to obtain high lipid-accumulating mutants of a green microalga for improved biodiesel production. RESULTS A green microalgal species was isolated from the Chinese Yellow Sea and identified as Parachlorella kessleri (OM758328). The isolated microalga was subsequently mutated by ARTP to obtain high lipid-accumulating mutants. Based on the growth rate and lipid content, 5 mutants (named M1, M2, M4, M5, and M8) were selected from 15 pre-selected mutants. These five mutants varied in their growth rate from 0.33 to 0.68 day-1, with the lipid content varying between 0.25 g/L in M2 to 0.30 g/L in M8 at 10th day of cultivation. Among the mutants, M8 showed the maximum biomass productivity (0.046 g/L/day) and lipid productivity (20.19 mg/L/day), which were 75% and 44% higher than the wild strain, respectively. The triglyceride (TAG) content of M8 was found to be 0.56 g/L at 16th day of cultivation, which was 1.77-fold higher than that of the wild strain. Furthermore, M8 had the highest saturated fatty acids (C16-18) with the lowermost polyunsaturated fatty acid content, which are favorable properties of a biodiesel feedstock according to international standards. CONCLUSION The mutant strain of P. kessleri developed by the ARTP technique exhibited significant improvements in biomass productivity, lipid content, and biodiesel quality. Therefore, the biomass of this mutant microalga could be a potential feedstock for biodiesel production.
Collapse
Affiliation(s)
- Mostafa E Elshobary
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rania A El-Shenody
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
11
|
Quantification of extracellular and biomass carbohydrates by Arthrospira under nitrogen starvation at lab-scale. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Oyama T, Kato Y, Hidese R, Matsuda M, Matsutani M, Watanabe S, Kondo A, Hasunuma T. Development of a stable semi-continuous lipid production system of an oleaginous Chlamydomonas sp. mutant using multi-omics profiling. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:95. [PMID: 36114515 PMCID: PMC9482161 DOI: 10.1186/s13068-022-02196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Background Microalgal lipid production has attracted global attention in next-generation biofuel research. Nitrogen starvation, which drastically suppresses cell growth, is a common and strong trigger for lipid accumulation in microalgae. We previously developed a mutant Chlamydomonas sp. KAC1801, which can accumulate lipids irrespective of the presence or absence of nitrates. This study aimed to develop a feasible strategy for stable and continuous lipid production through semi-continuous culture of KAC1801. Results KAC1801 continuously accumulated > 20% lipid throughout the subculture (five generations) when inoculated with a dry cell weight of 0.8–0.9 g L−1 and cultured in a medium containing 18.7 mM nitrate, whereas the parent strain KOR1 accumulated only 9% lipid. Under these conditions, KAC1801 continuously produced biomass and consumed nitrates. Lipid productivity of 116.9 mg L−1 day−1 was achieved by semi-continuous cultivation of KAC1801, which was 2.3-fold higher than that of KOR1 (50.5 mg L−1 day−1). Metabolome and transcriptome analyses revealed a depression in photosynthesis and activation of nitrogen assimilation in KAC1801, which are the typical phenotypes of microalgae under nitrogen starvation. Conclusions By optimizing nitrate supply and cell density, a one-step cultivation system for Chlamydomonas sp. KAC1801 under nitrate-replete conditions was successfully developed. KAC1801 achieved a lipid productivity comparable to previously reported levels under nitrogen-limiting conditions. In the culture system of this study, metabolome and transcriptome analyses revealed a nitrogen starvation-like response in KAC1801. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02196-w.
Collapse
|
13
|
Rehmanji M, Nesamma AA, Khan NJ, Fatma T, Jutur PP. Media engineering in marine diatom Phaeodactylum tricornutum employing cost-effective substrates for sustainable production of high-value renewables. Biotechnol J 2022; 17:e2100684. [PMID: 35666486 DOI: 10.1002/biot.202100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
Phaeodactylum tricornutum is a marine diatom, rich in omega-3 polyunsaturated fatty acids especially eicosapentaenoic acid (EPA) and brown pigment, that is, fucoxanthin. These high-value renewables (HVRs) have a high commercial and nutritional relevance. In this study, our focus was to enhance the productivities of such renewables by employing media engineering strategy via., photoautotrophic (P1, P2, P3) and mixotrophic (M1, M2, M3, M4) modes of cultivation with varying substrate combinations of carbon (glycerol: 0.1 m) and nitrogen (urea: 441 mm and/or sodium nitrate: 882 mm). Our results demonstrate that mixotrophic [M4] condition supplemented with glycerol (0.1 m) and urea (441 mm) feed enhanced productivities (mg L-1 day-1 ) as follows: biomass (770.0), total proteins (36.0), total lipids (22.0), total carbohydrates (23.0) with fatty acid methyl esters (9.6), EPA (2.7), and fucoxanthin (1.1), respectively. The overall yield of EPA represents 28% of total fatty acids in the mixotrophic [M4] condition. In conclusion, our improved strategy of feeding urea to a glycerol-supplemented medium defines a new efficient biomass valorization paradigm with cost-effective substrates for the production of HVRs in oleaginous diatoms P. tricornutum.
