1
|
Nascimento MT, Viana DL, Peixoto FC, Arruda SM, Carvalho EM, Carvalho LP. Prostaglandin E2 contributes to L. braziliensis survival and therapeutic failure in cutaneous leishmaniasis. Emerg Microbes Infect 2023; 12:2261565. [PMID: 37729084 PMCID: PMC10540647 DOI: 10.1080/22221751.2023.2261565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Patients with cutaneous leishmaniasis (CL) present an exacerbated inflammatory response associated with tissue damage and ulcer development. In recent years, higher rates of failure to pentavalent antimoniate therapy have been observed, yet the underlying reason remains poorly understood. We hypothesize that the eicosanoid PGE2 favours the establishment of infection by L. braziliensis, which contributes to therapeutic failure. The aim of the present study was to investigate the influence of PGE2 on the survival of L. braziliensis in macrophages and rates of therapeutic failure in CL patients. PGE2, an eicosanoid derived from the metabolism of arachidonic acid by the COX-2 enzyme, plays several roles in immune response. We found that increased PGE2 decreases the microbicidal function of macrophages and is associated with disease severity and therapeutic failure. Additionally, the neutralization of COX-2 by NS398, a selective NSAID, increases the ability of macrophages to kill L. braziliensis and protects against the pathological inflammatory response. Our data suggest that NS398 may serve as an adjunct treatment for CL patients.
Collapse
Affiliation(s)
- Maurício T. Nascimento
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz – Fiocruz, Salvador, Brazil
- Serviço de Imunologia, SIM, Complexo Universitário Professor Edgar Santos, COM-HUPES, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, PPgCS, Universidade Federal da Bahia, Salvador, Brazil
| | - Débora L. Viana
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz – Fiocruz, Salvador, Brazil
| | - Fábio C. Peixoto
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz – Fiocruz, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, PPgCS, Universidade Federal da Bahia, Salvador, Brazil
| | - Sérgio M. Arruda
- Laboratório Avançado de Saúde Pública, LASP, Instituto Gonçalo Moniz – Fiocruz, Salvador, Brazil
| | - Edgar M. Carvalho
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz – Fiocruz, Salvador, Brazil
- Serviço de Imunologia, SIM, Complexo Universitário Professor Edgar Santos, COM-HUPES, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, PPgCS, Universidade Federal da Bahia, Salvador, Brazil
- Instituto de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
| | - Lucas P. Carvalho
- Laboratório de Pesquisas Clínicas, LAPEC, Instituto Gonçalo Moniz – Fiocruz, Salvador, Brazil
- Serviço de Imunologia, SIM, Complexo Universitário Professor Edgar Santos, COM-HUPES, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, PPgCS, Universidade Federal da Bahia, Salvador, Brazil
- Instituto de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
| |
Collapse
|
2
|
Leroux M, Bouazizi-Ben Messaoud H, Luquain-Costaz C, Jordheim LP, Le Faouder P, Gustin MP, Aoun K, Lawton P, Azzouz-Maache S, Delton I. Enriched PUFA environment of Leishmania infantum promastigotes promotes the accumulation of lipid mediators and favors parasite infectivity towards J774 murine macrophages. Lipids 2023; 58:81-92. [PMID: 36544247 DOI: 10.1002/lipd.12365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022]
Abstract
Leishmania parasites are the causative agents of visceral or cutaneous leishmaniasis in humans and of canine leishmaniosis. The macrophage is the predilected host cell of Leishmania in which the promastigote stage is transformed into amastigote. We previously showed changes in the fatty acid composition (FA) of lipids in two strains of Leishmania donovani upon differentiation of promastigote to amastigote, including increased proportions of arachidonic acid (AA) and to a less extent of docosahexaenoic acid (DHA). Here, we carried out supplementation with AA or DHA on two Leishmania infantum strains, a visceral (MON-1) and a cutaneous (MON-24), to evaluate the role of these FA in parasite/macrophage interactions. The proportions of AA or DHA in total lipids were significantly increased in promastigotes cultured in AA- or DHA-supplemented media compared to controls. The content of FA-derived oxygenated metabolites was enhanced in supplemented strains, generating especially epoxyeicosatrienoic acids (11,12- and 14,15-EET) and hydroxyeicosatetraenoic acids (5- and 8- HETE) from AA, and hydroxydocosahexaenoic acids (14- and 17-HDoHE) from DHA. For both MON-1 and MON-24, AA-supplemented promastigotes showed higher infectivity towards J774 macrophages as evidenced by higher intracellular amastigote numbers. Higher infectivity was observed after DHA supplementation for MON-24 but not MON-1 strain. ROS production by macrophages increased upon parasite infection, but only minor change was observed between control and supplemented parasites. We propose that under high AA or DHA environment that is associated with AA or DHA enrichment of promastigote lipids, FA derivatives can accumulate in the parasite, thereby modulating parasite infectivity towards host macrophages.
