1
|
Reynolds JA. MicroRNAs in the developmental toolbox - a comparative approach to understanding their role in regulating insect development. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101256. [PMID: 39214418 DOI: 10.1016/j.cois.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs are ubiquitous in the genomes of metazoans. Since their discovery during the late 20th century, our understanding of these small, noncoding RNAs has grown rapidly. However, there are still many unknowns about the functional significance of miRNAs - especially in non-model insects. Here I discuss the accumulating evidence that microRNAs are part of gene regulatory networks that determine not only the developmental outcome but also mediate transitions between stages and alternative developmental pathways. During the last 20 years, researchers have published a multitude of profiling studies that describe changes in miRNAs that may be important for development and catalog potential targets. Proof-of-principle studies document phenotypic changes that occur when candidate genes and/or miRNAs are inhibited or overexpressed. Studies that use both of these approaches, along with methods for confirming miRNA-mRNA interaction, demonstrate the necessary roles for miRNAs within gene networks. Together, all of these types of studies provide essential clues for understanding the function of miRNAs in the developmental toolbox.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Roberts KT, Steward RA, Süess P, Lehmann P, Wheat CW. A time course analysis through diapause reveals dynamic temporal patterns of microRNAs associated with endocrine regulation in the butterfly Pieris napi. Mol Ecol 2024:e17348. [PMID: 38597329 DOI: 10.1111/mec.17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Organisms inhabiting highly seasonal environments must cope with a wide range of environmentally induced challenges. Many seasonal challenges require extensive physiological modification to survive. In winter, to survive extreme cold and limited resources, insects commonly enter diapause, which is an endogenously derived dormant state associated with minimized cellular processes and low energetic expenditure. Due to the high degree of complexity involved in diapause, substantial cellular regulation is required, of which our understanding primarily derives from the transcriptome via messenger RNA expression dynamics. Here we aim to advance our understanding of diapause by investigating microRNA (miRNA) expression in diapausing and direct developing pupae of the butterfly Pieris napi. We identified coordinated patterns of miRNA expression throughout diapause in both head and abdomen tissues of pupae, and via miRNA target identification, found several expression patterns to be enriched for relevant diapause-related physiological processes. We also identified two candidate miRNAs, miR-14-5p and miR-2a-3p, that are likely involved in diapause progression through their activity in the ecdysone pathway, a critical regulator of diapause termination. miR-14-5p targets phantom, a gene in the ecdysone synthesis pathway, and is upregulated early in diapause. miR-2a-3p has been found to be expressed in response to ecdysone, and is upregulated during diapause termination. Together, the expression patterns of these two miRNAs match our current understanding of the timing of hormonal regulation of diapause in P. napi and provide interesting candidates to further explore the mechanistic role of microRNAs in diapause regulation.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Rachel A Steward
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | - Philip Süess
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
3
|
Zhang R, Liu W, Fu J, Zhang Z. MicroRNA-989 controls Aedes albopictus pupal-adult transition process by influencing cuticle chitin metabolism in pupae. Parasit Vectors 2023; 16:397. [PMID: 37919799 PMCID: PMC10623821 DOI: 10.1186/s13071-023-05976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Aedes albopictus is a vector of numerous devastating arboviruses and places heavy burdens on global public health. Chitin is one of the important components of cuticles and targeting chitin metabolism is a promising strategy for preventing mosquito dispersal and mosquito-borne diseases. Increasing evidence suggests that microRNAs (miRNAs) play crucial roles in various physiological processes of insects. METHODS A previous analysis suggested that the microRNA miR-989 is potentially involved in chitin metabolism in Ae. albopictus pupae. In the present study, we found that the expression level of miR-989 was significantly overexpressed after injection of agomir. A dual-luciferase assay was used to determine the direct target of miR-989. Survival rate, eclosion rate and malformation rate were statistically analyzed to evaluate the potential effect of miR-989. Hematoxylin-eosin staining and chitin staining were used to evaluate the microstructural changes in the cuticles of Ae. albopictus pupae. RESULTS Overexpression of miR-989 resulted in a significantly reduced survival rate and eclosion rate of pupae and an elevated malformation rate of adults. The results suggested that miR-989 acted as a regulator of chitin metabolism in Ae. albopictus pupae by affecting the transcript levels of the Ae. albopictus genes encoding chitin synthase 1 (AaCHS1) and chitinase 10 (AaCht10). The altered expression levels of the two chitin metabolism-related enzymes (CHS1 and Cht10, respectively) caused the structural changes in cuticles and further affected the pupal-adult transition process of Ae. albopictus. XM_029863591.1 was proven to be the target gene of miR-989 and displayed similar effects on pupae as miR-989. CONCLUSIONS The microRNA miR-989 was found to be essential for chitin metabolism in old and new cuticles of Ae. albopictus pupae. The results of the current study suggested that miR-989 could be used as a potential target to control Ae. albopictus.
Collapse
Affiliation(s)
- Ruiling Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China.
- School of Laboratory Animal (Shandong Laboratory Animal Center), Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China.
| | - Wenjuan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China
| | - Jingwen Fu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China
| | - Zhong Zhang
- School of Clinical and Basic Medical Science, Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
4
|
miR-275/305 cluster is essential for maintaining energy metabolic homeostasis by the insulin signaling pathway in Bactrocera dorsalis. PLoS Genet 2022; 18:e1010418. [PMID: 36197879 PMCID: PMC9534453 DOI: 10.1371/journal.pgen.1010418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence indicates that miRNAs play crucial regulatory roles in various physiological processes of insects, including systemic metabolism. However, the molecular mechanisms of how specific miRNAs regulate energy metabolic homeostasis remain largely unknown. In the present study, we found that an evolutionarily conserved miR-275/305 cluster was essential for maintaining energy metabolic homeostasis in response to dietary yeast stimulation in Bactrocera dorsalis. Depletion of miR-275 and miR-305 by the CRISPR/Cas9 system significantly reduced triglyceride and glycogen contents, elevated total sugar levels, and impaired flight capacity. Combined in vivo and in vitro experiments, we demonstrated that miR-275 and miR-305 can bind to the 3'UTR regions of SLC2A1 and GLIS2 to repress their expression, respectively. RNAi-mediated knockdown of these two genes partially rescued metabolic phenotypes caused by inhibiting miR-275 and miR-305. Furthermore, we further illustrated that the miR-275/305 cluster acting as a regulator of the metabolic axis was controlled by the insulin signaling pathway. In conclusion, our work combined genetic and physiological approaches to clarify the molecular mechanism of metabolic homeostasis in response to different dietary stimulations and provided a reference for deciphering the potential targets of physiologically important miRNAs in a non-model organism.