Collapse
Affiliation(s)
- Mohammed Rehmanji
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Asha Arumugam Nesamma
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
14
|
Nutrient Deprivation Coupled with High Light Exposure for Bioactive Chrysolaminarin Production in the Marine Microalga Isochrysis zhangjiangensis. Mar Drugs 2022; 20:md20060351. [PMID: 35736154 PMCID: PMC9225646 DOI: 10.3390/md20060351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Chrysolaminarin, a kind of water-soluble bioactive β-glucan produced by certain microalgae, is a potential candidate for food/pharmaceutical applications. This study identified a marine microalga Isochrysis zhangjiangensis, in which chrysolaminarin production was investigated via nutrient (nitrogen, phosphorus, or sulfur) deprivations (-N, -P, or -S conditions) along with an increase in light intensity. A characterization of the antioxidant activities of the chrysolaminarin produced under each condition was also conducted. The results showed that nutrient deprivation caused a significant increase in chrysolaminarin accumulation, though this was accompanied by diminished biomass production and photosynthetic activity. -S was the best strategy to induce chrysolaminarin accumulation. An increase in light intensity from 80 (LL) to 150 (HL) µE·m−2·s−1 further enhanced chrysolaminarin production. Compared with -N, -S caused more suitable stress and reduced carbon allocation toward neutral lipid production, which enabled a higher chrysolaminarin accumulation capacity. The highest chrysolaminarin content and concentration reached 41.7% of dry weight (%DW) and 632.2 mg/L, respectively, under HL-S, with a corresponding productivity of 155.1 mg/L/day achieved, which exceeds most of the photoautotrophic microalgae previously reported. The chrysolaminarin produced under HL-N (Iz-N) had a relatively competitive hydroxyl radical scavenging activity at low concentrations, while the chrysolaminarin produced under HL-S (Iz-S) exhibited an overall better activity, comparable to the commercial yeast β-glucan, demonstrating I. zhangjiangensis as a promising bioactive chrysolaminarin producer from CO2.
Collapse
|
15
|
Tan FHP, Nadir N, Sudesh K. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects. Front Bioeng Biotechnol 2022; 10:879476. [PMID: 35646848 PMCID: PMC9133917 DOI: 10.3389/fbioe.2022.879476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The search for biodegradable plastics has become the focus in combating the global plastic pollution crisis. Polyhydroxyalkanoates (PHAs) are renewable substitutes to petroleum-based plastics with the ability to completely mineralize in soil, compost, and marine environments. The preferred choice of PHA synthesis is from bacteria or archaea. However, microbial production of PHAs faces a major drawback due to high production costs attributed to the high price of organic substrates as compared to synthetic plastics. As such, microalgal biomass presents a low-cost solution as feedstock for PHA synthesis. Photoautotrophic microalgae are ubiquitous in our ecosystem and thrive from utilizing easily accessible light, carbon dioxide and inorganic nutrients. Biomass production from microalgae offers advantages that include high yields, effective carbon dioxide capture, efficient treatment of effluents and the usage of infertile land. Nevertheless, the success of large-scale PHA synthesis using microalgal biomass faces constraints that encompass the entire flow of the microalgal biomass production, i.e., from molecular aspects of the microalgae to cultivation conditions to harvesting and drying microalgal biomass along with the conversion of the biomass into PHA. This review discusses approaches such as optimization of growth conditions, improvement of the microalgal biomass manufacturing technologies as well as the genetic engineering of both microalgae and PHA-producing bacteria with the purpose of refining PHA production from microalgal biomass.