Collapse
Affiliation(s)
- Marine Leroux
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Céline Luquain-Costaz
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSA-Lyon, Department of Biosciences, Villeurbanne, France
| | - Lars P Jordheim
- Inserm 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Le Faouder
- MetaToul-Lipidomic Core Facility, MetaboHUB, I2MC Inserm U1048, Toulouse, France
| | - Marie-Paule Gustin
- Inserm 1111, CNRS UMR5308, Centre International de Recherche en Infectiologie, ENS de Lyon, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Karim Aoun
- Pasteur Institute of Tunis, LR 11-IPT-06 Laboratory of Medical Parasitology, Biotechnology and Biomolecules, University Tunis El Manar, Tunis, Tunisia
| | - Philippe Lawton
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Samira Azzouz-Maache
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Isabelle Delton
- CNRS 5007, LAGEPP, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,INSA-Lyon, Department of Biosciences, Villeurbanne, France
| |
Collapse
|
3
|
Leroux M, Luquain-Costaz C, Lawton P, Azzouz-Maache S, Delton I. Fatty Acid Composition and Metabolism in Leishmania Parasite Species: Potential Biomarkers or Drug Targets for Leishmaniasis? Int J Mol Sci 2023; 24:ijms24054702. [PMID: 36902138 PMCID: PMC10003364 DOI: 10.3390/ijms24054702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Fatty acids have received growing interest in Leishmania biology with the characterization of the enzymes allowing the complete fatty acid synthesis of this trypanosomatid parasite. This review presents a comparative analysis of the fatty acid profiles of the major classes of lipids and phospholipids in different species of Leishmania with cutaneous or visceral tropism. Specificities relating to the parasite forms, resistance to antileishmanial drugs, and host/parasite interactions are described as well as comparisons with other trypanosomatids. Emphasis is placed on polyunsaturated fatty acids and their metabolic and functional specificities, in particular, their conversion into oxygenated metabolites that are inflammatory mediators able to modulate metacyclogenesis and parasite infectivity. The impact of lipid status on the development of leishmaniasis and the potential of fatty acids as therapeutic targets or candidates for nutritional interventions are discussed.
Collapse
Affiliation(s)
- Marine Leroux
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Céline Luquain-Costaz
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
| | - Philippe Lawton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Samira Azzouz-Maache
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Isabelle Delton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
- Correspondence:
| |
Collapse
|
4
|
Osorio EY, Uscanga-Palomeque A, Patterson GT, Cordova E, Travi BL, Soong L, Melby PC. Malnutrition-related parasite dissemination from the skin in visceral leishmaniasis is driven by PGE2-mediated amplification of CCR7-related trafficking of infected inflammatory monocytes. PLoS Negl Trop Dis 2023; 17:e0011040. [PMID: 36630476 PMCID: PMC9873180 DOI: 10.1371/journal.pntd.0011040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/24/2023] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
People are infected with Leishmania donovani when the parasite is deposited in the dermis during the blood meal of the sand fly vector. Most infected people develop a subclinical latent infection, but some develop progressive visceral leishmaniasis. Malnutrition is a risk factor for the development of active VL. We previously demonstrated increased parasite dissemination from the skin to visceral organs in a murine model of malnutrition. Here we investigated the mechanism of early parasite dissemination. After delivery of L. donovani to the skin, we found enhanced capture of parasites by inflammatory monocytes and neutrophils in the skin of malnourished mice. However, parasite dissemination in malnourished mice was driven primarily by infected inflammatory monocytes, which showed increased CCR7 expression, greater intrinsic migratory capacity, and increased trafficking from skin to spleen. PGE2 production, which was increased at the site of skin infection, increased monocyte CCR7 expression and promoted CCR7-related monocyte-mediated early parasite dissemination in malnourished mice. Parasite dissemination in monocytes was reduced by inhibition of PGE2, knockdown or silencing of CCR7 in monocytes, and depletion of inflammatory monocytes through administration of diphtheria toxin to CSFR1-DTR transgenic mice that have monocyte-specific DT receptor expression. CCR7-driven trafficking of infected inflammatory monocytes through the lymph node was accompanied by increased expression of its ligands CCL19 and CCL21. These results show that the CCR7/PGE2 axis is responsible for the increased trafficking of L. donovani-infected inflammatory monocytes from the skin to the spleen in the malnourished host. Undernutrition and production of PGE2 are potential targets to reduce the risk of people developing VL. Nutritional interventions that target improved immune function and reduced PGE2 synthesis should be studied in people at risk of developing VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| | - Ashanti Uscanga-Palomeque
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Grace T. Patterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Erika Cordova
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| |
Collapse
|
5
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
6
|
