1
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
2
|
Zhang Y, Shen C, Zhu X, Leow CY, Ji M, Xu Z. Helminth-derived molecules: pathogenic and pharmacopeial roles. J Biomed Res 2024; 38:1-22. [PMID: 39314046 DOI: 10.7555/jbr.38.20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Parasitic helminths, taxonomically comprising trematodes, cestodes, and nematodes, are multicellular invertebrates widely disseminated in nature and have afflicted people continuously for a long time. Helminths play potent roles in the host through generating a variety of novel molecules, including some excretory/secretory products and others that are involved in intracellular material exchange and information transfer as well as the initiation or stimulation of immune and metabolic activation. The helminth-derived molecules have developed powerful and diverse immunosuppressive effects to achieve immune evasion for parasite survival and establish chronic infections. However, they also improve autoimmune and allergic inflammatory responses and promote metabolic homeostasis by promoting metabolic reprogramming of various immune functions, and then inducing alternatively activated macrophages, T helper 2 cells, and regulatory T cells-mediated immune responses. Therefore, a deeper exploration of the immunopathogenic mechanism and immune regulatory mechanisms of helminth-derived molecules exerted in the host is crucial for understanding host-helminth interactions as well as the development of therapeutic drugs for infectious or non-infectious diseases. In this review, we focus on the properties of helminth-derived molecules to give an overview of the most recent scientific knowledge about their pathogenic and pharmacopeial roles in immune-metabolic homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
3
|
Gao X, Mao C, Zheng T, Xu X, Luo X, Zhang S, Liu J, Wang X, Chen X, Dong L. Schistosoma japonicum-derived peptide SJMHE1 ameliorates allergic symptoms and responses in mice with allergic rhinitis. Front Cell Infect Microbiol 2023; 13:1143950. [PMID: 37346033 PMCID: PMC10279851 DOI: 10.3389/fcimb.2023.1143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Helminth derived excretory/secretory molecules have shown efficacy in the treatment of allergic asthma in mice, but their roles in allergic rhinitis (AR) are little known. In this study, we aimed to determine the intervention effect of SJMHE1, a Schistosoma japonicum derived small molecular peptide, on ovalbumin (OVA)-induced AR mice and investigate its possible mechanism. AR was induced in BALB/c mice, following which the mice were treated with phosphate-buffered saline (PBS), OVA323-339 and SJMHE1 respectively. SJMHE1 treatment improved clinical symptoms (rubbing and sneezing), suppressed infiltrates of inflammatory cells and eosinophils in nasal mucosa, modulated the production of type-2 (IL-4 and IL-13) and anti-inflammatory (IL-10) cytokines in the nasal lavage fluids (NLF), spleen, and serum. To investigate the underlying mechanism, fluorescein isothiocyanate (FITC)-labeled SJMHE1 was subcutaneously injected into AR mice, and we found that the FITC-SJMHE1 could accumulate in spleen, but not in nasal mucosa. FITC-SJMHE1 mainly bound to CD19 positive cells (B cells), and the SJMHE1 treatment significantly increased the proportion of regulatory B cells (Bregs) and B10 cells, along with the enhancement of PR domain containing protein 1 (Prdm1) protein levels. SJMHE1 may alleviate AR by upregulating Bregs, and has great potential as a new avenue for the AR treatment.
Collapse
Affiliation(s)
- Xuerong Gao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowei Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinkai Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shan Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuefeng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
He X, Sun Y, Yang F, Zheng G, Li R, Liu M, Li W, Zhou DH, Zheng Y. Heat shock protein 60 in parasitic helminths: A role in immune responses and therapeutic applications. Mol Biochem Parasitol 2023; 253:111544. [PMID: 36641059 DOI: 10.1016/j.molbiopara.2023.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Heat shock protein 60 (HSP60) is an unique member of the heat shock protein family, being involved in parasite infections. To cope with harsh environments where parasites live, HSP60s are indispensable and involved in a variety of biological processes. HSP60s have relative low similarity among parasites, but their ATPase /Mg2+ active sites are highly conserved. The interactions of HSP60s with signaling pathway regulators in immune cells suggest a crucial role in immune responses, rendering them a potential therapeutic target. This paper reviews the current understandings of HSP60s in parasitic helminths in aspects of molecular characteristics, immunoregulatory responses and HSP60-based therapeutics.