Collapse
Affiliation(s)
| | | | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
16
|
Multi-Fold Enhancement of Tocopherol Yields Employing High CO2 Supplementation and Nitrate Limitation in Native Isolate Monoraphidium sp. Cells 2022; 11:cells11081315. [PMID: 35455994 PMCID: PMC9032582 DOI: 10.3390/cells11081315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tocopherols are the highly active form of the antioxidant molecules involved in scavenging of free radicals and protect the cell membranes from reactive oxygen species (ROS). In the present study, we focused on employing carbon supplementation with varying nitrate concentrations to enhance the total tocopherol yields in the native isolate Monoraphidium sp. CABeR41. The total tocopherol productivity of NRHC (Nitrate replete + 3% CO2) supplemented was (306.14 µg·L−1 d−1) which was nearly 2.5-fold higher compared to NRVLC (Nitrate replete + 0.03% CO2) (60.35 µg·L−1 d−1). The best tocopherol productivities were obtained in the NLHC (Nitrate limited + 3% CO2) supplemented cells (734.38 µg·L−1 d−1) accompanied by a significant increase in cell biomass (2.65-fold) and total lipids (6.25-fold). Further, global metabolomics using gas chromatography-mass spectrometry (GC-MS) was done in the defined conditions to elucidate the molecular mechanism during tocopherol accumulation. In the present study, the Monoraphidium sp. responded to nitrogen limitation by increase in nitrogen assimilation, with significant upregulation in gamma-Aminobutyric acid (GABA). Moreover, the tricarboxylic acid (TCA) cycle upregulation depicted increased availability of carbon skeletons and reducing power, which is leading to increased biomass yields along with the other biocommodities. In conclusion, our study depicts valorization of carbon dioxide as a cost-effective alternative for the enhancement of biomass along with tocopherols and other concomitant products like lipids and carotenoids in the indigenous strain Monoraphidium sp., as an industrial potential strain with relevance in nutraceuticals and pharmaceuticals.
Collapse
|
17
|
Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. BIORESOURCE TECHNOLOGY 2022; 344:126196. [PMID: 34710610 DOI: 10.1016/j.biortech.2021.126196] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics, an essential tool in modern synthetic biology based on the design-build-test-learn platform, is useful for obtaining a detailed understanding of cellular metabolic mechanisms through comprehensive analyses of the metabolite pool size and its dynamic changes. Metabolomics is critical to the design of a rational metabolic engineering strategy by determining the rate-limiting reaction and assimilated carbon distribution in a biosynthetic pathway of interest. Microalgae and cyanobacteria are promising photosynthetic producers of biofuels and bio-based chemicals, with high potential for developing a bioeconomic society through bio-based carbon neutral manufacturing. Metabolomics technologies optimized for photosynthetic organisms have been developed and utilized in various microalgal and cyanobacterial species. This review provides a concise overview of recent achievements in photosynthetic metabolomics, emphasizing the importance of microalgal and cyanobacterial cell factories that satisfy industrial requirements.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
18
|
Deeba F, Kumar KK, Rajacharya GH, Gaur NA. Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides. J Fungi (Basel) 2021; 7:jof7110967. [PMID: 34829254 PMCID: PMC8625802 DOI: 10.3390/jof7110967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Oleaginous yeast Rhodosporidium toruloides has great biotechnological potential and scientific interest, yet the molecular rationale of its cellular behavior to carbon and nitrogen ratios with concurrent lipid agglomeration remains elusive. Here, metabolomics adaptations of the R. toruloides in response to varying glucose and nitrogen concentrations have been investigated. In preliminary screening we found that 5% glucose (w/v) was optimal for further analysis in Rhodosporidium toruloides 3641. Hereafter, the effect of complementation to increase lipid agglomeration was evaluated with different nitrogen sources and their concentration. The results obtained illustrated that the biomass (13 g/L) and lipid (9.1 g/L) production were maximum on 5% (w/v) glucose and 0.12% (NH4)2SO4. Furthermore, to shed lights on lipid accumulation induced by nitrogen-limitation, we performed metabolomic analysis of the oleaginous yeast R. toruloides 3641. Significant changes were observed in metabolite concentrations by qualitative metabolomics through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), which were mapped onto the governing metabolic pathways. Notable finding in this strain concerns glycerol and CDP-DAG metabolism wherein reduced production of glycerol and phospholipids induced a bypass leading to enhanced de-novo triacylglyceride synthesis. Collectively, our findings help in understanding the central carbon metabolism of R. toruloides which may assist in developing rationale metabolic models and engineering efforts in this organism.