Oliveira WN, Dórea AS, Carneiro PP, Nascimento MT, Carvalho LP, Machado PRL, Schriefer A, Bacellar O, Carvalho EM. The Influence of Infection by Different Leishmania (Viannia) braziliensis Isolates on the Pathogenesis of Disseminated Leishmaniasis. Front Cell Infect Microbiol 2021; 11:740278. [PMID: 34568099 PMCID: PMC8462778 DOI: 10.3389/fcimb.2021.740278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Disseminated Leishmaniasis (DL) is an emerging and severe form of Leishmania (Viannia) braziliensis infection defined by the presence of 10 and up to more than 1,000 skin lesions. The mechanisms underlying parasite dissemination remain unknown. Genotypic differences among species of L. braziliensis have been associated with different clinical forms of disease. The present work compared the function of monocytes obtained from patients with cutaneous leishmaniasis (CL) and DL in response to infection with L. braziliensis isolates of both these two clinical forms of disease. Mononuclear cells obtained from DL and CL patients were infected with different L. braziliensis isolates, and numbers of infected cells, parasite load, respiratory burst, TLR2 and TLR4 expression and cytokine production were evaluated. DL isolates infected more monocytes, induced greater respiratory burst, and more cytokine production compared to isolates from CL patients regardless of the origin of monocytes (DL or CL). However, greater parasite multiplication and higher TLR2 and TLR4 expression were seen in monocytes from DL patients compared to CL following infection with DL isolates. Our results indicate the participation of both parasite genotype and host factors in the pathogenesis of DL.
Collapse
Affiliation(s)
- Walker N Oliveira
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil
| | - Andreza S Dórea
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil
| | - Pedro P Carneiro
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil
| | | | - Lucas P Carvalho
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil.,Instituto Pesquisa Gonçalo Moniz - Fiocruz-Bahia, Salvador, Brazil.,Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo R L Machado
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil
| | - Albert Schriefer
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil.,Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Olívia Bacellar
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT (CNPq/MCT), Salvador, Brazil.,Instituto Pesquisa Gonçalo Moniz - Fiocruz-Bahia, Salvador, Brazil
| |
Collapse
|
7
|
Saini S, Rai AK. Linoleic Acid-A Feasible Preventive Approach for Visceral Leishmaniasis. Front Nutr 2021; 8:649025. [PMID: 33718424 PMCID: PMC7952607 DOI: 10.3389/fnut.2021.649025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
8
|
Immune response dynamics and Lutzomyia longipalpis exposure characterize a biosignature of visceral leishmaniasis susceptibility in a canine cohort. PLoS Negl Trop Dis 2021; 15:e0009137. [PMID: 33617528 PMCID: PMC7943000 DOI: 10.1371/journal.pntd.0009137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/09/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background Reports have shown correlations between the immune response to vector saliva and Leishmaniasis outcome. We followed dogs in an endemic area for two years characterizing resistance or susceptibility to canine visceral leishmaniasis (CVL) according to Leishmania infantum diagnosis and clinical development criteria. Then, we aimed to identify a biosignature based on parasite load, serum biological mediators’ interactions, and vector exposure intensity associated with CVL resistance and susceptibility. Methodology/Principal findings A prospective two-year study was conducted in an area endemic for CVL. Dogs were evaluated at 6-month intervals to determine infection, clinical manifestations, immune profile, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. After two years, 78% of the dogs were infected with L. infantum (53% susceptible and 47% resistant to CVL). Susceptible dogs presented higher splenic parasite load as well as persistence of the parasite during the follow-up, compared to resistant ones. Susceptible dogs also displayed a higher number of correlations among the investigated biological mediators, before and after infection diagnosis. At baseline, anti-saliva antibodies, indicative of exposure to the vector, were detected in 62% of the dogs, reaching 100% in one year. Higher sandfly exposure increased the risk of susceptibility to CVL by 1.6 times (CI: 1.11–2.41). We identified a discriminatory biosignature between the resistant and susceptible dogs assessing splenic parasite load, interaction of biological mediators, PGE2 serum levels and intensity of exposure to sandfly. All these parameters were elevated in susceptible dogs compared to resistant animals. Conclusions/Significance The biosignature identified in our study reinforces the idea that CVL is a complex multifactorial disease that is affected by a set of factors which are correlated and, for a better understanding of CVL, should not be evaluated in an isolated way. Visceral Leishmaniasis (VL) is a disease that can affect humans and dogs, caused by a parasite called Leishmania transmitted through the bite of sandfly insects. During the bite, together with the parasite, the insects also inoculate their saliva into the host. The host immune response produces molecules to the sandfly saliva, such as antibodies and cytokines that can impact VL resistance or susceptibility. The presence of these molecules also indicates if the insects bit the hosts. We followed dogs of a VL endemic area for two years to study Canine Visceral Leishmaniasis (CVL) and immune response to sandfly saliva. Dogs were evaluated at 6-month intervals to determine Leishmania infection, clinical manifestations, parasite load, immune response, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. Dogs living in the endemic area were intensely bitten, as at the beginning of the study, 62% of the dogs present anti-saliva antibodies, reaching 100% after one year. Our findings revealed a biosignature of CVL susceptibility characterized by elevated parasite load, interaction of cytokines, and higher exposure to the sandfly. This data reinforced that CVL is a complex disease affected by several factors related to each other.
