1
|
Jeung K, Kim M, Jang E, Shon YJ, Jung GY. Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering. Biotechnol Adv 2025; 79:108522. [PMID: 39863189 DOI: 10.1016/j.biotechadv.2025.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive. Cell-free systems (CFSs) serve as powerful platforms for rapid prototyping of genetic circuits, metabolic pathways, and enzyme functionality. They offer numerous advantages, including minimizing unwanted metabolic interference, precise control of reaction conditions, reduced labor, and shorter Design-Build-Test-Learn cycles. Additionally, the introduction of in vitro compartmentalization strategies in CFSs enables ultra-high-throughput screening in physically separated spaces, which significantly enhances prototyping efficiency. This review highlights the latest examples of using CFS to overcome prototyping limitations in living cells with a focus on rapid prototyping, particularly regarding gene regulation, enzymes, and multienzymatic reactions in bacteria. Finally, this review evaluates CFSs as a versatile prototyping platform and discusses its future applications, emphasizing its potential for producing high-value chemicals through microbial biosynthesis.
Collapse
Affiliation(s)
- Kumyoung Jeung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minsun Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-Ro, Jung-Gu, Ulsan 44429, Republic of Korea
| | - Eunsoo Jang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yang Jun Shon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
2
|
Chen T, Zhang Y, Yun J, Zhao M, Zhang C, Chen Z, Zabed HM, Sun W, Qi X. Bioproduction of 3-Hydroxypropionic Acid by Enhancing the Precursor Supply with a Hybrid Pathway and Cofactor Regeneration. ACS Synth Biol 2024; 13:3366-3377. [PMID: 39323185 DOI: 10.1021/acssynbio.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
3-Hydroxypropionic acid (3-HP) is one of the 12 valuable platform chemicals with versatile applications in the chemical, food, and cosmetic industries. However, the biosynthesis of 3-HP faces challenges due to the lack of robust chassis and the high costs associated with the fermentation process. To address these challenges, we made efforts to augment the robustness of 3-HP-producing chassis by exploiting metabolic regulation, controlling carbon flux, balancing cofactor generation, and optimizing fermentation conditions. First, the malonyl-CoA (MCA) pathway was recruited and rebalanced in Escherichia coli. Subsequently, a hybrid pathway integrating the Embden-Meyerhof-Parnas pathway with the nonoxidative glycolysis pathway was systematically modulated to enhance carbon flux to the MCA pathway, followed by fine-tuning NADPH regeneration. Then, by optimizing the fermentation conditions, 3-HP production was significantly improved, reaching 6.8 g/L. Finally, in a fed-batch experiment, the final chassis produced 42.8 g/L 3-HP, corresponding to a 0.4 mol/mol yield and 0.6 g/(L·h) productivity.
Collapse
Affiliation(s)
- Tingting Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
3
|
Batista RS, Chaves GL, Oliveira DB, Pantaleão VL, Neves JDDS, da Silva AJ. Glycerol as substrate and NADP +-dependent glyceraldehyde-3-phosphate dehydrogenase enable higher production of 3-hydroxypropionic acid through the β-alanine pathway in E. coli. BIORESOURCE TECHNOLOGY 2024; 393:130142. [PMID: 38049020 DOI: 10.1016/j.biortech.2023.130142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Microbial engineering is a promising way to produce3-HP using biorenewable substrates such as glycerol. However, theglycerol pathway to obtain 3-HPrequires vitamin B-12, which hinders its economic viability. The present work showed that 3-HP can be efficiently produced from glycerol through the β-alanine pathway. To develop a cell factory for this purpose, glycerol was evaluated as a substrate and showed more than two-fold improved 3-HP production compared to glucose. Next, the reducing power was modulated by overexpression of an NADP+ -dependent glyceraldehyde-3-phosphate dehydrogenase coupled with CRISPR-based repression of the endogenous gapA gene, resulting in a 91 % increase in 3-HP titer. Finally, the toxicity of 3-HP accumulation was addressed by overexpressing a putative exporter (YohJK). Fed-batch cultivation of the final strain yielded 72.2 g/L of 3-HP and a productivity of 1.64 g/L/h, which are the best results for the β-alanine pathway and are similar to those found for other pathways.
Collapse
Affiliation(s)
- Raquel Salgado Batista
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Gabriel Luz Chaves
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Davi Benedito Oliveira
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Vitor Leonel Pantaleão
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - José Davi Dos Santos Neves
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Adilson José da Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil; Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, São Paulo 13565-905, Brazil.
| |
Collapse
|
4
|
Deng S, Kim J, Pomraning KR, Gao Y, Evans JE, Hofstad BA, Dai Z, Webb-Robertson BJ, Powell SM, Novikova IV, Munoz N, Kim YM, Swita M, Robles AL, Lemmon T, Duong RD, Nicora C, Burnum-Johnson KE, Magnuson J. Identification of a specific exporter that enables high production of aconitic acid in Aspergillus pseudoterreus. Metab Eng 2023; 80:163-172. [PMID: 37778408 DOI: 10.1016/j.ymben.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.
Collapse
Affiliation(s)
- Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - James E Evans
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Bobbie-Jo Webb-Robertson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Samantha M Powell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Irina V Novikova
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Marie Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Rylan D Duong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Jon Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
5
|
Dai Z. Novel genetic tools improve Penicillium expansum patulin synthase production in Aspergillus niger. FEBS J 2023; 290:5094-5097. [PMID: 37794568 DOI: 10.1111/febs.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Since the first CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system was developed for creating double-stranded DNA breaks, it has been adapted and improved for different biotechnological applications. In this issue of The FEBS Journal, Arentshorst et al. developed a novel approach to enhance transgene expression of a specific protein, patulin synthase (PatE) from Penicillium expansum, in the important industrial filamentous fungus Aspergillus niger. Their technique involved the disruption of selected genes with counter-effects on targeted protein production and simultaneous integration of glucoamylase landing sites into the disrupted gene locus such as protease regulator (prtT) in an ATP-dependent DNA helicase II subunit 1 (kusA or ku70)-deletion strain. Multiple copies of the PatE transgene expression cassette were introduced by CRISPR-Cas9-mediated insertion. The purified PatE was further used for structural and functional studies, and the technique laid the foundation for elevating the overall production of various proteins or chemicals in those industrially important fungi.
Collapse
Affiliation(s)
- Ziyu Dai
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, WA, Richland, USA
- Joint Bioenergy Institute, Emeryville, CA, United States
| |
Collapse
|