Collapse
Affiliation(s)
- Farha Deeba
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| | | | | | - Naseem A. Gaur
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| |
Collapse
|
19
|
Tripathi S, Arora N, Pruthi V, Poluri KM. Elucidating the bioremediation mechanism of Scenedesmus sp. IITRIND2 under cadmium stress. CHEMOSPHERE 2021; 283:131196. [PMID: 34146883 DOI: 10.1016/j.chemosphere.2021.131196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a non-biodegradable pollutant that has become a global threat due to its bioaccumulation and biomagnification in higher trophic levels of the food chain. Green technologies such as phycoremediation is an emerging approach and possess edge over conventional methods to remediate Cd from the environment. The present investigation elucidates the adaptive mechanism of a freshwater microalga, Scenedesmus sp. IITRIND2 under Cd stress. The microalga showed excellent tolerance to Cd stress with IC50 value of ~32 ppm. The microalga showed phenomenal removal efficiency (~80%) when exposed to 25 ppm of Cd. Such a high uptake of Cd by the cells was accompanied with increased total lipid content (~33% of dry cell weight). Additionally, the elevated level of ROS, lipid peroxidation, glycine-betaine, and antioxidant enzymes evidenced the activation of efficient antioxidant machinery for alleviating the Cd stress. Further, analysis of the fatty acid methyl ester (FAME) presented a steady increase in saturated and polyunsaturated fatty acids with biodiesel properties complying the American and European fuel standards. The study proposes an integrated approach for bioremediation of toxic Cd using hyper-tolerant microalgal strains along with biodiesel production from the generated algal biomass.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
20
|
Mariam I, Kareya MS, Rehmanji M, Nesamma AA, Jutur PP. Channeling of Carbon Flux Towards Carotenogenesis in Botryococcus braunii: A Media Engineering Perspective. Front Microbiol 2021; 12:693106. [PMID: 34394032 PMCID: PMC8358449 DOI: 10.3389/fmicb.2021.693106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Microalgae, due to their unique properties, gained attention for producing promising feedstocks having high contents of proteins, antioxidants, carotenoids, and terpenoids for applications in nutraceutical and pharmaceutical industries. Optimizing production of the high-value renewables (HVRs) in microalgae requires an in-depth understanding of their functional relationship of the genes involved in these metabolic pathways. In the present study, bioinformatic tools were employed for characterization of the protein-encoding genes of methyl erythritol phosphate (MEP) pathway involved in carotenoid and squalene biosynthesis based upon their conserved motif/domain organization. Our analysis demonstrates nearly 200 putative genes showing a conservation pattern within divergent microalgal lineages. Furthermore, phylogenomic studies confirm the close evolutionary proximity among these microalgal strains in the carotenoid and squalene biosynthetic pathways. Further analysis employing STRING predicts interactions among two rate-limiting genes, i.e., phytoene synthase (PSY) and farnesyl diphosphate farnesyl synthase (FPPS), which are specifically involved in the synthesis of carotenoids and squalene. Experimentally, to understand the carbon flux of these rate-limiting genes involved in carotenogenesis, an industrial potential strain, namely, Botryococcus braunii, was selected in this study for improved biomass productivity (i.e., 100 mg L-1 D-1) along with enhanced carotenoid content [0.18% dry cell weight (DCW)] when subjected to carbon supplementation. In conclusion, our approach of media engineering demonstrates that the channeling of carbon flux favors carotenogenesis rather than squalene synthesis. Henceforth, employing omics perspectives will further provide us with new insights for engineering regulatory networks for enhanced production of high-value carbon biorenewables without compromising growth.