Collapse
Affiliation(s)
- Xuedong He
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yue Sun
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fang Yang
- Zhejiang Kangjia Gene Technology Limited Liability Company, Hangzhou 310022, China
| | - Guanghui Zheng
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Mengqi Liu
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wanjing Li
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Liu X, Jiang Y, Ye J, Wang X. Helminth infection and helminth-derived products: A novel therapeutic option for non-alcoholic fatty liver disease. Front Immunol 2022; 13:999412. [PMID: 36263053 PMCID: PMC9573989 DOI: 10.3389/fimmu.2022.999412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to obesity, diabetes, and metabolic syndrome (MetS), and it has become the most common chronic liver disease. Helminths have co-evolved with humans, inducing multiple immunomodulatory mechanisms to modulate the host's immune system. By using their immunomodulatory ability, helminths and their products exhibit protection against various autoimmune and inflammatory diseases, including obesity, diabetes, and MetS, which are closely associated with NAFLD. Here, we review the pathogenesis of NAFLD from abnormal glycolipid metabolism, inflammation, and gut dysbiosis. Correspondingly, helminths and their products can treat or relieve these NAFLD-related diseases, including obesity, diabetes, and MetS, by promoting glycolipid metabolism homeostasis, regulating inflammation, and restoring the balance of gut microbiota. Considering that a large number of clinical trials have been carried out on helminths and their products for the treatment of inflammatory diseases with promising results, the treatment of NAFLD and obesity-related diseases by helminths is also a novel direction and strategy.
Collapse
Affiliation(s)
- Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Zhang Z, Liu J, Mao C, Zhang S, Wang X, Dong L. SJMHE1 protects against excessive iodine-induced pyroptosis in human thyroid follicular epithelial cells through a toll-like receptor 2-dependent pathway. Int J Med Sci 2022; 19:631-639. [PMID: 35582426 PMCID: PMC9108411 DOI: 10.7150/ijms.66167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
To elucidate the effect of Schistosoma japonicum peptide (SJMHE1) on pyroptosis in thyroid follicular epithelial cells (TFCs) induced by excessive iodine and the potential mechanism, the effects of SJMHE1 were investigated in NaI-treated Nthy-ori 3-1 cells; and the involvement of the ROS/MAPK/NF-κB signaling pathways in these effects was evaluated by employing CCK-8 assays, flow cytometry, ELISA, and Western blotting experiments. We found that SJMHE1 significantly reduced NLRP3, N-terminus of gasdermin D (GSDMD-N) and cleaved caspase-1 (C-caspase-1) expression, and decreased IL-1β secretion in TFCs. SJMHE1 also markedly reduced reactive oxygen species (ROS) production, and decreased the phosphorylation levels of MAPK and NF-κB pathway members. Moreover, blocking of the Toll-like receptor 2 significantly impaired SJMHE1-mediated protection from excessive iodine-induced pyroptosis in TFCs. Therefore, our results suggested a protective role of SJMHE1 in excessive iodine-induced pyroptosis in TFCs, which might be attributed to its suppression for ROS/MAPK/NF-κB signaling pathway by binding of SJMHE1 with TLR2.