Collapse
|
9
|
Kupani M, Pandey RK, Mehrotra S. Neutrophils and Visceral Leishmaniasis: Impact on innate immune response and cross-talks with macrophages and dendritic cells. J Cell Physiol 2020; 236:2255-2267. [PMID: 33345353 DOI: 10.1002/jcp.30029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
Neutrophils with their array of microbicidal activities are the first innate immune cells to guard against infection. They are also most crucial for the host's initial defense against Leishmania parasites which cause clinically diverse diseases ranging from self-healing cutaneous leishmaniasis (CL) to a more severe visceral form, visceral leishmaniasis (VL). Neutrophils are recruited in large numbers at the infection site after bite of sandfly, which is the vector for the disease. The initial interaction of neutrophils with the parasites may modulate the subsequent innate and adaptive immune responses and hence affect the disease outcome. The purpose of this review is to comprehensively appraise the role of neutrophils during the early stages of Leishmania infection with a focus on the visceral form of the disease. In the past decade, new insights regarding the role of neutrophils in VL have surfaced which have been extensively elaborated in the present review. In addition, since much of the information regarding neutrophil-Leishmania early interaction has accumulated through studies on mouse models of CL, these studies are also revisited. We begin by reviewing the factors which drive the recruitment of neutrophils at the site of injection by the sandfly. We then discuss the studies delineating the molecular mechanisms involved in the uptake of the Leishmania parasite by neutrophils and how the parasite subverts their microbicidal functions. In the end, the interaction of infected neutrophils with macrophages and dendritic cells is summarized.
Collapse
Affiliation(s)
- Manu Kupani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajeev K Pandey
- Research & Development, Thermo Fisher Scientific, Bengaluru, Karnataka, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
10
|
Regulation of macrophage subsets and cytokine production in leishmaniasis. Cytokine 2020; 147:155309. [PMID: 33334669 DOI: 10.1016/j.cyto.2020.155309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
Macrophages are host cells for parasites of the genus Leishmania where they multiply inside parasitophorous vacuoles. Paradoxically, macrophages are also the cells responsible for killing or controlling parasite growth, if appropriately activated. In this review, we will cover the patterns of macrophage activation and the mechanisms used by the parasite to circumvent being killed. We will highlight the impacts of the vector bite on macrophage activation. Finally, we will discuss the ontogeny of macrophages that are infected by Leishmania spp.