Collapse
Affiliation(s)
- Iqra Mariam
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mukul Suresh Kareya
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mohammed Rehmanji
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Asha Arumugam Nesamma
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
21
|
Mariam I, Kareya MS, Nesamma AA, Jutur PP. Delineating metabolomic changes in native isolate Aurantiochytrium for production of docosahexaenoic acid in presence of varying carbon substrates. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Sharma PK, Goud VV, Yamamoto Y, Sahoo L. Efficient Agrobacterium tumefaciens-mediated stable genetic transformation of green microalgae, Chlorella sorokiniana. 3 Biotech 2021; 11:196. [PMID: 33927987 DOI: 10.1007/s13205-021-02750-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
The green oleaginous microalgae, Chlorella sorokiniana, is a highly productive Chlorella species and a potential host for the production of biofuel, nutraceuticals, and recombinant therapeutic proteins. The lack of a stable and efficient genetic transformation system is the major bottleneck in improving this species. We report an efficient and stable Agrobacterium tumefaciens-mediated transformation system for the first time in C. sorokiniana. Cocultivation of C. sorokiniana cells (optical density at λ 680 = 1.0) with Agrobacterium at a cell density of OD600 = 0.6, on BG11 agar medium (pH 5.6) supplemented with 100 μM of acetosyringone, for three days at 25 ± 2 °C in the dark, resulted in significantly higher transformation efficiency (220 ± 5 hygromycin-resistant colonies per 106 cells). Transformed cells primarily selected on BG11 liquid medium with 30 mg/L hygromycin followed by selecting homogenous transformants on BG11 agar medium with 75 mg/L hygromycin. PCR analysis confirmed the presence of hptII, and the absence of virG amplification ruled out the Agrobacterium contamination in transformed microalgal cells. Southern hybridization confirmed the integration of the hptII gene into the genome of C. sorokiniana. The qRT-PCR and Western blot analyses confirmed hptII and GUS gene expression in the transgenic cell lines. The specific growth rate, biomass doubling time, PSII activity, and fatty-acid profile of transformed cells were found similar to wild-type untransformed cells, clearly indicating the growth and basic metabolic processes not compromised by transgene expression. This protocol can facilitate opportunities for future production of biofuel, carotenoids, nutraceuticals, and therapeutic proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02750-7.
Collapse
Affiliation(s)
- Prabin Kumar Sharma
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Vaibhab V Goud
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Y Yamamoto
- Department of Applied Biological Sciences, Gifu University, Gifu, 501-1194 Japan
| | - Lingaraj Sahoo
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
23
|
Shaikh KM, Kumar P, Nesamma AA, Abdin MZ, Jutur PP. Hybrid genome assembly and functional annotation reveals insights on lipid biosynthesis of oleaginous native isolate Parachlorella kessleri, a potential industrial strain for production of biofuel precursors. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Klassen V, Blifernez-Klassen O, Bax J, Kruse O. Wastewater-borne microalga Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production applying low-N cultivation strategy. BIORESOURCE TECHNOLOGY 2020; 315:123825. [PMID: 32693344 DOI: 10.1016/j.biortech.2020.123825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 05/16/2023]
Abstract
Biogas/biomethane generation from microalgae biomass via anaerobic fermentation is increasingly gaining attention as CO2-neutral energy source. Intensive research has shown, however, that microalgae represent a rather challenging substrate for anaerobic digestion (AD) due to their high cell wall recalcitrance and unfavourable protein content. Previously, the utilization of nitrogen-limited (low-N) microalgal biomass for continuous AD-processes was demonstrated (as proof-of-concept) with remarkable biomethane productivity. The present study shows the efficient portability of the low-N cultivation/fermentation strategy on a robust, wastewater-borne microalga isolate that tolerates high temperature and light conditions and can perfectly cope with microbial contaminations. Continuous long-term anaerobic digestion was characterized by stable and efficient specific biogas and biomethane productivity (765 ± 20 and 478 ± 15 mLNg-1 volatile solids (VS) d-1, respectively), equivalent to volumetric methane productivity of 1912 mLN L-1d-1. The present work underlines the applicability of low-N-biomass of wastewater-borne, robust microalgae as mono-substrate for highly efficient continuous methane generation.
Collapse
Affiliation(s)
- Viktor Klassen
- Algenbiotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
| | - Olga Blifernez-Klassen
- Algenbiotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Jördis Bax
- Algenbiotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Algenbiotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
25
|
Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen YQ, Chen W. Metabolomics analysis reveals the role of oxygen control in the nitrogen limitation induced lipid accumulation in Mortierella alpina. J Biotechnol 2020; 325:325-333. [PMID: 33039549 DOI: 10.1016/j.jbiotec.2020.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Lipid hyperaccumulation in oleaginous microorganisms is generally induced by nitrogen limitation, while oxygen supply can influence biomass growth and cell metabolism. Although strategies based on nitrogen limitation or oxygen control have been extensively explored and applied in various oleaginous microorganisms, the role of oxygen supply in nitrogen limitation induced lipid hyperaccumulation still remains unclear. Here, we systematically surveyed the effects of oxygen supply on the oleaginous fungus M. alpina cultured in nitrogen limited conditions through integration of physiochemical parameters and metabolomics analysis. Our results indicated that a high oxygen supply promoted carbon/nitrogen consumption and was used for rapid biomass synthesis, while either high or low oxygen supply conditions were adverse to lipid and ARA accumulation. Different oxygen supply level significantly affected the balance between fermentation for lipid synthesis and respiration for energy generation. Under nitrogen limitation, a suitable oxygen supply promoted the recycling of preformed nitrogen and increased the redirection of carbon towards fatty acid synthesis through the hub centred around glutamic acid coupled to the intermediate metabolism of carbon in the TCA cycle, while a high oxygen supply favored the respiration process and enhanced the degradation of LC-PUFAs, rather than fermentation for fatty acid synthesis. This system-level insight reveals the underlying metabolic mechanism of oxygen control in nitrogen limitation induced lipid accumulation, and provides theoretical support for the integration of oxygen control with nutrient supply for efficient microbial oil production.