Collapse
|
5
|
Naitore C, Villinger J, Kibet CK, Kalayou S, Bargul JL, Christoffels A, Masiga DK. The developmentally dynamic microRNA transcriptome of Glossina pallidipes tsetse flies, vectors of animal trypanosomiasis. BIOINFORMATICS ADVANCES 2021; 2:vbab047. [PMID: 36699416 PMCID: PMC9710702 DOI: 10.1093/bioadv/vbab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023]
Abstract
Summary MicroRNAs (miRNAs) are single stranded gene regulators of 18-25 bp in length. They play a crucial role in regulating several biological processes in insects. However, the functions of miRNA in Glossina pallidipes, one of the biological vectors of African animal trypanosomosis in sub-Saharan Africa, remain poorly characterized. We used a combination of both molecular biology and bioinformatics techniques to identify miRNA genes at different developmental stages (larvae, pupae, teneral and reproductive unmated adults, gravid females) and sexes of G. pallidipes. We identified 157 mature miRNA genes, including 12 novel miRNAs unique to G. pallidipes. Moreover, we identified 93 miRNA genes that were differentially expressed by sex and/or in specific developmental stages. By combining both miRanda and RNAhybrid algorithms, we identified 5550 of their target genes. Further analyses with the Gene Ontology term and KEGG pathways for these predicted target genes suggested that the miRNAs may be involved in key developmental biological processes. Our results provide the first repository of G. pallidipes miRNAs across developmental stages, some of which appear to play crucial roles in tsetse fly development. Hence, our findings provide a better understanding of tsetse biology and a baseline for exploring miRNA genes in tsetse flies. Availability and implementation Raw sequence data are available from NCBI Sequence Read Archives (SRA) under Bioproject accession number PRJNA590626. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Careen Naitore
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| | - Caleb K Kibet
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville 7530, South Africa
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| |
Collapse
|
6
|
Wei FR, Gao CH, Wang JY, Yang YT, Shi F, Zheng B. Label-Free Quantitative Proteomic Analysis of Three Strains of Viscerotropic Leishmania Isolated from Patients with Different Epidemiological Types of Visceral Leishmaniasis in China. Acta Parasitol 2021; 66:1366-1386. [PMID: 34019278 DOI: 10.1007/s11686-021-00387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND There are three epidemiological types of visceral leishmaniasis in China, which are caused by Leishmania strains belonging to the L. donovani complex. The mechanisms underlying their differences in the population affected, disease latency, and animal host, etc., remain unclear. We investigated the protein abundance differences among Leishmania strains isolated from three types of visceral leishmaniasis endemic areas in China. METHODS Promastigotes of the three Leishmania strains were cultured to the log phase and harvested. The protein tryptic digests were analyzed with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free quantitative analysis. The MS experiment was performed on a Q Exactive mass spectrometer. Raw spectra were quantitatively analyzed with the MaxQuant software (ver 1.3.0.5) and matched with the reference database. Differentially expressed proteins were analyzed using the bioinformatics method. The MS analysis was repeated three times for each sample. RESULTS A total of 5012 proteins were identified across the KS-2, JIASHI-5 and SC6 strains in at least 2 of the three samples replicate. Of them, 1758 were identified to be differentially expressed at least between 2 strains, including 349 with known names. These differentially expressed proteins with known names are involved in biological functions such as energy and lipid metabolic process, nucleotide acid metabolic process, amino acid metabolic process, response to stress, cell membrane/cytoskeleton, cell cycle and proliferation, biological adhesion and proteolysis, localization and transport, regulation of the biological process, and signal transduction. CONCLUSION The differentially expressed proteins and their related biological functions may shed light on the pathogenicity of Leishmania and targets for the development of vaccines and medicines.
Collapse
Affiliation(s)
- Fu-Rong Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Chun-Hua Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Jun-Yun Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| | - Yue-Tao Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Feng Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
7
|
Zhu C, Jiang Y, Zhang Q, Gao J, Li C, Li C, Dong Y, Xing D, Zhang H, Zhao T, Guo X, Zhao T. Vector competence of Aedes aegypti and screening for differentially expressed microRNAs exposed to Zika virus. Parasit Vectors 2021; 14:504. [PMID: 34579782 PMCID: PMC8477552 DOI: 10.1186/s13071-021-05007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Zika virus (ZIKV) is transmitted to humans primarily by Aedes aegypti. Previous studies on Ae. aegypti from Jiegao (JG) and Mengding (MD) in Yunnan province, China have shown that these mosquitoes are able to transmit ZIKV to their offspring through vertical transmission, indicating that these two Ae. aegypti strains pose a potential risk for ZIKV transmission. However, the vector competence of these two Ae. aegypti strains to ZIKV has not been evaluated and the molecular mechanisms influencing vector competence are still unclear. Methods Aedes aegypti mosquitoes from JG and MD were orally infected with ZIKV, and the infection rate (IR), dissemination rate (DR), transmission rate (TR) and transmission efficiency (TE) of these two mosquito strains were explored to evaluate their vector competence to ZIKV. On 2, 4 and 6 days post-infection (dpi), the small RNA profiles between ZIKV-infected and non-infected Ae. aegypti midgut and salivary gland tissues were compared to gain insights into the molecular interactions between ZIKV and Ae. aegypti. Results There were no significant differences in the IR, DR, TR and TE between the two Ae. aegypti strains (P > 0.05). However, ZIKV RNA appeared 2 days earlier in saliva of the JG strain, which indicated a higher competence of the JG strain to transmit ZIKV. Significant differences in the microRNA (miRNA) expression profiles between ZIKV-infected and non-infected Ae. aegypti were found in the 2-dpi libraries of both the midgut and salivary gland tissues from the two strains. In addition, 27 and 74 miRNAs (|log2 fold change| > 2) were selected from the miRNA expression profiles of ZIKV-infected and non-infected midgut and salivary gland tissues from the JG and MD strains, respectively. Conclusions Our results provide novel insights into the ZIKV–mosquito interactions and build a foundation for future research on how miRNAs regulate the vector competence of mosquitoes to this arbovirus. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05007-7.
