1
|
Shad MA, Li X, Rao MJ, Luo Z, Li X, Ali A, Wang L. Exploring Lignin Biosynthesis Genes in Rice: Evolution, Function, and Expression. Int J Mol Sci 2024; 25:10001. [PMID: 39337489 PMCID: PMC11432410 DOI: 10.3390/ijms251810001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Lignin is nature's second most abundant vascular plant biopolymer, playing significant roles in mechanical support, water transport, and stress responses. This study identified 90 lignin biosynthesis genes in rice based on phylogeny and motif constitution, and they belong to PAL, C4H, 4CL, HCT, C3H, CCoAOMT, CCR, F5H, COMT, and CAD families. Duplication events contributed largely to the expansion of these gene families, such as PAL, CCoAOMT, CCR, and CAD families, mainly attributed to tandem and segmental duplication. Microarray data of 33 tissue samples covering the entire life cycle of rice suggested fairly high PAL, HCT, C3H, CCoAOMT, CCR, COMT, and CAD gene expressions and rather variable C4H, 4CL, and F5H expressions. Some members of lignin-related genes (OsCCRL11, OsHCT1/2/5, OsCCoAOMT1/3/5, OsCOMT, OsC3H, OsCAD2, and OsPAL1/6) were expressed in all tissues examined. The expression patterns of lignin-related genes can be divided into two major groups with eight subgroups, each showing a distinct co-expression in tissues representing typically primary and secondary cell wall constitutions. Some lignin-related genes were strongly co-expressed in tissues typical of secondary cell walls. Combined HPLC analysis showed increased lignin monomer (H, G, and S) contents from young to old growth stages in five genotypes. Based on 90 genes' microarray data, 27 genes were selected for qRT-PCR gene expression analysis. Four genes (OsPAL9, OsCAD8C, OsCCR8, and OsCOMTL4) were significantly negatively correlated with lignin monomers. Furthermore, eleven genes were co-expressed in certain genotypes during secondary growth stages. Among them, six genes (OsC3H, OsCAD2, OsCCR2, OsCOMT, OsPAL2, and OsPAL8) were overlapped with microarray gene expressions, highlighting their importance in lignin biosynthesis.
Collapse
Affiliation(s)
- Munsif Ali Shad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Zixuan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Xianlong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Hu Y, Ma M, Zhao W, Niu P, Li R, Luo J. Identification of hub genes involved in gibberellin-regulated elongation of coleoptiles of rice seeds germinating under submerged conditions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3862-3876. [PMID: 38571323 DOI: 10.1093/jxb/erae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Rapid elongation of coleoptiles from rice seeds to reach the water surface enables plants to survive submergence stress and therefore plays a crucial role in allowing direct seeding in rice cultivation. Gibberellin (GA) positively influences growth in rice, but the molecular mechanisms underlying its regulation of coleoptile elongation under submerged conditions remain unclear. In this study, we performed a weighted gene co-expression network analysis to conduct a preliminarily examination of the mechanisms. Four key modules were identified with high correlations to the GA regulation of submergence tolerance. The genes within these modules were mainly involved in the Golgi apparatus and carbohydrate metabolic pathways, suggesting their involvement in enhancing submergence tolerance. Further analysis of natural variation revealed that the specific hub genes Os03g0337900, Os03g0355600, and Os07g0638400 exhibited strong correlations with subspecies divergence of the coleoptile elongation phenotype. Consistent with this analysis, mutation of Os07g0638400 resulted in a lower germination potential and a stronger inhibition of coleoptile elongation under submerged conditions. The hub genes identified in this study provide new insights into the molecular mechanisms underlying GA-dependent tolerance to submergence stress in rice, and a potential basis for future modification of rice germplasm to allow for direct seeding.
