1
|
Liu X, Zhang Y, Qi X, Zhao D, Rao H, Zhao X, Li Y, Liu J, Qin Z, Hao J, Liu X. Advances of microbial xylanases in the application of flour industries: A comprehensive review. Int J Biol Macromol 2024; 282:137205. [PMID: 39489265 DOI: 10.1016/j.ijbiomac.2024.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Microbial xylanase has a wide range of applications, and many researchers favoring its utilization as an alternative to improve flour products. Wheat flour is the main raw material of flour products, although the content of arabinoxylan is not high in flour products, but it has a great influence on the quality of flour products, microbial xylanase can act on wheat arabinoxylan, so as to play the role of flour product improvement. This review carries out a description of the research progress on the application of xylanases in flour products in terms of xylanase properties, different families of xylanases and improvement mechanisms of xylanases in flour products. According to the properties of various microbial sources of xylanases, the suitable xylanase can be added to flour products, and the effect of xylanase towards wheat arabinoxylan in flour can be used to improve the quality of flour products. The molecular modification based on the properties of xylanase and the crystal structure of different families of xylanase and their substrate specificity toward wheat arabinoxylan are discussed. The article reviews the information about microbial xylanases in order to achieve better results in flour products and to provide a theoretical basis for their industrial application.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yuxi Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xiaoya Qi
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Dandan Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Huan Rao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xia Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jianxiong Hao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| | - Xueqiang Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
2
|
Pasin TM, Lucas RC, de Oliveira TB, McLeish MJ, Polizeli MDLTM. A new halotolerant xylanase from Aspergillus clavatus expressed in Escherichia coli with catalytic efficiency improved by site-directed mutagenesis. 3 Biotech 2024; 14:178. [PMID: 38855145 PMCID: PMC11156621 DOI: 10.1007/s13205-024-04021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Daily agro-industrial waste, primarily cellulose, lignin, and hemicellulose, poses a significant environmental challenge. Harnessing lignocellulolytic enzymes, particularly endo-1,4-β-xylanases, for efficient saccharification is a cost-effective strategy, transforming biomass into high-value products. This study focuses on the cloning, expression, site-directed mutagenesis, purification, three-dimensional modeling, and characterization of the recombinant endo-1,4-β-xylanase (XlnA) from Aspergillus clavatus in Escherichia coli. This work includes evaluation of the stability at varied NaCl concentrations, determining kinetic constants, and presenting the heterologous expression of XlnAΔ36 using pET22b(+). The expression led to purified enzymes with robust stability across diverse pH levels, exceptional thermostability at 50 °C, and 96-100% relative stability after 24 h in 3.0 M NaCl. Three-dimensional modeling reveals a GH11 architecture with catalytic residues Glu 132 and 22. XlnAΔ36 demonstrates outstanding kinetic parameters compared to other endo-1,4-β-xylanases, indicating its potential for industrial enzymatic cocktails, enhancing saccharification. Moreover, its ability to yield high-value compounds, such as sugars, suggests a promising and ecologically positive alternative for the food and biotechnology industries.
Collapse
Affiliation(s)
- Thiago M. Pasin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 USA
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Rosymar C. Lucas
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
- Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG 37130-001 Brazil
| | - Tássio B. de Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
- Department of Systematics and Ecology, Center for Exact and Nature Sciences, Federal University of Paraíba, João Pessoa, PB 58051-900 Brazil
| | - Michael J. McLeish
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Maria de Lourdes T. M. Polizeli
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| |
Collapse
|
3
|
Xu Y, Dong F, Wang R, Ajmal M, Liu X, Lin H, Chen H. Alternative splicing analysis of lignocellulose-degrading enzyme genes and enzyme variants in Aspergillus niger. Appl Microbiol Biotechnol 2024; 108:302. [PMID: 38639796 PMCID: PMC11031446 DOI: 10.1007/s00253-024-13137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-β-1,4-xylanase F1 gene (xynF1) and the endo-β-1,4-glucanase D gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-β-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes. KEY POINTS: • AS events were identified in the lignocellulose-degrading enzyme genes of A. niger. • New β-1,4-xylanase and LPMO derived from AS events were characterized.