Collapse
|
11
|
Bonyek-Silva I, Nunes S, Santos RL, Lima FR, Lago A, Silva J, Carvalho LP, Arruda SM, Serezani HC, Carvalho EM, Brodskyn CI, Tavares NM. Unbalanced production of LTB 4/PGE 2 driven by diabetes increases susceptibility to cutaneous leishmaniasis. Emerg Microbes Infect 2020; 9:1275-1286. [PMID: 32525457 PMCID: PMC7473187 DOI: 10.1080/22221751.2020.1773744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
Poorly controlled diabetes mellitus leads to several comorbidities, including susceptibility to infections. Hyperglycemia increases phagocyte responsiveness, however immune cells from people with diabetes show inadequate antimicrobial functions. We and others have shown that aberrant production of leukotriene B4 (LTB4) is detrimental to host defense in models of bacterial infection. Here, we will unveil the consequences of high glucose in the outcome of Leishmania braziliensis skin infection in people with diabetes and determine the role of LTB4 in human phagocytes. We show that diabetes leads to higher systemic levels of LTB4, IL-6 and TNF-α in cutaneous leishmaniasis. Only LTB4 correlated with blood glucose levels and healing time in diabetes comorbidity. Skin lesions of people with leishmaniasis and diabetes exhibit increased neutrophil and amastigote numbers. Monocyte-derived macrophages from these individuals showed higher L. braziliensis loads, reduced production of Reactive Oxygen Species and unbalanced LTB4/PGE2 ratio. Our data reveal a systemic inflammation driven by diabetes comorbidity in opposition to a local reduced capacity to resolve L. braziliensis infection and a worse disease outcome.
Collapse
Affiliation(s)
- Icaro Bonyek-Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Reinan L. Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Filipe R. Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | | | - Juliana Silva
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Lucas P. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sergio M. Arruda
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Henrique C. Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edgar M. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT) in Tropical Diseases, Salvador, Brazil
| | - Claudia I. Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT), Institute of Investigation in Immunology (iii), São Paulo, Brazil
| | - Natalia M. Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT), Institute of Investigation in Immunology (iii), São Paulo, Brazil
| |
Collapse
|
12
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
13
|
Saini S, Kottarath SK, Dinda AK, Dube A, Sahasrabuddhe AA, Thakur CP, Bhat M, Rai AK. Preventive as well as therapeutic significances of linoleic acid in the containment of Leishmania donovani infection. Biochimie 2020; 175:13-22. [PMID: 32439363 DOI: 10.1016/j.biochi.2020.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022]
Abstract
People suffering from malnutrition show compromised levels of ω-6 fatty acid and malnutrition is frequently observed among visceral leishmaniasis (VL) patients as disease inflicts primarily the socioeconomic destitute communities. Dietary linoleic acid (LA, 18:2; ω-6 fatty acid) is the principal source of essential fatty acid and its derivatives i.e. eicosanoids possess immune-modulatory activities. However, its role in VL is not yet established. LA was measured in VL human subjects (serum) as well as in Leishmania(L.)donovani infected hamsters (serum and visceral organs). Organ-specific mRNA expressions of various enzymes of the LA metabolic pathway were measured in visceral organs of infected hamsters. Our findings showed a decrease in the concentrations of LA in the serum samples of VL patients, suggesting malnutrition among these patients. However, in L. donovani infected hamsters, its level was not altered in the early infection (15 days) and then increased at late infection (60 days). Importantly, the supplementation of LA restored the Th-1 type of immune response and significantly reduced the parasite load within infected macrophages in vitro. This protective response of LA was mediated through 5-lipoxygenase pathway not via the cyclooxygenase pathway. Preventive usage of LA to mϕ followed by L. donovani infection also showed the strengthening of Th-1 immune response and significantly fewer parasite loads. Our findings demonstrate the protective role of LA in the containment of the parasite load. Incorporating LA rich oils in daily food habits across highly inflicted regions may be a significant advancement towards the eradication of the disease.
Collapse
Affiliation(s)
- Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT), Allahabad, 211004, India
| | - Sarath Kumar Kottarath
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Anuradha Dube
- Division of Parasitology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India
| | - Amogh Anant Sahasrabuddhe
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India
| | | | - Madhusudan Bhat
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT), Allahabad, 211004, India.