Collapse
Affiliation(s)
- Yunfei Hu
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Mingqing Ma
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Wenlong Zhao
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Pengwei Niu
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Jijing Luo
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Umezawa T. Metabolic engineering of Oryza sativa for lignin augmentation and structural simplification. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:89-101. [PMID: 39463768 PMCID: PMC11500570 DOI: 10.5511/plantbiotechnology.24.0131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 10/29/2024]
Abstract
The sustainable production and utilization of lignocellulose biomass are indispensable for establishing sustainable societies. Trees and large-sized grasses are the major sources of lignocellulose biomass, while large-sized grasses greatly surpass trees in terms of lignocellulose biomass productivity. With an overall aim to improve lignocellulose usability, it is important to increase the lignin content and simplify lignin structures in biomass plants via lignin metabolic engineering. Rice (Oryza sativa) is not only a representative and important grass crop, but also is a model for large-sized grasses in biotechnology. This review outlines progress in lignin metabolic engineering in grasses, mainly rice, including characterization of the lignocellulose properties, the augmentation of lignin content and the simplification of lignin structures. These findings have broad applicability for the metabolic engineering of lignin in large-sized grass biomass plants.
Collapse
Affiliation(s)
- Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University
| |
Collapse
|
4
|
Zhang X, Xue W, Qi L, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Malic acid inhibits accumulation of cadmium, lead, nickel and chromium by down-regulation of OsCESA and up-regulation of OsGLR3 in rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122934. [PMID: 37967709 DOI: 10.1016/j.envpol.2023.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China; Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Lin Qi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China.
| |
Collapse
|
5
|
Lv S, Lin Z, Shen J, Luo L, Xu Q, Li L, Gui J. OsTCP19 coordinates inhibition of lignin biosynthesis and promotion of cellulose biosynthesis to modify lodging resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:123-136. [PMID: 37724960 DOI: 10.1093/jxb/erad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Lignin and cellulose are two essential elements of plant secondary cell walls that shape the mechanical characteristics of the culm to prevent lodging. However, how the regulation of the lignin and cellulose composition is combined to achieve optimal mechanical characteristics is unclear. Here, we show that increasing OsTCP19 expression in rice coordinately repressed lignin biosynthesis and promoted cellulose biosynthesis, resulting in enhanced lodging resistance. In contrast, repression of OsTCP19 coordinately promoted lignin biosynthesis and inhibited cellulose biosynthesis, leading to greater susceptibility to lodging. We found that OsTCP19 binds to the promoters of both MYB108 and MYB103L to increase their expression, with the former being responsible for repressing lignin biosynthesis and the latter for promoting cellulose biosynthesis. Moreover, up-regulation of OsTCP19 in fibers improved grain yield and lodging resistance. Thus, our results identify the OsTCP19-OsMYB108/OsMYB103L module as a key regulator of lignin and cellulose production in rice, and open up the possibility for precisely manipulating lignin-cellulose composition to improve culm mechanical properties for lodging resistance.
Collapse
Affiliation(s)
- Siwei Lv
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zengshun Lin
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junhui Shen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laifu Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingguo Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Zhu P, Zhong Y, Luo L, Shen J, Sun J, Li L, Cheng L, Gui J. The MPK6-LTF1L1 module regulates lignin biosynthesis in rice through a distinct mechanism from Populus LTF1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111890. [PMID: 37813192 DOI: 10.1016/j.plantsci.2023.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Lignin is a complex polymer that provides structural support and defense to plants. It is synthesized in the secondary cell walls of specialized cells. Through regulates its stability, LTF1 acts as a switch to control lignin biosynthesis in Populus, a dicot plant. However, how lignin biosynthesis is regulated in rice, a monocot plant, remains unclear. By employing genetic, cellular, and chemical approaches, we discovered that LTF1L1, a rice homolog of LTF1, regulates lignin biosynthesis through a distinct mechanism from Populus LTF1. Knockout of LTF1L1 increased lignin synthesis in the sclerenchyma cells of rice stems, while overexpression of LTF1L1 decreased it. LTF1L1 is phosphorylated by OsMPK6 at Ser169, which did not affect its stability but impaired its ability to repress the expression of lignin biosynthesis genes. This was supported by the non-phosphorylated mutant of LTF1L1 (LTF1L1S169A), which displayed a stronger repressive effect on lignin biosynthesis in both rice and Populus. Our findings reveal that LTF1L1 acts as a negative regulator of lignin biosynthesis via a distinct mechanism from that of LTF1 in Populus and highlight the evolutionary diversity in the regulation of lignin biosynthesis in plants.