Collapse
Affiliation(s)
- Chunling Zhu
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Department of Clinical Laboratory, Guangxi International Zhuang Medicine Hospital, Nanning, 530201, Guangxi, China
| | - Yuting Jiang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qianghui Zhang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jian Gao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chaojie Li
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chunxiao Li
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yande Dong
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dan Xing
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hengduan Zhang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Teng Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaoxia Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Tongyan Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
8
|
Xu TL, Sun YW, Feng XY, Zhou XN, Zheng B. Development of miRNA-Based Approaches to Explore the Interruption of Mosquito-Borne Disease Transmission. Front Cell Infect Microbiol 2021; 11:665444. [PMID: 34235091 PMCID: PMC8256169 DOI: 10.3389/fcimb.2021.665444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/02/2021] [Indexed: 01/21/2023] Open
Abstract
MicroRNA (miRNA or miR)-based approaches to interrupt the transmission of mosquito-borne diseases have been explored since 2005. A review of these studies and areas in which to proceed is needed. In this review, significant progress is reviewed at the level of individual miRNAs, and miRNA diversification and relevant confounders are described in detail. Current miRNA studies in mosquitoes include four steps, namely, identifying miRNAs, validating miRNA-pathogen interactions, exploring action mechanisms, and performing preapplication investigations. Notably, regarding the Plasmodium parasite, mosquito miRNAs generally bind to mosquito immunity- or development-related mRNAs, indirectly regulating Plasmodium infection; However, regarding arboviruses, mosquito miRNAs can bind to the viral genome, directly modifying viral replication. Thus, during explorations of miRNA-based approaches, researchers need select an ideal miRNA for investigation based on the mosquito species, tissue, and mosquito-borne pathogen of interest. Additionally, strategies for miRNA-based approaches differ for arboviruses and protozoan parasites.
Collapse
Affiliation(s)
- Tie-Long Xu
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
| | - Ya-Wen Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
| | - Xin-Yu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
miRNAs of Aedes aegypti (Linnaeus 1762) conserved in six orders of the class Insecta. Sci Rep 2021; 11:10706. [PMID: 34021209 PMCID: PMC8139948 DOI: 10.1038/s41598-021-90095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
Aedes aegypti L. is the most important vector of arboviruses such as dengue, Zika, chikungunya, Mayaro, and yellow fever, which impact millions of people's health per year. MicroRNA profile has been described in some mosquito species as being important for biological processes such as digestion of blood, oviposition, sexual differentiation, insecticide resistance, and pathogens dissemination. We identified the miRNAs of Ae. aegypti females, males and eggs of a reference insecticide susceptible strain New Orleans and compared them with those other insects to determine miRNA fingerprint by new-generation sequencing. The sequences were analyzed using data mining tools and categorization, followed by differential expression analysis and conservation with other insects. A total of 55 conserved miRNAs were identified, of which 34 were of holometabolous insects and 21 shared with hemimetabolous insects. Of these miRNAs, 32 had differential expression within the stages analyzed. Three predominant functions of miRNA were related to embryonic development regulation, metamorphosis, and basal functions. The findings of this research describe new information on Ae. aegypti physiology which could be useful for the development of new control strategies, particularly in mosquito development and metamorphosis processes.
Collapse
|
10
|
Queiroz FR, Portilho LG, Jeremias WDJ, Babá ÉH, do Amaral LR, Silva LM, Coelho PMZ, Caldeira RL, Gomes MDS. Deep sequencing of small RNAs reveals the repertoire of miRNAs and piRNAs in Biomphalaria glabrata. Mem Inst Oswaldo Cruz 2020; 115:e190498. [PMID: 32609280 PMCID: PMC7328434 DOI: 10.1590/0074-02760190498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/22/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Biomphalaria glabrata snails are widely distributed in schistosomiasis endemic areas like America and Caribe, displaying high susceptibility to infection by Schistosoma mansoni. After the availability of B. glabrata genome and transcriptome data, studies focusing on genetic markers and small non-coding RNAs have become more relevant. The small RNAs have been considered important through their ability to finely regulate the gene expression in several organisms, thus controlling the functions like cell growth, metabolism, and susceptibility/resistance to infection. OBJECTIVE The present study aims on identification and characterisation of the repertoire of small non-coding RNAs in B. glabrata (Bgl-small RNAs). METHODS By using small RNA sequencing, bioinformatics tools and quantitative reverse transcription polymerase chain reaction (RT-qPCR), we identified, characterised, and validated the presence of small RNAs in B. glabrata. FINDINGS 89 mature miRNAs were identified and five of them were classified as Mollusk-specific. When compared to model organisms, sequences of B. glabrata miRNAs showed a high degree of conservation. In addition, several target genes were predicted for all the mature miRNAs identified. Furthermore, piRNAs were identified in the genome of B. glabrata for the first time. The B. glabrata piRNAs showed strong conservation of uridine as first nucleotide at 5’ end, besides adenine at 10th position. Our results showed that B. glabrata has diverse repertoire of circulating ncRNAs, several which might be involved in mollusk susceptibility to infection, due to their potential roles in the regulation of S. mansoni development. MAIN CONCLUSIONS Further studies are necessary in order to confirm the role of the Bgl-small RNAs in the parasite/host relationship thus opening new perspectives on interference of small RNAs in the organism development and susceptibility to infection.
