1
|
Wang X, Zhan W, Zhou S, He S, Wang S, Yu Y, Fan H. The synthesis of triacylglycerol by diacylglycerol acyltransferases (CsDGAT1A and CsDGAT2D) is essential for tolerance of cucumber's resistance to low-temperature stress. PLANT CELL REPORTS 2024; 43:196. [PMID: 39009888 DOI: 10.1007/s00299-024-03282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
KEY MESSAGE CsDGAT1A and CsDGAT2D play a positive regulatory role in cucumber's response to low-temperature stress and positively regulate the synthesis of triacylglycerol (TAG). Triacylglycerol (TAG), a highly abundant and significant organic compound in plants, plays crucial roles in plant growth, development, and stress responses. The final acetylation step of TAG synthesis is catalyzed by diacylglycerol acyltransferases (DGATs). However, the involvement of DGATs in cucumber's low-temperature stress response remains unexplored. This study focused on two DGAT genes, CsDGAT1A and CsDGAT2D, investigating their function in enhancing cucumber's low-temperature stress tolerance. Our results revealed that both proteins were the members of the diacylglycerol acyltransferase family and were predominantly localized in the endoplasmic reticulum. Functional analysis demonstrated that transient silencing of CsDGAT1A and CsDGAT2D significantly compromised cucumber's low-temperature stress tolerance, whereas transient overexpression enhanced it. Furthermore, the TAG content quantification indicated that CsDGAT1A and CsDGAT2D promoted TAG accumulation. In conclusion, this study elucidates the lipid metabolism mechanism in cucumber's low-temperature stress response and offers valuable insights for the cultivation of cold-tolerant cucumber plants.
Collapse
Affiliation(s)
- Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Zhan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Siyao He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Siqi Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Zhou Y, Huang X, Hu T, Chen S, Wang Y, Shi X, Yin M, Li R, Wang J, Jia X. Genome-Wide Analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Family in Perilla frutescens and Functional Characterization of PfGPAT9 Crucial for Biosynthesis of Storage Oils Rich in High-Value Lipids. Int J Mol Sci 2023; 24:15106. [PMID: 37894786 PMCID: PMC10606570 DOI: 10.3390/ijms242015106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops.
Collapse
Affiliation(s)
- Yali Zhou
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Xusheng Huang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Ting Hu
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Shuwei Chen
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Yao Wang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Xianfei Shi
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Miao Yin
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Runzhi Li
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Jiping Wang
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
| | - Xiaoyun Jia
- College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Jinzhong 030801, China; (Y.Z.); (Y.W.); (X.J.)
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
3
|
Zhang S, Li P, Wei Z, Cheng Y, Liu J, Yang Y, Wang Y, Mu Z. Cyperus ( Cyperus esculentus L.): A Review of Its Compositions, Medical Efficacy, Antibacterial Activity and Allelopathic Potentials. PLANTS (BASEL, SWITZERLAND) 2022; 11:1127. [PMID: 35567128 PMCID: PMC9102041 DOI: 10.3390/plants11091127] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 05/19/2023]
Abstract
Cyperus (Cyperus esculentus L.) is an edible perennial grass-like plant, which propagates exclusively with underground tubers. Its tubers are rich in starch (20-30%), fat (25-35%), sugar (10-20%), protein (10-15%) and dietary fiber (8-9%). In addition, the tubers also contain alkaloids, organic acids, vitamins (C and E), steroids, terpenoids and other active components. The contents of oleic acid and linoleic acid in Cyperus oil are very high, which have important medicinal value and health-promoting properties. Most of the extracts from the tubers, stems and leaves of Cyperus have allelopathic potential and antibacterial, antioxidant and insecticidal activities. In recent years, the planting area of Cyperus has increased significantly all over the world, especially in China and some other countries. This paper presents the current status of Cyperus and the recent trend in research in this area. Published reports on its nutritional contents, active ingredients, medicinal efficacy, antibacterial activity and allelopathic potential were also reviewed.
Collapse
Affiliation(s)
- Shengai Zhang
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling 136105, China
- Binzhou Vocational College, Binzhou 256600, China
| | - Peizhi Li
- Jia Sixie Agricultural College, Weifang University of Science and Technology, Weifang 262700, China
| | - Zunmiao Wei
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling 136105, China
| | - Yan Cheng
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling 136105, China
| | - Jiayao Liu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling 136105, China
| | - Yanmin Yang
- Binzhou Vocational College, Binzhou 256600, China
| | - Yuyan Wang
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling 136105, China
- Binzhou Vocational College, Binzhou 256600, China
| | - Zhongsheng Mu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling 136105, China
| |
Collapse
|
4
|
Cheng K, Pan YF, Liu LM, Zhang HQ, Zhang YM. Integrated Transcriptomic and Bioinformatics Analyses Reveal the Molecular Mechanisms for the Differences in Seed Oil and Starch Content Between Glycine max and Cicer arietinum. FRONTIERS IN PLANT SCIENCE 2021; 12:743680. [PMID: 34764968 PMCID: PMC8576049 DOI: 10.3389/fpls.2021.743680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The seed oil and starch content of soybean are significantly different from that of chickpea. However, there are limited studies on its molecular mechanisms. To address this issue, we conducted integrated transcriptomic and bioinformatics analyses for species-specific genes and acyl-lipid-, starch-, and carbon metabolism-related genes. Among seven expressional patterns of soybean-specific genes, four were highly expressed at the middle- and late oil accumulation stages; these genes significantly enriched fatty acid synthesis and carbon metabolism, and along with common acetyl CoA carboxylase (ACCase) highly expressed at soybean middle seed development stage, common starch-degrading enzyme beta-amylase-5 (BAM5) was highly expressed at soybean early seed development stage and oil synthesis-related genes ACCase, KAS, KAR, ACP, and long-chain acyl-CoA synthetase (LACS) were co-expressed with WRI1, which may result in high seed oil content and low seed starch content in soybean. The common ADP-glucose pyrophosphorylase (AGPase) was highly expressed at chickpea middle seed development stage, along with more starch biosynthesis genes co-expressed with four-transcription-factor homologous genes in chickpea than in soybean, and the common WRI1 was not co-expressed with oil synthesis genes in chickpea, which may result in high seed starch content and low seed oil content in chickpea. The above results may be used to improve chickpea seed oil content in two ways. One is to edit CaWRI1 to co-express with oil synthesis-related genes, which may increase carbon metabolites flowing to oil synthesis, and another is to increase the expression levels of miRNA159 and miRNA319 to inhibit the expression of MYB33, which may downregulate starch synthesis-related genes, making more carbon metabolites flow into oil synthesis. Our study will provide a basis for future breeding efforts to increase the oil content of chickpea seeds.
Collapse
|