Collapse
Affiliation(s)
- Zhu Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P. R. China.,Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 212000, P. R. China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P. R. China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P. R. China
| | - Shan Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P. R. China
| | - Xuefeng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P. R. China
| | - Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, P. R. China
| |
Collapse
|
7
|
Li L, Shan W, Zhu H, Xue F, Ma Y, Dong L, Feng D, Mao J, Yuan G, Wang X. SJMHE1 Peptide from Schistosoma japonicum Inhibits Asthma in Mice by Regulating Th17/Treg Cell Balance via miR-155. J Inflamm Res 2021; 14:5305-5318. [PMID: 34703270 PMCID: PMC8523811 DOI: 10.2147/jir.s334636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Helminths and their products can regulate immune response and offer new strategies to control and alleviate inflammation, including asthma. We previously found that a peptide named as SJMHE1 from Schistosoma japonicum can suppress asthma in mice. This study mainly investigated the molecular mechanism of SJMHE1 in inhibiting asthma inflammation. Methods SJMHE1 was administered to mice with OVA-induced asthma via subcutaneous injection, and its effects were detected by testing the airway inflammation of mice. The Th cell distribution was analyzed by flow cytometry. Th-related transcription factor and cytokine expression in the lungs of mice were analyzed using quantitative real-time PCR (qRT-PCR). The expression of miR-155 and levels of phosphorylated STAT3 and STAT5 were also determined after SJMHE1 treatment in mice by qRT-PCR and Western blot analysis. The in vitro mouse CD4+ T cells were transfected with lentivirus containing overexpressed or inhibited miR-155, and the proportion of Th17, Treg cells, CD4+p-STAT3+, and CD4+p-STAT5+ cells were analyzed by flow cytometry. Results SJMHE1 ameliorated the airway inflammation of asthmatic mice, upregulated the proportion of Th1 and Treg cells, and the expression of Th1 and Treg-related transcription factor and cytokines. Simultaneously, SJMHE1 treatment reduced the percentage of Th2 and Th17 cells and the expression of Th2 and Th17-related transcription factor and cytokines. SJMHE1 treatment decreased the expression of miR-155 and p-STAT3 but increased p-STAT5 expression. In vitro, the percentage of Th17 and CD4+p-STAT3+ cells increased in CD4+ T cells transfected over-expression of miR-155, but SJMHE1 inhibited the miR-155-mediated increase of Th17 cells. Furthermore, SJMHE1 increased the proportion of Treg and CD4+p-STAT5+ cells after transfected over-expression or inhibition of miR-155. Conclusion SJMHE1 regulated the balance of Th17 and Treg cells by modulating the activation of STAT3 and STAT5 via miR-155 in asthma. SJMHE1 might be a promising treatment for asthma.
Collapse
Affiliation(s)
- Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Clinical Laboratory, The Taixing City People's Hospital, Taixing, 225400, People's Republic of China
| | - Wenqi Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Haijin Zhu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Clinical Laboratory, The Taixing City People's Hospital, Taixing, 225400, People's Republic of China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Central Laboratory, Jintan Hospital, Jiangsu University, Jintan, 213200, People's Republic of China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Guoyue Yuan
- Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, People's Republic of China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| |
Collapse
|
8
|
Shan W, Zhang W, Xue F, Ma Y, Dong L, Wang T, Zheng Y, Feng D, Chang M, Yuan G, Wang X. Schistosoma japonicum peptide SJMHE1 inhibits acute and chronic colitis induced by dextran sulfate sodium in mice. Parasit Vectors 2021; 14:455. [PMID: 34488863 PMCID: PMC8422783 DOI: 10.1186/s13071-021-04977-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Harnessing helminth-based immunoregulation is a novel therapeutic strategy for many immune dysfunction disorders, including inflammatory bowel diseases (IBDs). We previously identified a small molecule peptide from Schistosoma japonicum and named it SJMHE1. SJMHE1 can suppress delayed-type hypersensitivity, collagen-induced arthritis and asthma in mice. In this study, we assessed the effects of SJMHE1 on dextran sulfate sodium (DSS)-induced acute and chronic colitis. METHODS Acute and chronic colitis were induced in C57BL/6 mice by DSS, following which the mice were injected with an emulsifier SJMHE1 or phosphate-buffered saline. The mice were then examined for body weight loss, disease activity index, colon length, histopathological changes, cytokine expression and helper T (Th) cell subset distribution. RESULTS SJMHE1 treatment significantly suppressed DSS-induced acute and chronic colitis, improved disease activity and pathological damage to the colon and modulated the expression of pro-inflammatory and anti-inflammatory cytokines in splenocytes and the colon. In addition, SJMHE1 treatment reduced the percentage of Th1 and Th17 cells and increased the percentage of Th2 and regulatory T (Treg) cells in the splenocytes and mesenteric lymph nodes of mice with acute colitis. Similarly, SJMHE1 treatment upregulated the expression of interleukin-10 (IL-10) mRNA, downregulated the expression of IL-17 mRNA and modulated the Th cell balance in mice with chronic colitis. CONCLUSIONS Our data show that SJMHE1 provided protection against acute and chronic colitis by restoring the immune balance. As a small molecule, SJMHE1 might be a novel agent for the treatment of IBDs without immunogenicity concerns.