Collapse
Affiliation(s)
- Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
26
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
27
|
Tuttle JT, Williams JR, Higgs DC. Characterization of a Chlamydomonas reinhardtii mutant strain with tolerance to low nitrogen and increased growth and biomass under nitrogen stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Kareya MS, Mariam I, Shaikh KM, Nesamma AA, Jutur PP. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO 2 in Microchloropsis gaditana NIES 2587. FRONTIERS IN PLANT SCIENCE 2020; 11:981. [PMID: 32719702 PMCID: PMC7348049 DOI: 10.3389/fpls.2020.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Photosynthetic organisms fix inorganic carbon through carbon capture machinery (CCM) that regulates the assimilation and accumulation of carbon around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, few constraints that govern the central carbon metabolism are regulated by the carbon capture and partitioning machinery. In order to divert the cellular metabolism toward lipids and/or biorenewables it is important to investigate and understand the molecular mechanisms of the CO2-driven carbon partitioning. In this context, strategies for enhancement of CO2 fixation which will increase the overall biomass and lipid yields, can provide clues on understanding the carbon assimilation pathway, and may lead to new targets for genetic engineering in microalgae. In the present study, we have focused on the physiological and metabolomic response occurring within marine oleaginous microalgae Microchloropsis gaditana NIES 2587, under the influence of very-low CO2 (VLC; 300 ppm, or 0.03%) and high CO2 (HC; 30,000 ppm, or 3% v/v). Our results demonstrate that HC supplementation in M. gaditana channelizes the carbon flux toward the production of long chain polyunsaturated fatty acids (LC-PUFAs) and also increases the overall biomass productivities (up to 2.0 fold). Also, the qualitative metabolomics has identified nearly 31 essential metabolites, among which there is a significant fold change observed in accumulation of sugars and alcohols such as galactose and phytol in VLC as compared to HC. In conclusion, our focus is to understand the entire carbon partitioning and metabolic regulation within these photosynthetic cell factories, which will be further evaluated through multiomics approach for enhanced productivities of biomass, biofuels, and bioproducts (B3).
Collapse
Affiliation(s)
| | | | | | | | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
29
|
Ding W, Li Q, Han B, Zhao Y, Geng S, Ning D, Ma T, Yu X. Comparative physiological and metabolomic analyses of the hyper-accumulation of astaxanthin and lipids in Haematococcus pluvialis upon treatment with butylated hydroxyanisole. BIORESOURCE TECHNOLOGY 2019; 292:122002. [PMID: 31437797 DOI: 10.1016/j.biortech.2019.122002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The major goal of this study was to explore the functions of butylated hydroxyanisole (BHA) combined with abiotic stress on the cultivation of the microalga Haematococcus pluvialis for astaxanthin and lipid production. Here, the effect of BHA on astaxanthin and lipid accumulation and physiological and metabolomic profiles was investigated. These results suggested that astaxanthin content was increased by 2.17-fold compared to the control. The lipid content was enhanced by 1.22-fold. BHA treatment simultaneously reduced carbohydrates and protein and delayed the decay of chlorophyll. Furthermore, metabolomic analysis demonstrated that BHA upregulated and activated the bioprocesses involved in cellular basal metabolism and signalling systems, such as glycolysis, the TCA cycle, amino acid metabolism and the phosphatidylinositol signalling system, thus enhancing astaxanthin and lipid accumulation. Altogether, this research shows the dramatic effects of BHA on algal metabolism in the regulation of key metabolic nodes and provides novel insights into microalgal regulation and metabolism.
Collapse
Affiliation(s)
- Wei Ding
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qingqing Li
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Benyong Han
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongteng Zhao
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | | | - Delu Ning
- Yunnan Academy of Forestry, Kunming 650051, China
| | - Ting Ma
- Yunnan Academy of Forestry, Kunming 650051, China
| | - Xuya Yu
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|