| |
Collapse
|
14
|
Parasitic load determination by differential expressions of 5-lipoxygenase and PGE2 synthases in visceral leishmaniasis. Prostaglandins Other Lipid Mediat 2020; 147:106390. [DOI: 10.1016/j.prostaglandins.2019.106390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023]
|
15
|
Conceição-Silva F, Morgado FN. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Front Cell Infect Microbiol 2019; 9:330. [PMID: 31608245 PMCID: PMC6761226 DOI: 10.3389/fcimb.2019.00330] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
For a long time Leishmaniasis had been considered as a neglected tropical disease. Recently, it has become a priority in public health all over the world for different aspects such as geographic spread, number of population living at risk of infection as well as the potential lethality and/or the development of disfiguring lesions in the, respectively, visceral and tegumentary forms of the disease. As a result, several groups have been bending over this issue and many valuable data have been published. Nevertheless, parasite-host interactions are still not fully known and, consequently, we do not entirely understand the infection dynamics and parasite persistence. This knowledge may point targets for modulation or blockage, being very useful in the development of measures to interfere in the course of infection/ disease and to minimize the risks and morbidity. In the present review we will discuss some aspects of the Leishmania spp-mammalian host interaction in the onset of infection and after the clinical cure of the lesions. We will also examine the information already available concerning the parasite strategy to evade immune response mainly at the beginning of the infection, as well as during the parasite persistence. This knowledge can improve the conditions of treatment, follow-up and cure control of patients, minimizing the potential damages this protozoosis can cause to infected individuals.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Hao Q, Gudapati V, Monsel A, Park JH, Hu S, Kato H, Lee JH, Zhou L, He H, Lee JW. Mesenchymal Stem Cell-Derived Extracellular Vesicles Decrease Lung Injury in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:1961-1972. [PMID: 31451675 DOI: 10.4049/jimmunol.1801534] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cell (MSC) extracellular vesicles (EV) can reduce the severity of bacterial pneumonia, but little is known about the mechanisms underlying their antimicrobial activity. In the current study, we found that bacterial clearance induced by MSC EV in Escherichia coli pneumonia in C57BL/6 mice was associated with high levels of leukotriene (LT) B4 in the injured alveolus. More importantly, the antimicrobial effect of MSC EV was abrogated by cotreatment with a LTB4 BLT1 antagonist. To determine the role of MSC EV on LT metabolism, we measured the effect of MSC EV on a known ATP-binding cassette transporter, multidrug resistance-associated protein 1 (MRP1), and found that MSC EV suppressed MRP1 mRNA, protein, and pump function in LPS-stimulated Raw264.7 cells in vitro. The synthesis of LTB4 and LTC4 from LTA4 are competitive, and MRP1 is the efflux pump for LTC4 Inhibition of MRP1 will increase LTB4 production. In addition, administration of a nonspecific MRP1 inhibitor (MK-571) reduced LTC4 and subsequently increased LTB4 levels in C57BL/6 mice with acute lung injury, increasing overall antimicrobial activity. We previously found that the biological effects of MSC EV were through the transfer of its content, such as mRNA, microRNA, and proteins, to target cells. In the current study, miR-145 knockdown abolished the effect of MSC EV on the inhibition of MRP1 in vitro and the antimicrobial effect in vivo. In summary, MSC EV suppressed MRP1 activity through transfer of miR-145, thereby resulting in enhanced LTB4 production and antimicrobial activity through LTB4/BLT1 signaling.
Collapse
Affiliation(s)
- Qi Hao
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Varun Gudapati
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Antoine Monsel
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jeong H Park
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Shuling Hu
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Hideya Kato
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jae H Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Li Zhou
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Hongli He
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jae W Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
17
|
Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol 2018; 9:1022. [PMID: 29875768 PMCID: PMC5974170 DOI: 10.3389/fimmu.2018.01022] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Teixeira CR, Santos CDS, Prates DB, Dos Santos RT, Araújo-Santos T, de Souza-Neto SM, Borges VM, Barral-Netto M, Brodskyn CI. Lutzomyia longipalpis Saliva Drives Interleukin-17-Induced Neutrophil Recruitment Favoring Leishmania infantum Infection. Front Microbiol 2018; 9:881. [PMID: 29867796 PMCID: PMC5953329 DOI: 10.3389/fmicb.2018.00881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022] Open
Abstract
During bloodfeeding, the presence of sand fly saliva in the hemorrhagic pool where Leishmania is also inoculated modulates the development of host immune mechanisms creating a favorable environment for disease progression. To date, information obtained through experimental models suggests that sand fly saliva induces cellular recruitment and modulates production of eicosanoids. However, the effect of sand fly saliva in the different steps of the inflammatory response triggered by Leishmania remains undefined. Here we further investigate if interaction of Lutzomyia longipalpis salivary gland sonicate (SGS) with different host cells present during the initial inflammatory events regulate Leishmania infantum infectivity. Initially, we observed that incubation of human peripheral blood mononuclear cells (PBMC) with Lu. longipalpis SGS in the presence of L. infantum significantly increased IL-10 but did not alter expression of IFN-γ and TNF-α by CD4+ T cells induced by the parasite alone. Interestingly, incubation of PBMC with Lu. longipalpis SGS alone or in the presence of L. infantum resulted in increased IL-17 production. The presence of IL-17 is related to neutrophil recruitment and plays an important role at the site of infection. Here, we also observed increased migration of neutrophil using an in vitro chemotactic assay following incubation with supernatants from PBMC stimulated with L. infantum and Lu. longipalpis SGS. Neutrophil migration was abrogated following neutralization of IL-17 with specific antibodies. Moreover, culture of human neutrophils with L. infantum in the presence of Lu. longipalpis SGS promoted neutrophil apoptosis resulting in increased parasite viability. Neutrophils operate as the first line of defense in the early stages of infection and later interact with different cells, such as macrophages. The crosstalk between neutrophils and macrophages is critical to determine the type of specific immune response that will develop. Here, we observed that co-culture of human macrophages with autologous neutrophils previously infected in the presence of Lu. longipalpis SGS resulted in a higher infection rate, accompanied by increased production of TGF-β and PGE2. Our results provide new insight into the contribution of Lu. longipalpis SGS to L. infantum-induced regulation of important inflammatory events, creating a favorable environment for parasite survival inside different host cells.