Collapse
Affiliation(s)
- Yifan Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feiyu Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruoxin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Maria Ajmal
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinyu Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hui Lin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Sardiña-Peña AJ, Mesa-Ramos L, Iglesias-Figueroa BF, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Arévalo-Gallegos S, Rascón-Cruz Q. Analyzing Current Trends and Possible Strategies to Improve Sucrose Isomerases' Thermostability. Int J Mol Sci 2023; 24:14513. [PMID: 37833959 PMCID: PMC10572972 DOI: 10.3390/ijms241914513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.
Collapse
Affiliation(s)
- Amado Javier Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Liber Mesa-Ramos
- Laboratorio de Microbiología III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico;
| | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Lourdes Ballinas-Casarrubias
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Tania Samanta Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Norma Rosario Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
5
|
Sardiña-Peña AJ, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Iglesias-Figueroa BF, Rascón-Cruz Q. Thermostability improvement of sucrose isomerase PalI NX-5: a comprehensive strategy. Biotechnol Lett 2023:10.1007/s10529-023-03388-6. [PMID: 37199887 DOI: 10.1007/s10529-023-03388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To increase the thermal stability of sucrose isomerase from Erwinia rhapontici NX-5, we designed a comprehensive strategy that combines different thermostabilizing elements. RESULTS We identified 19 high B value amino acid residues for site-directed mutagenesis. An in silico evaluation of the influence of post-translational modifications on the thermostability was also carried out. The sucrose isomerase variants were expressed in Pichia pastoris X33. Thus, for the first time, we report the expression and characterization of glycosylated sucrose isomerases. The designed mutants K174Q, L202E and K174Q/L202E, showed an increase in their optimal temperature of 5 °C, while their half-lives increased 2.21, 1.73 and 2.89 times, respectively. The mutants showed an increase in activity of 20.3% up to 25.3%. The Km values for the K174Q, L202E, and K174Q/L202E mutants decreased by 5.1%, 7.9%, and 9.4%, respectively; furthermore, the catalytic efficiency increased by up to 16%. CONCLUSIONS With the comprehensive strategy followed, we successfully obtain engineered mutants more suitable for industrial applications than their counterparts: native (this research) and wild-type from E. rhapontici NX-5, without compromising the catalytic activity of the molecule.
Collapse
Affiliation(s)
- A J Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - L Ballinas-Casarrubias
- Laboratorio de Química Analítica III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - T S Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - E A Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - N R Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - B F Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - Q Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México.
| |
Collapse
|
6
|
De novo genome assembly and analysis of Zalaria sp. Him3, a novel fructooligosaccharides producing yeast. BMC Genom Data 2022; 23:78. [PMID: 36357835 PMCID: PMC9647967 DOI: 10.1186/s12863-022-01094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Zalaria sp. Him3 was reported as a novel fructooligosaccharides (FOS) producing yeast. However, Zalaria spp. have not been widely known and have been erroneously classified as a different black yeast, Aureobasidium pullulans. In this study, de novo genome assembly and analysis of Zalaria sp. Him3 was demonstrated to confirm the existence of a potential enzyme that facilitates FOS production and to compare with the genome of A. pullulans. Results The genome of Zalaria sp. Him3 was analyzed; the total read bases and total number of reads were 6.38 Gbp and 42,452,134 reads, respectively. The assembled genome sequence was calculated to be 22.38 Mbp, with 207 contigs, N50 of 885,387, L50 of 10, GC content of 53.8%, and 7,496 genes. g2419, g3120, and g3700 among the predicted genes were annotated as cellulase, xylanase, and β-fructofuranosidase (FFase), respectively. When the read sequences were mapped to A. pullulans EXF-150 genome as a reference, a small amount of reads (3.89%) corresponded to the reference genome. Phylogenetic tree analysis, which was based on the conserved sequence set consisting of 2,362 orthologs in the genome, indicated genetic differences between Zalaria sp. Him3 and Aureobasidium spp. Conclusion The differences between Zalaria and Aureobasidium spp. were evident at the genome level. g3700 identified in the Zalaria sp. Him3 likely does not encode a highly transfructosyl FFase because the motif sequences were unlike those in other FFases involved in FOS production. Therefore, strain Him3 may produce another FFase. Furthermore, several genes with promising functions were identified and might elicit further interest in Zalaria yeast. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01094-2.