Collapse
Affiliation(s)
- Ping Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Laifu Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junhui Shen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayan Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Longjun Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
7
|
Zhang X, Xue W, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca 2+/Mn 2+/Fe 2+/Zn 2+ over Cd 2+ in rice plant. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131342. [PMID: 37023578 DOI: 10.1016/j.jhazmat.2023.131342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The selective permeation of glutamate receptor channels (GLRs) for essential and toxic elements in plant cells is poorly understood. The present study found that the ratios between cadmium (Cd) and 7 essential elements (i.e., K, Mg, Ca, Mn, Fe, Zn and Cu) in grains and vegetative organs increased significantly with the increase of soil Cd levels. Accumulation of Cd resulted in the significant increase of Ca, Mn, Fe and Zn content and the expression levels of Ca channel genes (OsCNGC1,2 and OsOSCA1.1,2.4), while remarkable reduction of glutamate content and expression levels of GLR3.1-3.4 in rice. When planted in the same Cd-polluted soil, mutant fc8 displayed significantly higher content of Ca, Fe, Zn and expression levels of GLR3.1-3.4 than its wild type NPB. On the contrary, the ratios between Cd and essential elements in fc8 were significantly lower than that in NPB. These results indicate that Cd pollution may damage the structural integrity of GLRs by inhibiting glutamate synthesis and expression levels of GLR3.1-3.4, which leads to the increase of ion influx but the decrease of preferential selectivity for Ca2+/ Mn2+/ Fe2+/ Zn2+ over Cd2+ through GLRs in rice cells.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| |
Collapse
|
8
|
Shan W, Yan Y, Li Y, Hu W, Chen J. Microbial tolerance engineering for boosting lactic acid production from lignocellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:78. [PMID: 37170163 PMCID: PMC10173534 DOI: 10.1186/s13068-023-02334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Lignocellulosic biomass is an attractive non-food feedstock for lactic acid production via microbial conversion due to its abundance and low-price, which can alleviate the conflict with food supplies. However, a variety of inhibitors derived from the biomass pretreatment processes repress microbial growth, decrease feedstock conversion efficiency and increase lactic acid production costs. Microbial tolerance engineering strategies accelerate the conversion of carbohydrates by improving microbial tolerance to toxic inhibitors using pretreated lignocellulose hydrolysate as a feedstock. This review presents the recent significant progress in microbial tolerance engineering to develop robust microbial cell factories with inhibitor tolerance and their application for cellulosic lactic acid production. Moreover, microbial tolerance engineering crosslinking other efficient breeding tools and novel approaches are also deeply discussed, aiming to providing a practical guide for economically viable production of cellulosic lactic acid.
Collapse
Affiliation(s)
- Wenwen Shan
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongli Yan
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongda Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Wei Hu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Jihong Chen
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification. Nat Commun 2023; 14:1100. [PMID: 36841862 PMCID: PMC9968341 DOI: 10.1038/s41467-023-36856-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Plant cellulose microfibrils are increasingly employed to produce functional nanofibers and nanocrystals for biomaterials, but their catalytic formation and conversion mechanisms remain elusive. Here, we characterize length-reduced cellulose nanofibers assembly in situ accounting for the high density of amorphous cellulose regions in the natural rice fragile culm 16 (Osfc16) mutant defective in cellulose biosynthesis using both classic and advanced atomic force microscopy (AFM) techniques equipped with a single-molecular recognition system. By employing individual types of cellulases, we observe efficient enzymatic catalysis modes in the mutant, due to amorphous and inner-broken cellulose chains elevated as breakpoints for initiating and completing cellulose hydrolyses into higher-yield fermentable sugars. Furthermore, effective chemical catalysis mode is examined in vitro for cellulose nanofibers conversion into nanocrystals with reduced dimensions. Our study addresses how plant cellulose substrates are digestible and convertible, revealing a strategy for precise engineering of cellulose substrates toward cost-effective biofuels and high-quality bioproducts.