Collapse
Affiliation(s)
- Fábio Ribeiro Queiroz
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biologia do Schistosoma mansoni e sua Interação com o Hospedeiro, Belo Horizonte, MG, Brasil
| | - Laysa Gomes Portilho
- Universidade Federal de Uberlândia, Laboratório de Bioinformática e Análises Moleculares, Patos de Minas, MG, Brasil
| | | | - Élio Hideo Babá
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biologia do Schistosoma mansoni e sua Interação com o Hospedeiro, Belo Horizonte, MG, Brasil
| | - Laurence Rodrigues do Amaral
- Universidade Federal de Uberlândia, Laboratório de Bioinformática e Análises Moleculares, Patos de Minas, MG, Brasil.,Universidade Federal de Uberlândia, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Patos de Minas, MG, Brasil
| | - Luciana Maria Silva
- Fundação Ezequiel Dias, Serviço de Biologia Celular do Departamento de Pesquisas e Desenvolvimento, Belo Horizonte, MG, Brasil
| | - Paulo Marcos Zech Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biologia do Schistosoma mansoni e sua Interação com o Hospedeiro, Belo Horizonte, MG, Brasil
| | - Roberta Lima Caldeira
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Helmintologia e Malacologia Médica, Belo Horizonte, MG, Brasil
| | - Matheus de Souza Gomes
- Universidade Federal de Uberlândia, Laboratório de Bioinformática e Análises Moleculares, Patos de Minas, MG, Brasil.,Universidade Federal de Uberlândia, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Patos de Minas, MG, Brasil
| |
Collapse
|
11
|
Bryant WB, Ray S, Mills MK. Global Analysis of Small Non-Coding RNA Populations across Tissues in the Malaria Vector, Anopheles gambiae. INSECTS 2020; 11:E406. [PMID: 32630036 PMCID: PMC7411766 DOI: 10.3390/insects11070406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/22/2022]
Abstract
Malaria is a major global health problem, where the anautogenous female mosquito Anopheles gambiae serves as a major vector. In order to combat this devastating disease, understanding mosquito physiology is paramount. Numerous studies in the vector field demonstrate that small non-coding RNAs (ncRNAs) play essential roles in numerous aspects of mosquito physiology. While our previous miRNA annotation work demonstrated expression dynamics across differing tissues, miRNAs represented less than 20% of all small ncRNAs in our small RNA-Seq libraries. To this end, we systematically classified multiple small ncRNA groups across mosquito tissues. Here we (i) determined a new enriched-midgut miRNA, (ii) updated the piRNA annotation in ovaries with a genomic map of unique-mapping piRNAs, (iii) identified pan-tissue and tissue-enriched mRNA-derived small ncRNAs, and (iv) assessed AGO1- and AGO2- loading of candidate small ncRNAs. Continued research will broaden our view of small ncRNAs and greatly aide in our understanding on how these molecules contribute to mosquito physiology.
Collapse
Affiliation(s)
| | | | - Mary Katherine Mills
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC 29801, USA;
| |
Collapse
|
12
|
Yang Q, Bao Z, Yang M, Shen Y, Zhang X, Yue B, Meng Y, Fan Z. Identification and characterization of microRNAs in American cockroach (Periplaneta americana). Gene 2020; 743:144610. [DOI: 10.1016/j.gene.2020.144610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022]
|
13
|
Zhou F, Tang D, Xu Y, He H, Wu Y, Lin L, Dong J, Tan W, Dai Y. Identification of microRNAs and their Endonucleolytic Cleavaged target mRNAs in colorectal cancer. BMC Cancer 2020; 20:242. [PMID: 32293320 PMCID: PMC7092451 DOI: 10.1186/s12885-020-06717-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancer (CRC) ranks the third among the most common malignancies globally. It is well known that microRNAs (miRNAs) play vital roles in destabilizing mRNAs and repressing their translations in this disease. However, the mechanism of miRNA-induced mRNA cleavage remains to be investigated. Method In this study, high-throughput small RNA (sRNA) sequencing was utilized to identify and profile miRNAs from six pairs of colorectal cancer tissues (CTs) and adjacent tissues (CNs). Degradome sequencing (DS) was employed to detect the cleaved target genes. The Database for Annotation, Visualization and Integrated Discovery (DAVID) software was used for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Results In total, 1278 known miRNAs (clustered into 337 families) and 131 novel miRNAs were characterized in the CT and CN libraries, respectively. Of those, 420 known and eight novel miRNAs were defined as differentially expressed miRNAs (DEmiRNAs) by comparing the expression levels observed in the CT and CN libraries. Furthermore, through DS, 9685 and 202 potential target transcripts were characterized as target genes for 268 known and 33 novel miRNAs, respectively. It was further predicted that a total of 264 targeted genes for the 85 DEmiRNAs are involved in proteoglycans in cancer and the AMP-activated protein kinase signaling pathway. After systemic analysis of prognosis-related miRNA targets in those cancer-related signal pathways, we found that two targets ezrin (EZR) and hematopoietic cell-specific Lyn substrate 1 (HCLS1) had the potential prognostic characteristics with CRC regarding over survival (OS) or recurrence. Conclusion In total, we found that endonucleolytic miRNA-directed mRNA cleavage occurs in CRC. A number of potential genes targeted by CRC-related miRNAs were identified and some may have the potential as prognosis markers of CRC. The present findings may lead to an improved better appreciation of the novel interaction mode between miRNAs and target genes in CRC.