Collapse
|
7
|
Li PW, Ma J, Wei XF, Zhang ZY, Wang RM, Xiao J, Wang JQ. Modification and application of highly active alkaline pectin lyase. AMB Express 2022; 12:130. [PMID: 36210372 PMCID: PMC9548460 DOI: 10.1186/s13568-022-01472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Alkaline pectate lyase has developmental prospects in the textile, pulp, paper, and food industries. In this study, we selected BacPelA, the pectin lyase with the highest expression activity from Bacillus clausii, modified and expressed in Escherichia coli BL21(DE3). Through fragment replacement, the catalytic activity of the enzyme was significantly improved. The optimum pH and temperature of the modified pectin lyase (PGLA-rep4) were 11.0 and 70 °C, respectively. It also exhibited a superior ability to cleave methylated pectin. The enzyme activity of PGLA-rep4, measured at 235 nm with 0.2% apple pectin as the substrate, was 554.0 U/mL, and the specific enzyme activity after purification using a nickel column was 822.9 U/mg. After approximately 20 ns of molecular dynamics simulation, the structure of the pectin lyase PGLA-rep4 tended to be stable. The root mean square fluctuation (RMSF) values at the key catalytically active site, LYS168, were higher than those of the wildtype PGLA. In addition, PGLA-rep4 was relatively stable in the presence of metal ions. PGLA-rep4 has good enzymatic properties and activities and maintains a high pH and temperature. This study provides a successful strategy for enhancing the catalytic activity of PGLA-rep4, making it the ultimate candidate for degumming and various uses in the pulp, paper, and textile industries.
Collapse
|
8
|
Li Y, Song W, Yin X, Rao S, Zhang Q, Zhou J, Li J, Du G, Liu S. Enhanced catalytic performance of thermophilic GH11 xylanase by fusing carbohydrate-binding module 9-2 and linker for better synergistic degradation of wheat bran. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Weng CY, Gao XF, Liu HT, Chu RL, Xie WB, Wang YJ, Zheng YG. Protein engineering of carbonyl reductases for asymmetric synthesis of ticagrelor precursor (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Liu HT, Weng CY, Xu SY, Li SF, Wang YJ, Zheng YG. Directed evolution of a carbonyl reductase LsCR for the enantioselective synthesis of (1S)-2-chloro-1-(3,4-difluorophenyl) ethanol. Bioorg Chem 2022; 127:105991. [DOI: 10.1016/j.bioorg.2022.105991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
|
11
|
Li Y, Li C, Huang H, Rao S, Zhang Q, Zhou J, Li J, Du G, Liu S. Significantly Enhanced Thermostability of Aspergillus niger Xylanase by Modifying Its Highly Flexible Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4620-4630. [PMID: 35404048 DOI: 10.1021/acs.jafc.2c01343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the thermostability of an acid-resistant GH11 xylanase (xynA) from Aspergillus niger AG11 was enhanced through systematic modification of its four highly flexible regions (HFRs) predicted using MD simulations. Among them, HFR I (residues 92-100) and HFR II (residues 121-130) were modified by iterative saturation mutagenesis (ISM), yielding mutants G92F/G97S/G100K and T121V/A124P/I126V/T129L/A130N, respectively. For HFR III, the N-(residues 1-37) and C-termini (residues 179-188) were, respectively, substituted with the corresponding sequences from thermophilic EvXyn11TS and Nesterenkonia xinjiangensis xylanase. N-Glycosylation was introduced into HFR IV (residues 50-70) through site-directed mutation (A55N/D57S/S61N) and the recombinant expression in A. niger AG11. Combining these positive mutations from each HFR yielded the variant xynAm1 with 137.6- and 1.3-fold increases in half-life at 50 °C and specific activity compared to the wild-type xynA, respectively. With the highest thermostability at 80 and 90 °C in reports, xynAm1 could be a robust candidate for industrial applications in functional foods, feed products, and bioethanol production.
