1
|
Carranza Muñoz A, Olsson J, Malovanyy A, Baresel C, Machamada-Devaiah N, Schnürer A. Impact of thermal hydrolysis on VFA-based carbon source production from fermentation of sludge and digestate for denitrification: experimentation and upscaling implications. WATER RESEARCH 2024; 266:122426. [PMID: 39276471 DOI: 10.1016/j.watres.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Stricter nutrient discharge limits at wastewater treatment plants (WWTPs) are increasing the demand for external carbon sources for denitrification, especially at cold temperatures. Production of carbon sources at WWTP by fermentation of sewage sludge often results in low yields of soluble carbon and volatile fatty acids (VFA) and high biogas losses, limiting its feasibility for full-scale application. This study investigated the overall impact of thermal hydrolysis pre-treatment (THP) on the production of VFA for denitrification through the fermentation of municipal sludge and digestate. Fermentation products and yields, denitrification efficiency and potential impacts on methane yield in the downstream process after carbon source separation were evaluated. Fermentation of THP substrates resulted in 37-70 % higher soluble chemical oxygen demand (sCOD) concentrations than fermentation of untreated substrates but did not significantly affect VFA yield after fermentation. Nevertheless, THP had a positive impact on the denitrification rates and on the methane yields of the residual solid fraction in all experiments. Among the different carbon sources tested, the one produced from the fermentation of THP-digestate showed an overall better potential as a carbon source than other substrates (e.g. sludge). It obtained a relatively high carbon solubilisation degree (39 %) and higher concentrations of sCOD (19 g sCOD/L) and VFA (9.8 g VFACOD/L), which resulted in a higher denitrification rate (8.77 mg NOx-N/g VSS∙h). After the separation of the carbon source, the solid phase from this sample produced a methane yield of 101 mL CH4/g VS. Furthermore, fermentation of a 50:50 mixture of THP-substrate and raw sludge produced also resulted in a high VFA yield (283 g VFACOD/kg VSin) and denitrification rate of 8.74 mg NOx-N/g VSS∙h, indicating a potential for reduced treatment volumes. Calculations based on a full-scale WWTP (Käppala, Stockholm) demonstrated that the carbon sources produced could replace fossil-based methanol and meet the nitrogen effluent limit (6 mg/L) despite their ammonium content. Fermentation of 50-63 % of the available sludge at Käppala WWTP in 2028 could produce enough carbon source to replace methanol, with only an 8-20 % reduction in methane production, depending on the production process. Additionally, digestate production would be sufficient to generate 81 % of the required carbon source while also increasing methane production by 5 % if a portion of the solid residues were recirculated to the digester.
Collapse
Affiliation(s)
- Andrea Carranza Muñoz
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden; Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden.
| | - Jesper Olsson
- The Käppala Association, Södra Kungsvägen 315, 181 66 Lidingö, Sweden
| | - Andriy Malovanyy
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Christian Baresel
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Nethra Machamada-Devaiah
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden
| |
Collapse
|
2
|
Zheng Y, Bolan N, Jenkins SN, Mickan BS. Organic particles and high pH in food waste anaerobic digestate enhanced NH 4+ adsorption on wood-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174458. [PMID: 38964404 DOI: 10.1016/j.scitotenv.2024.174458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Biogas residues (i.e., digestate) are rich in NH4+ that has great agricultural value but environmental risk if not recycled. Biochar can be an effective adsorbent retaining NH4+ from digestate. However, it remains unclear how the unique composition of digestate affects the capacity and mechanisms of NH4+ adsorption on biochar. This study examined the mechanisms and driving factors of NH4+ recovery from digestate containing different molecular-weight organic particles by using wood-derived biochar with or without H2O2 modification. Four solutions were prepared, including pure NH4+, synthetic NH4+ with multiple cations mimicking digestate solution, supernatant of digestate with small organic particles and dissolved organic matter, and digestate mixture containing supernatant and large organic particles. The results showed that compared with pure NH4+ solution, the adsorbed NH4+ was 42% lower in the synthetic NH4+ solution with multiple cations but was 2.2 time higher in the supernatant of digestate on two biochars following 48-h adsorption. Modified biochar did not change NH4+ adsorption in pure NH4+ solution despite higher specific surface area than raw biochar, but it increased the adsorption of NH4+ in digestate solutions with high pH (e.g., 4.03 vs. 3.37 mg N g-1 for modified and raw biochar, respectively, in the supernatant of digestate). Compared with the supernatant, the large organic particles in digestate mixture significantly but slightly decreased NH4+ adsorption on modified but not raw biochar. The desorption rate of NH4+ on the biochar was up to 74%-100%, and it was not supressed by the adsorption of organic particles in digestate. The findings here demonstrate the dominant role of electrostatic attraction in NH4+ adsorption, the important role of high pH and organic particles in digestate in facilitating NH4+ adsorption on biochar, and the suitability of the wood-derived biochar in recovering NH4+ from digestate and releasing N for agricultural application.