Collapse
Affiliation(s)
| | | | - Deboraci B Prates
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Ciências da Saúde da Universidade Federal da Bahia, Departamentos de Biomorfologia e Biointeração, Salvador, Brazil
| | | | - Théo Araújo-Santos
- Centro de Ciências Biológicas e Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | | | - Valéria M Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Universidade Federal da Bahia, Departamento de Patologia e Medicina Legal, Salvador, Brazil.,Instituto de Investigação em Imunologia, iii-INCT, São Paulo, Brazil
| | - Cláudia I Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Ciências da Saúde da Universidade Federal da Bahia, Departamentos de Biomorfologia e Biointeração, Salvador, Brazil.,Instituto de Investigação em Imunologia, iii-INCT, São Paulo, Brazil
| |
Collapse
|
19
|
Lima JB, Araújo-Santos T, Lázaro-Souza M, Carneiro AB, Ibraim IC, Jesus-Santos FH, Luz NF, Pontes SDM, Entringer PF, Descoteaux A, Bozza PT, Soares RP, Borges VM. Leishmania infantum lipophosphoglycan induced-Prostaglandin E 2 production in association with PPAR-γ expression via activation of Toll like receptors-1 and 2. Sci Rep 2017; 7:14321. [PMID: 29084985 PMCID: PMC5662570 DOI: 10.1038/s41598-017-14229-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023] Open
Abstract
Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.
Collapse
Affiliation(s)
- Jonilson Berlink Lima
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), 47808-021, Barreiras, BA, Brazil
| | - Théo Araújo-Santos
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), 47808-021, Barreiras, BA, Brazil
| | - Milena Lázaro-Souza
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Alan Brito Carneiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, FIOCRUZ-RJ, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Izabela Coimbra Ibraim
- René Rachou Institut, Oswaldo Cruz Foundation (FIOCRUZ-MG), 30190-002, Belo Horizonte, MG, Brazil
| | - Flávio Henrique Jesus-Santos
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Nívea Farias Luz
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil
| | - Sara de Moura Pontes
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Petter Franco Entringer
- Federal University of Rio de Janeiro (UFRJ), NUPEM, Campus Macaé, 27933-378, Macaé, RJ, Brazil
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, H7V 1B7, Laval, Canada
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, FIOCRUZ-RJ, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Pedro Soares
- René Rachou Institut, Oswaldo Cruz Foundation (FIOCRUZ-MG), 30190-002, Belo Horizonte, MG, Brazil.
| | - Valéria Matos Borges
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil. .,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil.
| |
Collapse
|
20
|
Early Production of the Neutrophil-Derived Lipid Mediators LTB 4 and LXA 4 Is Modulated by Intracellular Infection with Leishmania major. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2014583. [PMID: 29181388 PMCID: PMC5664244 DOI: 10.1155/2017/2014583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
Abstract
Recruitment of neutrophil granulocytes to sites of infectious tissue damage is an early event in innate immune responses. Following chemotactic signals neutrophils establish a first line of defense in a swarm-like manner. Intracellular pathogens such as Leishmania major can, however, evade neutrophil-mediated killing and survive inside neutrophils. To achieve this the parasites evolved potent evasion mechanisms. Since neutrophils are a major source of inflammation regulating lipid mediators, we hypothesized that intracellular infection modifies the release of pro- and anti-inflammatory lipid mediators like leukotriene B4 (LTB4) and lipoxin A4 (LXA4), respectively. In the present study, we demonstrated in vitro that L. major-infected primary human neutrophils release an increased amount of LTB4, whereas LXA4 liberation is reduced during the first hours of infection. To investigate whether lipid mediator modulation is a common feature in intracellular infections, we tested the impact of an infection with Anaplasma phagocytophilum. Similarly to L. major, neutrophil infection with A. phagocytophilum led to an enhanced release of LTB4 and decreased LXA4 production. Together, our findings indicate that intracellular infections modulate the lipid mediator profile of neutrophils. This effect is likely to contribute to the survival of the pathogens in neutrophils and to the outcome of the infections.