Collapse
|
10
|
Pancaldi F, van Loo EN, Senio S, Al Hassan M, van der Cruijsen K, Paulo MJ, Dolstra O, Schranz ME, Trindade LM. Syntenic Cell Wall QTLs as Versatile Breeding Tools: Intraspecific Allelic Variability and Predictability of Biomass Quality Loci in Target Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:779. [PMID: 36840127 PMCID: PMC9961111 DOI: 10.3390/plants12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Syntenic cell wall QTLs (SQTLs) can identify genetic determinants of biomass traits in understudied species based on results from model crops. However, their effective use in plant breeding requires SQTLs to display intraspecific allelic variability and to predict causative loci in other populations/species than the ones used for SQTLs identification. In this study, genome assemblies from different accessions of Arabidopsis, rapeseed, tomato, rice, Brachypodium and maize were used to evaluate the intraspecific variability of SQTLs. In parallel, a genome-wide association study (GWAS) on cell wall quality traits was performed in miscanthus to verify the colocalization between GWAS loci and miscanthus SQTLs. Finally, an analogous approach was applied on a set of switchgrass cell wall QTLs retrieved from the literature. These analyses revealed large SQTLs intraspecific genetic variability, ranging from presence-absence gene variation to SNPs/INDELs and changes in coded proteins. Cell wall genes displaying gene dosage regulation, such as PAL and CAD, displayed presence-absence variation in Brachypodium and rapeseed, while protein INDELs were detected for the Brachypodium homologs of the rice brittle culm-like 8 locus, which may likely impact cell wall quality. Furthermore, SQTLs significantly colocalized with the miscanthus and switchgrass QTLs, with relevant cell wall genes being retained in colocalizing regions. Overall, SQTLs are useful tools to screen germplasm for relevant genes and alleles to improve biomass quality and can increase the efficiency of plant breeding in understudied biomass crops.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Eibertus N. van Loo
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sylwia Senio
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mohamad Al Hassan
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kasper van der Cruijsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Oene Dolstra
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M. Eric Schranz
- Biosystematics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Zhang R, Gao H, Wang Y, He B, Lu J, Zhu W, Peng L, Wang Y. Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction. BIORESOURCE TECHNOLOGY 2023; 369:128315. [PMID: 36414143 DOI: 10.1016/j.biortech.2022.128315] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose represents the most abundant carbon-capturing substance that is convertible for biofuels and bioproduction. Although biomass pretreatments have been broadly applied to reduce lignocellulose recalcitrance for enhanced enzymatic saccharification, they mostly require strong conditions with potential secondary waste release. By classifying all major types of pretreatments that have been recently conducted with different sources of lignocellulose substrates, this study sorted out their distinct roles for wall polymer extraction and destruction, leading to the optimal pretreatments evaluated for cost-effective biomass enzymatic saccharification to maximize biofuel production. Notably, all undigestible lignocellulose residues are also aimed for effective conversion into value-added bioproduction. Meanwhile, desired pretreatments were proposed for the generation of highly-valuable nanomaterials such as cellulose nanocrystals, lignin nanoparticles, functional wood, carbon dots, porous and graphitic nanocarbons. Therefore, this article has proposed a novel strategy that integrates cost-effective and green-like pretreatments with desirable lignocellulose substrates for a full lignocellulose utilization with zero-biomass-waste liberation.