Collapse
Affiliation(s)
- Wenqi Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Blood Transfusion, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central Laboratory, Jintan Hospital, Jiangsu University, Jintan, Jiangsu, China
| | - Liyang Dong
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Zheng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Chang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China. .,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
9
|
Lothstein KE, Gause WC. Mining Helminths for Novel Therapeutics. Trends Mol Med 2021; 27:345-364. [PMID: 33495068 PMCID: PMC9884063 DOI: 10.1016/j.molmed.2020.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023]
Abstract
Helminths are an emerging source of therapeutics for dysregulated inflammatory diseases. Excretory/secretory (ES) molecules, released during infection, are responsible for many of these immunomodulatory effects and are likely to have evolved as a means for parasite survival in the host. While the mechanisms of action of these molecules have not been fully defined, evidence demonstrates that they target various pathways in the immune response, ranging from initiation to effector cell modulation. These molecules are applied in controlling specific effector mechanisms of type 1 and type 2 immune responses. Recently, studies have further focused on their therapeutic potential in specific disease models. Here we review recent findings on ES molecule modulation of immune functions, specifically highlighting their clinical implications for future use in inflammatory disease therapeutics.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
10
|
Llanwarne F, Helmby H. Granuloma formation and tissue pathology in Schistosoma japonicum versus Schistosoma mansoni infections. Parasite Immunol 2021; 43:e12778. [PMID: 32692855 PMCID: PMC11478942 DOI: 10.1111/pim.12778] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is the most important helminth disease in the world from a public health perspective. S mansoni and S japonicum account for the majority of global intestinal schistosomiasis cases, and the pathogenesis is widely assumed to be fundamentally similar. However, the majority of research on schistosomiasis has been carried out on S mansoni and comparisons between the two species are rarely made. Here, we will discuss aspects of both older and recent literature where such comparisons have been made, with a particular focus on the pathological agent, the host granulomatous response to the egg. Major differences between the two species are apparent in features such as egg production patterns and cellular infiltration; however, it is also clear that even subtle differences in the cascade of various cytokines and chemokines contribute to the different levels of pathology observed between these two main species of intestinal schistosomiasis. A better understanding of such differences at species level will be vital when it comes to the development of new treatment strategies and vaccines.