Collapse
|
21
|
Rodríguez NE, Lockard RD, Turcotte EA, Araújo-Santos T, Bozza PT, Borges VM, Wilson ME. Lipid bodies accumulation in Leishmania infantum-infected C57BL/6 macrophages. Parasite Immunol 2017; 39. [PMID: 28518475 DOI: 10.1111/pim.12443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Lipid bodies (LBs) are intracellular accumulations of neutral lipids surrounded by a single membrane. These organelles are involved in the production of eicosanoids, which modulate immunity by either promoting or dampening inflammatory responses. Leishmania infantum, the etiological agent of visceral leishmaniasis in Brazil, is an intracellular parasite that causes disease by suppressing macrophage microbicidal responses. C57BL/6 mouse bone marrow-derived macrophages infected with L. infantum strain LcJ had higher numbers of LB+ cells (P<.0001) and total LBs than noninfected cultures. Large (>3 μm) LBs were present inside parasitophorous vacuoles (PVs). These results contrast with those of L. infantum-infected BALB/c macrophages, in which the only LBs are derived from parasite, not macrophage origin. Increased LBs in C57BL/6 macrophages in close association with parasites would position host LBs where they could modulate L. infantum infection. These results imply a potential influence of the host genetics on the role of LBs in host-pathogen interactions. Overall, our data support a model in which the expression, and the role of LBs upon infection, ultimately depends on the specific combination of host-pathogen interactions.
Collapse
Affiliation(s)
- N E Rodríguez
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - R D Lockard
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - E A Turcotte
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - T Araújo-Santos
- Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), Barreiras, BA, Brazil
| | - P T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - V M Borges
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil
| | - M E Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA.,Veterans' Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
22
|
Solcà MS, Andrade BB, Abbehusen MMC, Teixeira CR, Khouri R, Valenzuela JG, Kamhawi S, Bozza PT, Fraga DBM, Borges VM, Veras PST, Brodskyn CI. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis. Sci Rep 2016; 6:32619. [PMID: 27595802 PMCID: PMC5011641 DOI: 10.1038/srep32619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/10/2016] [Indexed: 11/09/2022] Open
Abstract
Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti-sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines.
Collapse
Affiliation(s)
- Manuela S Solcà
- Laboratório de Patologia e Biointervenção, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, 40296-710 Salvador, Brazil
| | - Bruno B Andrade
- Laboratório Integrado de Microbiologia e Imunoregulação, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, 40296-710 Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, 40070-080 Salvador, Brazil
| | - Melissa Moura Costa Abbehusen
- Laboratório Integrado de Microbiologia e Imunoregulação, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, 40296-710 Salvador, Brazil
| | | | - Ricardo Khouri
- Laboratório Integrado de Microbiologia e Imunoregulação, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, 40296-710 Salvador, Brazil
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Patrícia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Bio-Manguinhos, FIOCRUZ, 21040-900 Rio de Janeiro, Brazil
| | - Deborah Bittencourt Mothé Fraga
- Laboratório de Patologia e Biointervenção, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, 40296-710 Salvador, Brazil.,Departamento de Medicina Veterinária Preventiva e Produção Animal, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, 40170-110 Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia para Doenças Tropicais (INCT-DT), 40110-160 Salvador, Brazil
| | - Valeria Matos Borges
- Laboratório Integrado de Microbiologia e Imunoregulação, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, 40296-710 Salvador, Brazil
| | - Patrícia Sampaio Tavares Veras
- Laboratório de Patologia e Biointervenção, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, 40296-710 Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia para Doenças Tropicais (INCT-DT), 40110-160 Salvador, Brazil
| | - Claudia Ida Brodskyn
- Laboratório Integrado de Microbiologia e Imunoregulação, Instituto de Pesquisas Gonçalo Moniz, FIOCRUZ, 40296-710 Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (III-INCT), 05403-900 São Paulo, Brazil
| |
Collapse
|
23
|
Chaves MM, Canetti C, Coutinho-Silva R. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis. Parasit Vectors 2016; 9:489. [PMID: 27595742 PMCID: PMC5011846 DOI: 10.1186/s13071-016-1781-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/29/2016] [Indexed: 11/10/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death.
Collapse
Affiliation(s)
- Mariana M Chaves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cláudio Canetti
- Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|