Collapse
Affiliation(s)
- Yunyun Zheng
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Sasha N Jenkins
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Bede S Mickan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Richgro Garden Products, 203 Acourt Rd, Jandakot, WA 6164, Australia
| |
Collapse
|
3
|
Romio C, Kofoed MVW, Møller HB. Exploring increased hydraulic retention time as a cost-efficient way of valorizing residual biogas potential. BIORESOURCE TECHNOLOGY 2023; 387:129646. [PMID: 37558102 DOI: 10.1016/j.biortech.2023.129646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Effective substrate utilization with low residual methane yield in the digestate is crucial for the economy and sustainability of biogas plants. The composition and residual methane potential of 29 digestate samples from plants operating at hydraulic retention times of 13-130 days were determined to evaluate the economic viability of extended digestion. Considerable contents of fermentable fractions, such as cellulose (8-23%), hemicellulose (1-18%), and protein (13-22%), were present in the digestate dry matter. The ultimate residual methane yields varied between 55 and 236 ml/g of volatile solids and correlated negatively with the logarithm of the hydraulic retention time (r = -0.64, p < 0.05). Economic analysis showed that extending the retention time in 20 days would be viable for 18 systems if methane were sold for 1.00 €/m3, with gains up to 40 €/year/m3 of newly installed reactor capacity. The results show the importance of operating at sufficient hydraulic retention time.
Collapse
Affiliation(s)
- Cristiane Romio
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark.
| | | | - Henrik Bjarne Møller
- Department of Biological and Chemical Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
4
|
Matjuda DS, Tekere M, Thaela-Chimuka MJ. Characterization of the physicochemical composition of anaerobically digested (digestate) high throughput red meat abattoir waste in South Africa and the determination of its quality as a potential biofertilizer. Heliyon 2023; 9:e21647. [PMID: 38027620 PMCID: PMC10665745 DOI: 10.1016/j.heliyon.2023.e21647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Anaerobic digestion as a treatment option for waste produced in high throughput red meat abattoirs in South Africa is now gaining interest in both private and government sectors. The resultant digested slurry (digestate) is currently being regarded as waste despite its nutritional value for soil and plants which can be harnessed if digestate is utilized as biofertilizer to ensure nutrient cycling. The study investigated the physicochemical and microbial characteristics of digestate emanating from anaerobic digestion of red meat abattoir waste in South Africa, as well as evaluating its potential use as biofertilizer. The pH, total solids, volatile solids, chemical oxygen demand, electrical conductivity, total volatile fatty acids and chemical composition were determined using standard methods. Microbial analyses were determined according to the serial dilution method (101- 1010). The results were benchmarked with Public Available Specifications (PAS) 110 standards for quality control of digestate intended to be used as biofertilizer for agricultural purposes. Results for pH, total solids, electrical conductivity, chemical oxygen demand, and total volatile fatty acids fell within the required PAS110 standard which requires standard limits of 6.5-9, 30 %-50 %, <1500 mg/L, <3000 μS/cm, and 0.43 COD/g VS respectively. Moisture content in all red meat abattoir digestate ranged from 92.05 ± 0.5 % to 95.49 ± 0.38 % and did not meet the required limit of <35 %. E. coli in untreated cattle and pig abattoir digestate were 1023 ± 35 cfu/mL and 1068 ± 51 cfu/mL, respectively, and also did not meet the required standard limit of <1000 cfu/mL. Chemical composition showed that abattoir digestate was abundant in both macronutrients and micronutrients, and heavy metal concentrations in all digestate samples fell within the PAS 110. In conclusion, abattoir digestate was observed to be highly abundant in nutrients essential for soil health and plant growth, and mostly met the required EU PAS110 standard for utilization as biofertilizer in agricultural land.