Collapse
Affiliation(s)
- Felix Llanwarne
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| | - Helena Helmby
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
11
|
Ayelign B, Akalu Y, Teferi B, Molla MD, Shibabaw T. Helminth Induced Immunoregulation and Novel Therapeutic Avenue of Allergy. J Asthma Allergy 2020; 13:439-451. [PMID: 33116652 PMCID: PMC7548329 DOI: 10.2147/jaa.s273556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Allergic diseases are increasing at an alarming rate worldwide, particularly in developed countries. In contrast, there is a decrease in the prevalence of helminthic infections and other neglected diseases. The hygiene hypothesis elaborates parasitic infection, and allergy-associated diseases have an inverse relationship. Acute helminthic infection and allergic reaction stimulate Type 2 helper cells (Th2) immune response with up-regulation of cytokines IL-4-, IL-5-, and IL-13-mediated IgE and mast cell production, as well as eosinophilia. However, people who chronically suffer from helminthic infections are demarcated through polarized Th2 resulting in alternative macrophage activation and T regulatory response. This regulatory system reduces allergy incidence in individuals that are chronically diseased through helminth. As a result, the excretory-secretory (ES) substance derived from parasites and extracellular vesicular components can be used as a novel therapeutic modality of allergy. Therefore, the aim of this review meticulously explored the link between helminth infection and allergy, and utilization of the helminth secretome for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Zhang W, Li L, Zheng Y, Xue F, Yu M, Ma Y, Dong L, Shan Z, Feng D, Wang T, Wang X. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice. J Cell Mol Med 2019; 23:7819-7829. [PMID: 31496071 PMCID: PMC6815837 DOI: 10.1111/jcmm.14661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Helminths and their products can shape immune responses by modulating immune cells, which are dysfunctional in inflammatory diseases such as asthma. We previously identified SJMHE1, a small molecule peptide from the HSP60 protein of Schistosoma japonicum. SJMHE1 can inhibit delayed-type hypersensitivity and collagen-induced arthritis in mice. In the present study, we evaluated this peptide's potential intervention effect and mechanism on ovalbumin-induced asthma in mice. SJMHE1 treatment suppressed airway inflammation in allergic mice, decreased the infiltrating inflammatory cells in the lungs and bronchoalveolar lavage fluid, modulated the production of pro-inflammatory and anti-inflammatory cytokines in the splenocytes and lungs of allergic mice, reduced the percentage of Th2 cells and increased the proportion of Th1 and regulatory T cells (Tregs). At the same time, Foxp3 and T-bet expression increased, and GATA3 and RORγt decreased in the lungs of allergic mice. We proved that SJMHE1 can interrupt the development of asthma by diminishing airway inflammation in mice. The down-regulation of Th2 response and the up-regulation of Th1 and Tregs response may contribute to the protection induced by SJMHE1 in allergic mice. SJMHE1 can serve as a novel therapy for asthma and other allergic or inflammatory diseases.
Collapse
Affiliation(s)
- Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Zheng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengzhu Yu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Zhenjiang, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zirui Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
TLR Specific Immune Responses against Helminth Infections. J Parasitol Res 2017; 2017:6865789. [PMID: 29225962 PMCID: PMC5684585 DOI: 10.1155/2017/6865789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023] Open
Abstract
Despite marked improvement in the quality of lives across the globe, more than 2 million individuals in socioeconomically disadvantaged environments remain infected by helminth (worm) parasites. Owing to the longevity of the worms and paucity of immunologic controls, these parasites survive for long periods within the bloodstream, lymphatics, and gastrointestinal tract resulting in pathologic conditions such as anemia, cirrhosis, and lymphatic filariasis. Despite infection, an asymptomatic state may be maintained by the host immunoregulatory environment, which involves multiple levels of regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. The role of TLR expression and function in relation to intracellular parasites has been documented but limited studies are available for multicellular helminth parasites. In this review, we discuss the unique and shared host effector mechanisms elicited by systemic helminth parasites and their derived products, including the role of TLRs and sphingolipids. Understanding and exploiting the interactions between these parasites and the host regulatory network are likely to highlight new strategies to control both infectious and immunological diseases.