Collapse
Affiliation(s)
- Fangbin Zhou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Yong Xu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Huiyan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Yan Wu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Liewen Lin
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, China
| | - Wenyong Tan
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China. .,Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China.
| |
Collapse
|
14
|
Aedes aegypti microRNA, miR-2944b-5p interacts with 3'UTR of chikungunya virus and cellular target vps-13 to regulate viral replication. PLoS Negl Trop Dis 2019; 13:e0007429. [PMID: 31166953 PMCID: PMC6576790 DOI: 10.1371/journal.pntd.0007429] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/17/2019] [Accepted: 05/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background RNA interference is among the most important mechanisms that serve to restrict virus replication within mosquitoes, where microRNAs (miRNAs) are important in regulating viral replication and cellular functions. These miRNAs function by binding to complementary sequences mostly in the untranslated regions of the target. Chikungunya virus (CHIKV) genome consists of two open reading frames flanked by 5′ and 3′ untranslated regions on the two sides. A recent study from our laboratory has shown that Aedes miRNAs are regulated during CHIKV infection. The present study was undertaken to further understand the role of these miRNAs in CHIKV replication. Methods/Findings We observe that miR-2944b-5p binds to the 3′ untranslated region of CHIKV and the binding is abated when the binding sites are abolished. Loss-of-function studies of miR-2944b-5p using antagomirs, both in vitro and in vivo, reveal an increase in CHIKV viral replication, thereby directly implying a role of miR-2944b-5p in CHIKV replication. We further showed that the mitochondrial membrane potential of the mosquito cells is maintained by this miRNA during CHIKV replication, and cellular factor vps-13 plays a contributing role. Conclusions Our study has opened new avenues to understand vector-virus interactions and provides novel insights into CHIKV replication in Aedes aegypti. Furthermore, our study has shown miR-2944b-5p to be playing role, where one of its target vps-13 also contributes, in maintaining mitochondrial membrane potential in Aedes aegypti. Aedes aegypti mosquito transmits pathogenic viruses like chikungunya virus (CHIKV). Inside the vector, the virus replicates in a way so that it is able to survive within the mosquito without causing damage to it. However, once in the mammalian host, it becomes pathogenic and induces death to the infected cells. Amongst several mosquito specific factors that allows or rejects the virus survival, microRNAs play a decisive role. In several studies, miRNAs have shown to be playing role in controlling virus replication either by binding to viral genome or to suppress the expression of any host factor. In the present study, we identified an Aedes miRNA, miR-2944b-5p, which binds to 3'UTR of CHIKV and regulates the replication of the virus in the mosquito. Analysis of the mode of action of this regulation revealed that miR-2944b-5p played a role in maintaining mitochondrial membrane potential during CHIKV replication by targeting cellular factor vps-13.
Collapse
|
15
|
Waiho K, Fazhan H, Zhang Y, Zhang Y, Li S, Zheng H, Liu W, Ikhwanuddin M, Ma H. Gonadal microRNA Expression Profiles and Their Potential Role in Sex Differentiation and Gonadal Maturation of Mud Crab Scylla paramamosain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:320-334. [PMID: 30835008 DOI: 10.1007/s10126-019-09882-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Although the sexual dimorphism in terms of gonadal development and gametogenesis of mud crab has been described, the internal regulating mechanism and sex differentiation process remain unclear. A comparative gonadal miRNA transcriptomic study was conducted to identify miRNAs that are differentially expressed between testes and ovaries, and potentially uncover miRNAs that might be involved in sex differentiation and gonadal maturation mechanisms of mud crabs (Scylla paramamosain). A total of 10 known miRNAs and 130 novel miRNAs were identified, among which 54 were differentially expressed. Target gene prediction revealed a significant enrichment in 30 KEGG pathways, including some reproduction-related pathways, e.g. phosphatidylinositol signalling system and inositol phosphate metabolism pathways. Further analysis on six differentially expressed known miRNAs, six differentially expressed novel miRNAs and their reproduction-related putative target genes shows that both miRNAs and putative target genes showed stage-specific expression during gonadal maturation, suggesting their potential regulatory roles in sex differentiation and reproductive development. This study reveals the sex-biased miRNA profile and establishes a solid foundation for understanding the sex differentiation and gonadal maturation mechanisms of S. paramamosain.
Collapse
Affiliation(s)
- Khor Waiho
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hanafiah Fazhan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia.
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
16
|
Small RNA-Seq Analysis Reveals miRNA Expression Dynamics Across Tissues in the Malaria Vector, Anopheles gambiae. G3-GENES GENOMES GENETICS 2019; 9:1507-1517. [PMID: 30846481 PMCID: PMC6505144 DOI: 10.1534/g3.119.400104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malaria continues to be a major global health problem, where disease transmission is deeply linked to the repeated blood feeding nature of the anautogenous mosquito. Given the tight link between blood feeding and disease transmission, understanding basic biology behind mosquito physiology is a requirement for developing effective vector-borne disease control strategies. In the mosquito, numerous loss of function studies with notable phenotypes demonstrate microRNAs (miRNAs) play significant roles in mosquito physiology. While the field appreciates the importance of a handful of miRNAs, we still need global mosquito tissue miRNA transcriptome studies. To address this need, our goal was to determine the miRNA transcriptome for multiple tissues of the pre-vitellogenic mosquito. To this end, by using small RNA-Seq analysis, we determined miRNA transcriptomes in tissues critical for mosquito reproduction and immunity including (i) fat body-abdominal wall enriched tissues, (ii) midguts, (iii) ovaries, and (iv) remaining tissues comprised of the head and thorax. We found numerous examples of miRNAs exhibiting pan-tissue high- or low- expression, tissue exclusion, and tissue enrichment. We also updated and consolidated the miRNA catalog and provided a detailed genome architecture map for the malaria vector, Anopheles gambiae. This study aims to build a foundation for future research on how miRNAs and potentially other small RNAs regulate mosquito physiology as it relates to vector-borne disease transmission.