Collapse
Affiliation(s)
- Dikonketso Shirleymay Matjuda
- Agricultural Research Council-Animal Production (ARC-AP), Department of Microbiology and Biotechnology, Old Olifantsfontein Road, Private Bag X2, Irene, 0062, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences (CAES), University of South Africa (UNISA), P.O. Box 392, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences (CAES), University of South Africa (UNISA), P.O. Box 392, Florida, 1710, South Africa
| | - Mary-Jane Thaela-Chimuka
- Agricultural Research Council-Animal Production (ARC-AP), Animal Nutrition and Aquaculture, Old Olifantsfontein Road, Private Bag X2, Irene, 0062, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private bag 3, Wits, Braamfontein, 2050, Johannesburg, South Africa
| |
Collapse
|
5
|
Zarina R, Mezule L. Opportunities for resource recovery from Latvian municipal sewage sludge. Heliyon 2023; 9:e20435. [PMID: 37810806 PMCID: PMC10556758 DOI: 10.1016/j.heliyon.2023.e20435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Sewage sludge is a type of waste that has high health and environmental risks associated with its reuse. Moreover, sludge has been neglected in global circular economy targets because it is generated in considerably lower quantities than municipal solid waste. At the same time, European Union's transition towards circular economy has set the need to reduce the amount of waste and to promote the production of secondary raw materials. Many countries have developed national strategies for sludge management to reach their sustainability goals. In Latvia, the current sludge management approaches include land application, composting and anaerobic digestion which all utilize sludge as an organic fertilizer. As an alternative to current management practices, resource recovery is put forward as a solution that is in agreement with EU policy. Carbohydrates (including cellulose), proteins and lipids were selected as candidates for energy and materials recovery from sludge. For the first time, this study demonstrates a comprehensive assessment of Latvian municipal sewage sludge composition and offers the theoretical yields of secondary resources on a yearly basis. Primary, secondary, and anaerobically digested sludge from 13 wastewater treatment plants (WWTPs) in Latvia was characterized in this study. The most abundant sludge type - secondary sludge - contained 18.5% proteins, 9.8% lipids and 2.6% cellulose per TS. On a yearly basis, secondary sludge from all Latvian WWTPs could provide 2530 t proteins, corresponding to 750 t protein-based fertilizer. Primary sludge contained 23.9% proteins, 9.1% lipids and 7.1% cellulose per TS. Primary sludge could provide 763 t/a carbohydrates, including 545 t/a cellulose. The currently available secondary and digested sludge would yield 727 t bioethanol, corresponding to 4.0% of the national biofuel consumption. This work applies the concept of resource recovery to the Latvian wastewater sector and shows the potential of simultaneously addressing waste and wastewater management issues.
Collapse
Affiliation(s)
- Ruta Zarina
- Water Research and Environmental Biotechnology laboratory, Riga Technical University, Kipsalas 6A-263, Riga, Latvia
| | - Linda Mezule
- Water Research and Environmental Biotechnology laboratory, Riga Technical University, Kipsalas 6A-263, Riga, Latvia
| |
Collapse
|
6
|
Fernández-Domínguez D, Yekta SS, Hedenström M, Patureau D, Jimenez J. Deciphering the contribution of microbial biomass to the properties of dissolved and particulate organic matter in anaerobic digestates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162882. [PMID: 36934942 DOI: 10.1016/j.scitotenv.2023.162882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
The recalcitrant structures either from substrate or microbial biomass contained in digestates after anaerobic digestion (AD) highly influence digestate valorization. To properly assess the microbial biomass contribution to the digested organic matter (OM), a combination of characterization methods and the use of various substrate types in anaerobic continuous reactors was required. The use of totally biodegradable substrates allowed detecting soluble microbial products via fluorescence spectroscopy at emission wavelengths of 420 and 460 nm while the protein-like signature was enhanced by the whey protein. During reactors' operation, a transfer of complex compounds to the dissolved OM from the particulate OM was observed through fluorescence applied on biochemical fractionation. Consequently, the fluorescence complexity index of the dissolved OM increased from 0.59-0.60 to 1.06-1.07, whereas it decreased inversely for the extractable soluble from the particulate OM from 1.16-1.19 to 0.42-0.54. Accordingly, fluorescence regional integration showed differences among reactors based on visual inspection and orthogonal partial latent structures (OPLS) analysis. Similarly, the impact of the substrate type and operation time on the particulate OM was revealed by 13C nuclear magnetic resonance using OPLS, providing a good model (R2X = 0.93 and Q2 = 0.8) with a clear time-trend. A high signal resonated at ∼30 ppm attributed to CH2-groups in the aliphatic chain of lipid-like structure besides carbohydrates intensities at 60-110 ppm distinguished the reactor fed with whey protein from the other, which was mostly biomass related. Indeed, this latter displayed a higher presence of peptidoglycan (δH/C: 1.6-2.0/20-25 ppm) derived from microbial biomass by 1H-13C heteronuclear single-quantum coherence (HSQC) nuclear magnetic resonance. Interestingly, the sample distribution obtained by non-metric multidimensional scaling of bacterial communities resembled the attained using 13C NMR properties, opening new research perspectives. Overall, this study discloses the microbial biomass contribution to digestates composition to improve the OM transformation mechanism knowledge.
Collapse
Affiliation(s)
| | - Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change and Biogas Research Center, Linköping University, 581 83 Linköping, Sweden
| | | | - Dominique Patureau
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100 Narbonne, France
| | - Julie Jimenez
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100 Narbonne, France
| |
Collapse
|
7
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|