Collapse
Affiliation(s)
- Yangyang Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cen Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Huang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
12
|
You S, Zhang YX, Shi F, Zhang WX, Li J, Zhang S, Chen ZL, Zhao WG, Wang J. Lowering energy consumption for fermentable sugar production from Ramulus mori: Engineered xylanase synergy and improved pretreatment strategy. BIORESOURCE TECHNOLOGY 2022; 344:126368. [PMID: 34808317 DOI: 10.1016/j.biortech.2021.126368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Biorefinery of Ramulus mori with lower energy consumption through improved enzyme and pretreatment strategies was reported. Directed evolution and saturation mutagenesis were used for the modification of xylanase, the yield of fermentable sugars and the degree of synergy (DS) were determined for different pretreatment (seawater/non-seawater) and enzyme treatment groups (xylanase/cellulase/co-treatment). The dominant mutant I133A/Q143Y of Bispora sp. xylanase XYL10C_ΔN was obtained with improved specific activity (1860 U/mg), catalytic efficiency (1150 mL/s∙mg) at 40 °C, and thermostability (T50 increased by 7 °C). With the pretreatment of seawater immersion, the highest yield of fermentable sugars for Ramulus mori at 40 °C reached 199 μmol/g when hydrolyzed with cellulase and I133A/Q143Y, with the highest DS of 2.6; this was 4.5-fold that of the group hydrolyzed by cellulase alone with non-seawater pretreatment. Thus, bioconversion of reducing sugar from Ramulus mori was improved significantly at lower temperatures, which provides an efficient and energy-saving wayfor biofuel production.
Collapse
Affiliation(s)
- Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Gene tic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Yi-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Fan Shi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jing Li
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Sheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhong-Li Chen
- Xinyuan Cocoon Silk Group Co., Ltd., Nantong 226600, PR China
| | - Wei-Guo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Gene tic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Gene tic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
13
|
You S, Li J, Zhang F, Bai ZY, Shittu S, Herman RA, Zhang WX, Wang J. Loop engineering of a thermostable GH10 xylanase to improve low-temperature catalytic performance for better synergistic biomass-degrading abilities. BIORESOURCE TECHNOLOGY 2021; 342:125962. [PMID: 34563821 DOI: 10.1016/j.biortech.2021.125962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biorefining for producing biofuels poses technical challenges. It is usually conducted over a long time using heat, making it energy intensive. In this study, we lowered the energy consumption of this process through an optimized enzyme and pretreatment strategy. First, the dominant mutant M137E/N269G of Bispora sp. MEY-1XYL10C_ΔN was obtained by directed evolution with highcatalytic efficiency (970 mL/s∙mg)and specific activity (2090 U/mg)at 37 °C, and thermostability was improved (T50 increased by5 °C). After pretreatment with seawater immersionfollowing steam explosion,bagasse was co-treated with cellulase and M137E/N269G under mild conditions (37 °C), the resulting highest yield of fermentable sugars reached 219 µmol/g of bagasse,46% higher than that of the non-seawater treatment group, with the highest degree of synergy of 2.0. Pretreatment with seawater following steam explosion and synergistic hydrolysis through high activity xylanase and cellulase helped to achieve low energy degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shuai You
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Jing Li
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Fang Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhi-Yuan Bai
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Saidi Shittu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Richard-Ansah Herman
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
14
|