Collapse
|
17
|
Wu P, Shang Q, Dweteh OA, Huang H, Zhang S, Zhong J, Hou Q, Guo X. Over expression of bmo-miR-2819 suppresses BmNPV replication by regulating the BmNPV ie-1 gene in Bombyx mori. Mol Immunol 2019; 109:134-139. [PMID: 30947109 DOI: 10.1016/j.molimm.2019.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that threatens the growth and sustainability of the sericulture industry. Accumulating studies in recent years suggest that insect viruses infection can change the host microRNAs (miRNAs) expression profile and both cellular and viral miRNAs play roles in host-pathogen interactions. Until now, the functional analysis of miRNA encoded by silkworm for host-virus interaction is limited. In this study, we validate the down-regulation of bmo-miR-2819 upon BmNPV infection by qRT-PCR and confirm the BmNPV immediately early 1 gene, ie-1 is one of the targets for bmo-miR-2819 based on the results of dual luciferase report assay. Overexpression of bmo-miR-2819 can significantly decline the abundance of IE-1 protein level in BmNPV-infected silkworm larvae. Further, the expression level of polyhedrin gene and VP39 protein of BmNPV in the infected larvae after applying bmo-miR-2819 mimics was significantly decreased comparing with that of larvae with mimic control. Our results suggest that overexpression of bmo-miR-2819 could suppress BmNPV replication by down-regulating the expression of BmNPV ie-1 gene, which demonstrate that cellular miRNAs could affect virus infection by regulating the expression of virus genes.
Collapse
Affiliation(s)
- Ping Wu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
| | - Qi Shang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Owusu Amanfo Dweteh
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Haoling Huang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Shaolun Zhang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Jinbo Zhong
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Qirui Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
18
|
Arcà B, Colantoni A, Fiorillo C, Severini F, Benes V, Di Luca M, Calogero RA, Lombardo F. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci Rep 2019; 9:2955. [PMID: 30814633 PMCID: PMC6393464 DOI: 10.1038/s41598-019-39880-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza University", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmine Fiorillo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
19
|
Chen J, Li TC, Pang R, Yue XZ, Hu J, Zhang WQ. Genome-Wide Screening and Functional Analysis Reveal That the Specific microRNA nlu-miR-173 Regulates Molting by Targeting Ftz-F1 in Nilaparvata lugens. Front Physiol 2018; 9:1854. [PMID: 30618850 PMCID: PMC6306441 DOI: 10.3389/fphys.2018.01854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 01/28/2023] Open
Abstract
Background: Molting is a crucial physiological behavior during arthropod growth. In the past few years, molting as well as chitin biosynthesis triggered by molting, is subject to regulation by miRNAs. However, how many miRNAs are involved in insect molting at the genome-wide level remains unknown. Results: We deeply sequenced four samples obtained from nymphs at the 2nd-3rd and 4th-5th instars, and then identified 61 miRNAs conserved in the Arthropoda and 326 putative novel miRNAs in the brown planthopper Nilaparvata lugens, a fearful pest of rice. A total of 36 mature miRNAs with significant different expression levels at the genome scale during molting, including 19 conserved and 17 putative novel miRNAs were identified. After comparing the expression profiles, we found that most of the targets of 36 miRNAs showing significantly differential expression were involved in energy and hormone pathways. One of the 17 putative novel miRNAs, nlu-miR-173 was chosen for functional study. nlu-miR-173 acts in 20-hydroxyecdysone signaling through its direct target, N. lugens Ftz-F1(NlFtz-F1), a transcription factor. Furthermore, we found that the transcription of nlu-miR-173 was promoted by Broad-Complex (BR-C), suggesting that its involvement in the 20-hydroxyecdysone pathway contributes to proper molting function. Conclusion: We provided a comprehensive resource of miRNAs associated with insect molting and identified a novel miRNA as a potential target for pest control.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Teng Chao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhao Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
microRNA profiles and functions in mosquitoes. PLoS Negl Trop Dis 2018; 12:e0006463. [PMID: 29718912 PMCID: PMC5951587 DOI: 10.1371/journal.pntd.0006463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/14/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes are incriminated as vectors for many crippling diseases, including malaria, West Nile fever, Dengue fever, and other neglected tropical diseases (NTDs). microRNAs (miRNAs) can interact with multiple target genes to elicit biological functions in the mosquitoes. However, characterization and function of individual miRNAs and their potential targets have not been fully determined to date. We conducted a systematic review of published literature following PRISMA guidelines. We summarize the information about miRNAs in mosquitoes to better understand their metabolism, development, and responses to microorganisms. Depending on the study, we found that miRNAs were dysregulated in a species-, sex-, stage-, and tissue/organ-specific manner. Aberrant miRNA expressions were observed in development, metabolism, host-pathogen interactions, and insecticide resistance. Of note, many miRNAs were down-regulated upon pathogen infection. The experimental studies have expanded the identification of miRNA target from the 3' untranslated regions (UTRs) of mRNAs of mosquitoes to the 5' UTRs of mRNAs of the virus. In addition, we discuss current trends in mosquito miRNA research and offer suggestions for future studies.
Collapse
|
21
|
Feng X, Wu J, Zhou S, Wang J, Hu W. Characterization and potential role of microRNA in the Chinese dominant malaria mosquito Anopheles sinensis (Diptera: Culicidae) throughout four different life stages. Cell Biosci 2018; 8:29. [PMID: 29682276 PMCID: PMC5898052 DOI: 10.1186/s13578-018-0227-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND microRNAs (miRNAs) are one kind of small non-coding RNAs widely distributed in insects. Many studies have shown that miRNAs play critical roles in development, differentiation, apoptosis, and innate immunity. However, there are a few reports describing miRNAs in Anopheles sinensis, the most common, and one of the dominant malaria mosquito in China. Here, we investigated the global miRNA expression profile across four different developmental stages including embryo, larval, pupal, and adult stages using Illumina Hiseq 2500 sequencing. RESULTS In total, 164 miRNAs were obtained out of 107.46 million raw sequencing reads. 99 of them identified as known miRNAs, and the remaining 65 miRNAs were considered as novel. By analyzing the read counts of miRNAs in all developmental stages, 95 miRNAs showed stage-specific expression (q < 0.01 and |log2 (fold change)| > 1) in consecutive stages, indicating that these miRNAs may be involved in critical physiological activity during development. Sixteen miRNAs were identified to be commonly dysregulated throughout four developmental stages. Many miRNAs showed stage-specific expression, such as asi-miR-2943 was exclusively expressed in the embryo stage, and asi-miR-1891 could not be detected in larval stage. The expression of six selected differentially expressed miRNAs identified by qRT-PCR were consistent with our sequencing results. Furthermore, 5296 and 1902 target genes were identified for the dysregulated 68 known and 27 novel miRNAs respectively by combining miRanda and RNAhybrid prediction. GO annotation and KEGG pathway analysis for the predicted genes of dysregulated miRNAs revealed that they might be involved in a broad range of biological processes related with the development, such as membrane, organic substance transport and several key pathways including protein processing in endoplasmic reticulum, propanoate metabolism and folate biosynthesis. Thirty-two key miRNAs were identified by microRNA-gene network analysis. CONCLUSION The present study represents the first global characterization of An. sinensis miRNAs in its four developmental stages. The presence and differential expression of An. sinensis miRNAs imply that such miRNAs may play critical roles in An. sinensis life cycle. A better understanding of the functions of these miRNAs will have great implication for the effective control of vector population and therefore interrupting malaria transmission.