Collapse
Affiliation(s)
- Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hairong Gao
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Yongtai Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Boyang He
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Jun Lu
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China.
| |
Collapse
|
12
|
Fan C, Zhang W, Guo Y, Sun K, Wang L, Luo K. Overexpression of PtoMYB115 improves lignocellulose recalcitrance to enhance biomass digestibility and bioethanol yield by specifically regulating lignin biosynthesis in transgenic poplar. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:119. [PMCID: PMC9636778 DOI: 10.1186/s13068-022-02218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Background
Woody plants provide the most abundant biomass resource that is convertible for biofuels. Since lignin is a crucial recalcitrant factor against lignocellulose hydrolysis, genetic engineering of lignin biosynthesis is considered as a promising solution. Many MYB transcription factors have been identified to involve in the regulation of cell wall formation or phenylpropanoid pathway. In a previous study, we identified that PtoMYB115 contributes to the regulation of proanthocyanidin pathway, however, little is known about its role in lignocellulose biosynthesis and biomass saccharification in poplar.
Results
Here, we detected the changes of cell wall features and examined biomass enzymatic saccharification for bioethanol production under various chemical pretreatments in PtoMYB115 transgenic plants. We reported that PtoMYB115 might specifically regulate lignin biosynthesis to affect xylem development. Overexpression of PtoMYB115 altered lignin biosynthetic gene expression, resulting in reduced lignin deposition, raised S/G and beta-O-4 linkage, resulting in a significant reduction in cellulase adsorption with lignin and an increment in cellulose accessibility. These alterations consequently improved lignocellulose recalcitrance for significantly enhanced biomass saccharification and bioethanol yield in the PtoMYB115-OE transgenic lines. In contrast, the knockout of PtoMYB115 by CRISPR/Cas9 showed reduced woody utilization under various chemical pretreatments.
Conclusions
This study shows that PtoMYB115 plays an important role in specifically regulating lignin biosynthesis and improving lignocellulose features. The enhanced biomass saccharification and bioethanol yield in the PtoMYB115-OE lines suggests that PtoMYB115 is a candidate gene for genetic modification to facilitate the utilization of biomass.
Collapse
|
13
|
Ma Y, Chen X, Khan MZ, Xiao J, Cao Z. A Combination of Novel Microecological Agents and Molasses Role in Digestibility and Fermentation of Rice Straw by Facilitating the Ruminal Microbial Colonization. Front Microbiol 2022; 13:948049. [PMID: 35910602 PMCID: PMC9329086 DOI: 10.3389/fmicb.2022.948049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we evaluated the effect of microecological agents (MA) combined with molasses (M) on the biodegradation of rice straw in the rumen. Rice straw was pretreated in laboratory polyethylene 25 × 35 cm sterile bags with no additive control (Con), MA, and MA + M for 7, 15, 30, and 45 days, and then the efficacy of MA + M pretreatment was evaluated both in vitro and in vivo. The scanning electron microscopy, X-ray diffraction analysis, and Fourier-transform infrared spectroscopy results showed that the MA or MA + M pretreatment altered the physical and chemical structure of rice straw. Meanwhile, the ruminal microbial attachment on the surface of rice straw was significantly increased after MA+M pretreatment. Furthermore, MA + M not only promoted rice straw fermentation in vitro but also improved digestibility by specifically inducing rumen colonization of Prevotellaceae_UCG-001, Butyrivibrio, and Succinimonas. Altogether, we concluded that microecological agents and molasses could be the best choices as a biological pretreatment for rice straw to enhance its nutritive value as a ruminant's feed.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, Department of Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Yu H, Hu M, Hu Z, Liu F, Yu H, Yang Q, Gao H, Xu C, Wang M, Zhang G, Wang Y, Xia T, Peng L, Wang Y. Insights into pectin dominated enhancements for elimination of toxic Cd and dye coupled with ethanol production in desirable lignocelluloses. Carbohydr Polym 2022; 286:119298. [DOI: 10.1016/j.carbpol.2022.119298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
|