Collapse
|
14
|
Parande Shirvan S, Ebrahimby A, Dousty A, Maleki M, Movassaghi A, Borji H, Haghparast A. Somatic extracts of Marshallagia marshalli downregulate the Th2 associated immune responses in ovalbumin-induced airway inflammation in BALB/c mice. Parasit Vectors 2017; 10:233. [PMID: 28494800 PMCID: PMC5427607 DOI: 10.1186/s13071-017-2159-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
Background Recently the role of gastrointestinal nematodes in modulating the immune responses in inflammatory and immune-mediated conditions such as allergy and autoimmune diseases has been introduced. This is mainly due to the suppressive effects of somatic and excretory secretory (ES) products of nematodes on the immune responses. In this study, we evaluated the immunomodulatory potentials of somatic products of Marshallagia marshalli, a gastrointestinal nematodes of sheep, to suppress the immune-mediated responses in a murine model of allergic airway inflammation. BALB/c mice were intraperitoneally (IP) sensitized with ovalbumin (OVA)/Alum and then challenged with 1% OVA. Somatic products of M. marshalli were administered during each sensitization. The effects of somatic products on development of allergic airway inflammation were evaluated by analyzing inflammatory cells recruitment, histopathological changes, cytokines production (IL-4, IL-13, IL-10, TGF-β) and serum antibody titers (IgG1, IgG2a). Results Somatic products of M. marshalli were able to suppress the induction of allergic airway inflammation in mice. Modulation of Th2 type responses (IL-4, IL-13, IgG1) via upregulations of IL-10 and TGF-β production was observed after injection of somatic products of M. marshalli. In addition, inflammatory cells infiltration and pathological disorders were significantly diminished following administration of somatic products. Conclusions Our data raised the possibility that helminths could be a potential therapeutic candidate to alleviate the inflammatory conditions in allergic asthma. According to these results, we concluded that M. marshalli may contain immune-modulatory molecules that attenuate allergic airway inflammation via induction of regulatory cytokines. Further investigations are required to identify molecules that might have potentials for development of novel therapeutic targets.
Collapse
Affiliation(s)
- Sima Parande Shirvan
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Azadeh Ebrahimby
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Arezoo Dousty
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Mohsen Maleki
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Ahmadreza Movassaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran.
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran. .,Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P. O. Box: 91775-1793, Mashhad, Iran.
| |
Collapse
|
15
|
Wang X, Li L, Wang J, Dong L, Shu Y, Liang Y, Shi L, Xu C, Zhou Y, Wang Y, Chen D, Mao C. Inhibition of cytokine response to TLR stimulation and alleviation of collagen-induced arthritis in mice by Schistosoma japonicum peptide SJMHE1. J Cell Mol Med 2016; 21:475-486. [PMID: 27677654 PMCID: PMC5323857 DOI: 10.1111/jcmm.12991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022] Open
Abstract
Helminth‐derived products have recently been shown to prevent the development of inflammatory diseases in mouse models. However, most identified immunomodulators from helminthes are mixtures or macromolecules with potentially immunogenic side effects. We previously identified an immunomodulatory peptide called SJMHE1 from the HSP60 protein of Schistosoma japonicum. In this study, we assessed the ability of SJMHE1 to affect murine splenocytes and human peripheral blood mononuclear cells (PBMCs) stimulated by toll‐like receptor (TLR) ligands in vitro and its treatment effect on mice with collagen‐induced arthritis (CIA). We show that SJMHE1 not only modulates the cytokine production of murine macrophage (MΦ) and dendritic cell but also affects cytokine production upon coculturing with allogeneic CD4+ T cell. SJMHE1 potently inhibits the cytokine response to TLR ligands lipopolysaccharide (LPS), CpG oligodeoxynucleotides (CpG) or resiquimod (R848) from mouse splenocytes, and human PBMCs stimulated by LPS. Furthermore, SJMHE1 suppressed clinical signs of CIA in mice and blocked joint erosion progression. This effect was mediated by downregulation of key cytokines involved in the pathogenesis of CIA, such as interferon‐γ (IFN‐γ), tumour necrosis factor‐α (TNF‐α), interleukin (IL)‐6, IL‐17, and IL‐22 and up‐regulation of the inhibitory cytokine IL‐10, Tgf‐β1 mRNA, and CD4+CD25+Foxp3+ Tregs. This study provides new evidence that the peptide from S. japonicum, which is the ‘safe’ selective generation of small molecule peptide that has evolved during host–parasite interactions, is of great value in the search for novel anti‐inflammatory agents and therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Wang
- Department of Nuclear Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Shu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yong Liang
- Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, Huaian, Jiangsu, China
| | - Liang Shi
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuepeng Zhou
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chaoming Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|