You S, Zha Z, Li J, Zhang W, Bai Z, Hu Y, Wang X, Chen Y, Chen Z, Wang J, Luo H. Improvement of XYL10C_∆N catalytic performance through loop engineering for lignocellulosic biomass utilization in feed and fuel industries. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:195. [PMID: 34598723 PMCID: PMC8487158 DOI: 10.1186/s13068-021-02044-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Xylanase, an important accessory enzyme that acts in synergy with cellulase, is widely used to degrade lignocellulosic biomass. Thermostable enzymes with good catalytic activity at lower temperatures have great potential for future applications in the feed and fuel industries, which have distinct demands; however, the potential of the enzymes is yet to be researched. RESULTS In this study, a structure-based semi-rational design strategy was applied to enhance the low-temperature catalytic performance of Bispora sp. MEY-1 XYL10C_∆N wild-type (WT). Screening and comparisons were performed for the WT and mutant strains. Compared to the WT, the mutant M53S/F54L/N207G exhibited higher specific activity (2.9-fold; 2090 vs. 710 U/mg) and catalytic efficiency (2.8-fold; 1530 vs. 550 mL/s mg) at 40 °C, and also showed higher thermostability (the melting temperature and temperature of 50% activity loss after 30 min treatment increased by 7.7 °C and 3.5 °C, respectively). Compared with the cellulase-only treatment, combined treatment with M53S/F54L/N207G and cellulase increased the reducing sugar contents from corn stalk, wheat bran, and corn cob by 1.6-, 1.2-, and 1.4-folds, with 1.9, 1.2, and 1.6 as the highest degrees of synergy, respectively. CONCLUSIONS This study provides useful insights into the underlying mechanism and methods of xylanase modification for industrial utilization. We identified loop2 as a key functional area affecting the low-temperature catalytic efficiency of GH10 xylanase. The thermostable mutant M53S/F54L/N207G was selected for the highest low-temperature catalytic efficiency and reducing sugar yield in synergy with cellulase in the degradation of different types of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shuai You
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018 People’s Republic of China
| | - Ziqian Zha
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
| | - Jing Li
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People’s Republic of China
| | - Wenxin Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
| | - Zhiyuan Bai
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
| | - Yanghao Hu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
| | - Xue Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
| | - Yiwen Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
| | - Zhongli Chen
- Xinyuan Cocoon Silk Group Co., Ltd., Nantong, 226600 People’s Republic of China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018 People’s Republic of China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| |
Collapse
|
15
|
Hu Y, Shi CY, Xun XM, Huang BR, You S, Wu FA, Wang J. Xylanase-polymer conjugates as new catalysts for xylooligosaccharides production from lignocellulose. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Xie W, Yu Q, Zhang R, Liu Y, Cao R, Wang S, Zhan R, Liu Z, Wang K, Wang C. Insights into the Catalytic Mechanism of a Novel XynA and Structure-Based Engineering for Improving Bifunctional Activities. Biochemistry 2021; 60:2071-2083. [PMID: 34156819 DOI: 10.1021/acs.biochem.1c00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xylan and cellulose are the two major constituents of numerous types of lignocellulose. The bifunctional enzyme that exhibits xylanase/cellulase activity has attracted a great deal of attention in biofuel production. Previously, a thermostable GH10 family enzyme (XynA) from Bacillus sp. KW1 was found to degrade both xylan and cellulose. To improve bifunctional activity on the basis of structure, we first determined the crystal structure of XynA at 2.3 Å. Via molecular docking and activity assays, we revealed that Gln250 and His252 were indispensable to bifunctionality, because they could interact with two conserved catalytic residues, Glu182 and Glu280, while bringing the substrate close to the activity pocket. Then we used a structure-based engineering strategy to improve xylanase/cellulase activity. Although no mutants with increased bifunctional activity were obtained after much screening, we found the answer in the N-terminal 36-amino acid truncation of XynA. The activities of XynA_ΔN36 toward beechwood xylan, wheat arabinoxylan, filter paper, and barley β-glucan were significantly increased by 0.47-, 0.53-, 2.46-, and 1.04-fold, respectively. Furthermore, upon application, this truncation released more reducing sugars than the wild type in the degradation of pretreated corn stover and sugar cane bagasse. These results showed the detailed molecular mechanism of the GH10 family bifunctional endoxylanase/cellulase. The basis of these catalytic performances and the screened XynA_ΔN36 provide clues for the further use of XynA in industrial applications.