Collapse
Affiliation(s)
- Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, 200025 People’s Republic of China
- Joint Research Laboratory of Genetics and Ecology on Parasites-hosts Interaction, National Institute of Parasitic Diseases-Fudan University, Shanghai, 200025 People’s Republic of China
| | - Jiatong Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, 200025 People’s Republic of China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, 200025 People’s Republic of China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 People’s Republic of China
- Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433 China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, 200025 People’s Republic of China
- Joint Research Laboratory of Genetics and Ecology on Parasites-hosts Interaction, National Institute of Parasitic Diseases-Fudan University, Shanghai, 200025 People’s Republic of China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 People’s Republic of China
- Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433 China
| |
Collapse
|
22
|
Feng X, Zhou X, Zhou S, Wang J, Hu W. Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches. Parasit Vectors 2018. [PMID: 29530087 PMCID: PMC5848538 DOI: 10.1186/s13071-018-2734-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) are small non-coding RNAs widely identified in many mosquitoes. They are reported to play important roles in development, differentiation and innate immunity. However, miRNAs in Anopheles sinensis, one of the Chinese malaria mosquitoes, remain largely unknown. METHODS We investigated the global miRNA expression profile of An. sinensis using Illumina Hiseq 2000 sequencing. Meanwhile, we applied a bioinformatic approach to identify potential miRNAs in An. sinensis. The identified miRNA profiles were compared and analyzed by two approaches. The selected miRNAs from the sequencing result and the bioinformatic approach were confirmed with qRT-PCR. Moreover, target prediction, GO annotation and pathway analysis were carried out to understand the role of miRNAs in An. sinensis. RESULTS We identified 49 conserved miRNAs and 12 novel miRNAs by next-generation high-throughput sequencing technology. In contrast, 43 miRNAs were predicted by the bioinformatic approach, of which two were assigned as novel. Comparative analysis of miRNA profiles by two approaches showed that 21 miRNAs were shared between them. Twelve novel miRNAs did not match any known miRNAs of any organism, indicating that they are possibly species-specific. Forty miRNAs were found in many mosquito species, indicating that these miRNAs are evolutionally conserved and may have critical roles in the process of life. Both the selected known and novel miRNAs (asi-miR-281, asi-miR-184, asi-miR-14, asi-miR-nov5, asi-miR-nov4, asi-miR-9383, and asi-miR-2a) could be detected by quantitative real-time PCR (qRT-PCR) in the sequenced sample, and the expression patterns of these miRNAs measured by qRT-PCR were in concordance with the original miRNA sequencing data. The predicted targets for the known and the novel miRNAs covered many important biological roles and pathways indicating the diversity of miRNA functions. We also found 21 conserved miRNAs and eight counterparts of target immune pathway genes in An. sinensis based on the analysis of An. gambiae. CONCLUSIONS Our results provide the first lead to the elucidation of the miRNA profile in An. sinensis. Unveiling the roles of mosquito miRNAs will undoubtedly lead to a better understanding of mosquito biology and mosquito-pathogen interactions. This work lays the foundation for the further functional study of An. sinensis miRNAs and will facilitate their application in vector control.
Collapse
Affiliation(s)
- Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China.,Joint Research Laboratory of Genetics and Ecology on Parasites-hosts Interaction, National Institute of Parasitic Diseases - Fudan University, Shanghai, 200025, China
| | - Xiaojian Zhou
- Institute of Software Engineering, Zhejiang University, Hangzhou, 310011, China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China.