Collapse
Affiliation(s)
- Wei Xie
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ruiqing Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yun Liu
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ruoting Cao
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sidi Wang
- College of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| |
Collapse
|
17
|
Paixão DAA, Tomazetto G, Sodré VR, Gonçalves TA, Uchima CA, Büchli F, Alvarez TM, Persinoti GF, da Silva MJ, Bragatto J, Liberato MV, Franco Cairo JPL, Leme AFP, Squina FM. Microbial enrichment and meta-omics analysis identify CAZymes from mangrove sediments with unique properties. Enzyme Microb Technol 2021; 148:109820. [PMID: 34116762 DOI: 10.1016/j.enzmictec.2021.109820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Although lignocellulose is the most abundant and renewable natural resource for biofuel production, its use remains under exploration because of its highly recalcitrant structure. Its deconstruction into sugar monomers is mainly driven by carbohydrate-active enzymes (CAZymes). To develop highly efficient and fast strategies to discover biomass-degrading enzymes for biorefinery applications, an enrichment process combined with integrative omics approaches was used to identify new CAZymes. The lignocellulolytic-enriched mangrove microbial community (LignoManG) established on sugarcane bagasse (SB) was enriched with lignocellulolytic bacteria and fungi such as Proteobacteria, Bacteroidetes, Basidiomycota, and Ascomycota. These microbial communities were able to degrade up to 55 % of the total SB, indicating the production of lignocellulolytic enzymes. Metagenomic analysis revealed that the LignoManG harbors 18.042 CAZyme sequences such as of cellulases, hemicellulases, carbohydrate esterases, and lytic polysaccharide monooxygenase. Similarly, our metaproteomic analysis depicted several enzymes from distinct families of different CAZy families. Based on the LignoManG data, a xylanase (coldXynZ) was selected, amplified, cloned, expressed, and biochemically characterized. The enzyme displayed psicrofilic properties, with the highest activity at 15 °C, retaining 77 % of its activity when incubated at 0 °C. Moreover, molecular modeling in silico indicated that coldXynZ is composed of a TIM barrel, which is a typical folding found in the GH10 family, and displayed similar structural features related to cold-adapted enzymes. Collectively, the data generated in this study represent a valuable resource for lignocellulolytic enzymes with potential biotechnological applications.
Collapse
Affiliation(s)
| | - Geizecler Tomazetto
- Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200, Aarhus, Denmark
| | - Victoria Ramos Sodré
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazi; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - Thiago A Gonçalves
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazi; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - Cristiane Akemi Uchima
- Laboratório Nacional de Biorenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Fernanda Büchli
- Laboratório Nacional de Biorenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Thabata Maria Alvarez
- Graduate Programme in Industrial Biotechnology, Universidade Positivo, Curitiba, Brazil
| | - Gabriela Felix Persinoti
- Laboratório Nacional de Biorenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Márcio José da Silva
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliano Bragatto
- Laboratório Nacional de Biorenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Marcelo Vizoná Liberato
- Laboratório Nacional de Biorenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - João Paulo L Franco Cairo
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazi; Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| | - Adriana Franco Paes Leme
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil.
| |
Collapse
|
18
|
Liu Y, Wang J, Bao C, Dong B, Cao Y. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase. Int J Biol Macromol 2021; 182:701-711. [PMID: 33862072 DOI: 10.1016/j.ijbiomac.2021.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
A study was carried out to investigate the characterization of a novel Aspergillus sulphureus JCM01963 xylanase (AS-xyn10A) with a carbohydrate binding module (CBM) and its application in degrading alkali pretreated corncob, rapeseed meal and corn stover alone and in combination with a commercial cellulase. In this study, the 3D structure of AS-xyn10A, which contained a CBM at C-terminal. AS-xyn10A and its CBM-truncated variant (AS-xyn10A-dC) was codon-optimized and over-expressed in Komagaella phaffii X-33 (syn. Pichia pastoris) and characterized with optimal condition at 70 °C and pH 5.0, respectively. AS-xyn10A displayed high activity to xylan extracted from corn stover, corncob, and rapeseed meal. The concentration of hydrolyzed xylo-oligosaccharides (XOSs) reached 1592.26 μg/mL, 1149.92 μg/mL, and 621.86 μg/mL, respectively. Xylobiose was the main product (~70%) in the hydrolysis mixture. AS-xyn10A significantly synergized with cellulase to improve the hydrolysis efficiency of corn stover, corncob, and rapeseed meal to glucose. The degree of synergy (DS) was 1.32, 1.31, and 1.30, respectively. Simultaneously, XOSs hydrolyzed with AS-xyn10A and cellulase was improved by 46.48%, 66.13% and 141.45%, respectively. In addition, CBM variant decreased the yields of xylo-oligosaccharide and glucose in rapeseed meal degradation. This study provided a novel GH10 endo-xylanase, which has potential applications in hydrolysis of biomass.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|