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China. .,State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
23
|
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory Pathways Controlling Female Insect Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:489-511. [PMID: 29058980 DOI: 10.1146/annurev-ento-020117-043258] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Tusar T Saha
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Alexander S Raikhel
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| |
Collapse
|
24
|
Dubey SK, Shrinet J, Jain J, Ali S, Sunil S. Aedes aegypti microRNA miR-2b regulates ubiquitin-related modifier to control chikungunya virus replication. Sci Rep 2017; 7:17666. [PMID: 29247247 PMCID: PMC5732197 DOI: 10.1038/s41598-017-18043-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Arboviruses that replicate in mosquitoes activate innate immune response within mosquitoes. Regulatory non-coding microRNAs (miRNA) are known to be modulated in mosquitoes during chikungunya infection. However, information about targets of these miRNAs is scant. The present study was aimed to identify and analyze targets of miRNAs that are regulated during chikungunya virus (CHIKV) replication in Aedes aegypti cells and in the mosquito. Employing next-generation sequencing technologies, we identified a total of 126 miRNAs from the Ae. aegypti cell line Aag2. Of these, 13 miRNAs were found to be regulated during CHIKV infection. Putative targets of three of the most significantly regulated miRNAs- miR-100, miR-2b and miR-989 were also analyzed using quantitative PCRs, in cell lines and in mosquitoes, to validate whether they were the targets of the miRNAs. Our study expanded the list of miRNAs known in Ae. aegypti and predicted targets for the significantly regulated miRNAs. Further analysis of some of these targets revealed that ubiquitin-related modifier is a target of miRNA miR-2b and plays a significant role in chikungunya replication.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Jatin Shrinet
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Jaspreet Jain
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
25
|
Lampe L, Levashina EA. The role of microRNAs inAnophelesbiology-an emerging research field. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- L. Lampe
- Vector Biology Unit; Max Planck Institute for Infection Biology; Berlin Germany
| | - E. A. Levashina
- Vector Biology Unit; Max Planck Institute for Infection Biology; Berlin Germany
| |
Collapse
|
26
|
Liu W, Hao Z, Huang L, Chen L, Wei Q, Cai L, Liang S. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection. Parasit Vectors 2017; 10:86. [PMID: 28209211 PMCID: PMC5314681 DOI: 10.1186/s13071-017-2027-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background Anopheles anthropophagus is one of the major vectors of malaria in Asia. MicroRNAs (miRNAs) play important roles in cell development and differentiation as well as in the cellular response to stress and infection. In a former study, we have investigated the global miRNA profiles in relation to sex in An. anthropophagus. However, the miRNAs contributing to the blood-feeding and infection with Plasmodium are still unknown. Methods High-throughput sequencing was performed to identify miRNA profiles of An. anthropophagus midguts after blood-feeding and Plasmodium infection. The expression patterns of miRNA in different midgut libraries were compared based on transcripts per million reads (TPM), and further confirmed by Northern blots. Target prediction and pathway analysis were carried out to investigate the role of regulated miRNAs in blood-feeding and Plasmodium infection. Results We identified 67 known and 21 novel miRNAs in all three libraries (sugar-feeding, blood-feeding and Plasmodium infection) in An. anthropophagus midguts. Comparing with the sugar-feeding, the experssion of nine (6 known and 3 novel) and ten (9 known and 1 novel) miRNAs were significantly upregulated and downregulated respectively after blood-feeding (P < 0.05, fold change ≥ 2 and TPM ≥ 10). Plasmodium infection induced the expression of thirteen (9 known and 4 novel) and eleven (9 known and 2 novel) miRNAs significantly upregulated and downregulated, respectively, compared with blood-feeding. The representative upregulated miR-92a in blood-feeding and downregulated miR-275 in Plasmodium infection were further confirmed by Northern Blot. Putative targets of these regulated miRNAs were further investigated and classified into their pathways. Conclusions This study suggests that miRNAs are involved in the blood-feeding and Plasmodium infection in An. anthropophagus midgut. Further studies of the function of these differential expressed miRNAs will facilitate in better understanding of mosquito biology and anti-parasite immunity. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2027-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenquan Liu
- Department of Parasitology, Wenzhou Medical University, 325035, Wenzhou, Zhejiang Province, People's Republic of China
| | - Zhenhua Hao
- Department of Parasitology, Wenzhou Medical University, 325035, Wenzhou, Zhejiang Province, People's Republic of China
| | - Liyang Huang
- Department of Parasitology, Wenzhou Medical University, 325035, Wenzhou, Zhejiang Province, People's Republic of China
| | - Lingzi Chen
- Department of Parasitology, Wenzhou Medical University, 325035, Wenzhou, Zhejiang Province, People's Republic of China
| | - Qimei Wei
- Department of Parasitology, Wenzhou Medical University, 325035, Wenzhou, Zhejiang Province, People's Republic of China
| | - Liya Cai
- Department of Parasitology, Wenzhou Medical University, 325035, Wenzhou, Zhejiang Province, People's Republic of China
| | - Shaohui Liang
- Department of Parasitology, Wenzhou Medical University, 325035, Wenzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
27
|
Chang ZX, Tang N, Wang L, Zhang LQ, Akinyemi IA, Wu QF. Identification and characterization of microRNAs in the white-backed planthopper, Sogatella furcifera. INSECT SCIENCE 2016; 23:452-68. [PMID: 27060479 DOI: 10.1111/1744-7917.12343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) are a novel class of small, non-coding endogenous RNAs that play critical regulatory roles in many metabolic activities in eukaryotes. Reports of the identification of miRNAs in Sogatella furcifera (white-backed planthopper), the insect that acts as the only confirmed vector of the southern rice black-streaked dwarf virus (SRBSDV), are limited. In this study, a total of 382 miRNAs were identified in S. furcifera, including 106 conserved and 276 novel miRNAs, using high-throughput sequencing based on two small RNA libraries from viruliferous and non-viruliferous S. furcifera, and these miRNAs belonged to 52 conserved miRNA families and 58 S. furcifera-specific families, respectively. Comparison with miRNAs from 26 insect species and five other species in miRBase showed that more than half of the conserved miRNA families are highly conserved in Hexapoda, while other miRNAs are only conserved in non-dipterans. Furthermore, 4 117 target genes predicted for the 382 identified miRNAs could be categorized into 45 functional groups annotated by Gene Ontology. Compared with non-viruliferous cells, eight up-regulated miRNAs and four down-regulated miRNAs were identified in cells inoculated with SRBSDV, among which miR-14 and miR-n98a may be involved in the immune response to SRBSDV infection. Analyses of the identified miRNAs will provide insights into the roles of these miRNAs in the regulation and expression of genes involved in the metabolism, development and viral infection of S. furcifera.
Collapse
Affiliation(s)
- Zhao-Xia Chang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Nan Tang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lin Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Li-Qing Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ibukun A Akinyemi
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Liu P, Li X, Gu J, Dong Y, Liu Y, Santhosh P, Chen X. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus. Sci Rep 2016; 6:20979. [PMID: 26879823 PMCID: PMC4754678 DOI: 10.1038/srep20979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control.
Collapse
Affiliation(s)
- Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaocong Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunqiao Dong
- Reproductive Medical Center of Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511442, China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Puthiyakunnon Santhosh
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|