1
|
Toledo R, Cociancic P, Fiallos E, Esteban JG, Muñoz-Antoli C. Immunology and pathology of echinostomes and other intestinal trematodes. ADVANCES IN PARASITOLOGY 2024; 124:1-55. [PMID: 38754926 DOI: 10.1016/bs.apar.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Intestinal trematodes constitute a major group of helminths that parasitize humans and animals with relevant morbidity and mortality. Despite the importance of the intestinal trematodes in medical and veterinary sciences, immunology and pathology of these helminth infections have been neglected for years. Apart from the work focused on the members of the family Echnistomatidae, there are only very isolated and sporadic studies on the representatives of other families of digeneans, which makes a compilation of all these studies necessary. In the present review, the most salient literature on the immunology and pathology of intestinal trematodes in their definitive hosts in examined. Emphasis will be placed on members of the echinostomatidae family, since it is the group in which the most work has been carried out. However, we also review the information on selected species of the families Brachylaimidae, Diplostomidae, Gymnophallidae, and Heterophyidae. For most of these families, coverage is considered under the following headings: (i) Background; (ii) Pathology of the infection; (iii) Immunology of the infection; and (iv) Human infections.
Collapse
Affiliation(s)
- Rafael Toledo
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain.
| | - Paola Cociancic
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Emma Fiallos
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - J Guillermo Esteban
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Carla Muñoz-Antoli
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
3
|
Toledo R, Conciancic P, Fiallos E, Esteban JG, Muñoz-Antoli C. Echinostomes and Other Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:285-322. [PMID: 39008269 DOI: 10.1007/978-3-031-60121-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intestinal trematodes are among the most common types of parasitic worms. About 76 species belonging to 14 families have been recorded infecting humans. Infection commonly occurs when humans eat raw or undercooked foods that contain the infective metacercariae. These parasites are diverse in regard to their morphology, geographical distribution and life cycle, which make it difficult to study the parasitic diseases that they cause. Many of these intestinal trematodes have been considered as endemic parasites in the past. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, new eating habits in developed countries and demographic changes. These factors make it necessary to better understand intestinal trematode infections. This chapter describes the main features of human intestinal trematodes in relation to their biology, epidemiology, host-parasite relationships, pathogenicity, clinical aspects, diagnosis, treatment and control.
Collapse
Affiliation(s)
- Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Paola Conciancic
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Emma Fiallos
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
4
|
Zhou Z, Zhou P, Mu Y, Wang L, Cao Z, Dong S, Bao H, Yang B, Xin M, Li R, Ge RL, Tang F. Therapeutic effect on Alveolar echinococcosis by targeting EM-Leucine aminopeptidase. Front Immunol 2022; 13:1027500. [PMID: 36311709 PMCID: PMC9614657 DOI: 10.3389/fimmu.2022.1027500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alveolar echinococcosis (AE) is a parasitic disease caused by E. multilocularis metacestodes and it is highly prevalent in the northern hemisphere. We have previously found that vaccination with E. multilocularis Leucine aminopeptidase (EM-LAP) induced specific immune response and had an inhibiting effect on the parasites. In this study, the therapeutic effect of recombinant EM-LAP (rEM-LAP) on AE was evaluated and verified using Ubenimex, a broad-spectrum inhibitor of LAP. The results reveal that rEM-LAP could inhibit cyst growth and invasion and induce specific immunity response in BALB/c mice infected with E. multilocularis protoscoleces. The ultrasonic, MRI, and morphological results show that treatment with rEM-LAP inhibits E. multilocularis infection and reduces cyst weight, number, fibrosis and invasion. The same effect is observed for the treatment with Ubenimex by inhibiting LAP activity. The indirect ELISA shows that rEM-LAP could induce specific immunity response and produce high levels of IgG, IgG1, IgG2a, IgM, and IgA, and the serum levels of IFN-γ and IL-4 are significantly increased compared to the control groups, indicating that treatment with rEM-LAP leads to a Th1 and Th2 mixed-type immune response. This study suggests that EM-LAP could be a potential therapeutic target of E. multilocularis infection.
Collapse
Affiliation(s)
- Zhen Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
| | - Pei Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
| | - Yalin Mu
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Lei Wang
- Department of Pathology, The Second Xiangya Hospital DE Central South University, Changsha, China
| | - Zhenjin Cao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Shizhong Dong
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Haihua Bao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Baoliang Yang
- Department of ENT, Qinghai Red Cross Hospital, Xining, China
| | - Minyuan Xin
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
| | - Runle Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
- *Correspondence: Runle Li, ; Ri-Li Ge, ; Feng Tang,
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
- *Correspondence: Runle Li, ; Ri-Li Ge, ; Feng Tang,
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
- *Correspondence: Runle Li, ; Ri-Li Ge, ; Feng Tang,
| |
Collapse
|
5
|
Cortés A, Mikeš L, Muñoz-Antolí C, Álvarez-Izquierdo M, Esteban JG, Horák P, Toledo R. Secreted cathepsin L-like peptidases are involved in the degradation of trapped antibodies on the surface of Echinostoma caproni. Parasitol Res 2019; 118:3377-3386. [PMID: 31720841 DOI: 10.1007/s00436-019-06487-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Antibody trapping is a recently described strategy for immune evasion observed in the intestinal trematode Echinostoma caproni, which may aid to avoiding the host humoral response, thus facilitating parasite survival in the presence of high levels of local-specific antibodies. Parasite-derived peptidases carry out the degradation of trapped antibodies, being essential for this mechanism. Herein, we show that cathepsin-like cysteine endopeptidases are active in the excretory/secretory products (ESPs) of E. caproni and play an important role in the context of antibody trapping. Cysteine endopeptidase activity was detected in the ESPs of E. caproni adults. The affinity probe DCG-04 distinguished a cysteine peptidase band in ESPs, which was specifically recognized by an anti-cathepsin L heterologous antibody. The same antibody localized this protein in the gut and syncytial tegument of adult worms. Studies with cultured parasites showed that in vivo-bound antibodies are removed from the parasite surface in the absence of peptidase inhibitors, while addition of cathepsin L inhibitor prevented their degradation. These results indicate that cathepsin L-like peptidases are involved in the degradation of surface-trapped antibodies and suggest that cysteine peptidases are not only crucial for tissue-invading trematodes, but they can be equally relevant at the parasite-host interface in gut-dwelling flukes.
Collapse
Affiliation(s)
- Alba Cortés
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Carla Muñoz-Antolí
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Álvarez-Izquierdo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
6
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
7
|
Toledo R, Alvárez-Izquierdo M, Muñoz-Antoli C, Esteban JG. Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:181-213. [DOI: 10.1007/978-3-030-18616-6_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Stroehlein AJ, Young ND, Gasser RB. Advances in kinome research of parasitic worms - implications for fundamental research and applied biotechnological outcomes. Biotechnol Adv 2018; 36:915-934. [PMID: 29477756 DOI: 10.1016/j.biotechadv.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases are enzymes that play essential roles in the regulation of many cellular processes. Despite expansions in the fields of genomics, transcriptomics and bioinformatics, there is limited information on the kinase complements (kinomes) of most eukaryotic organisms, including parasitic worms that cause serious diseases of humans and animals. The biological uniqueness of these worms and the draft status of their genomes pose challenges for the identification and classification of protein kinases using established tools. In this article, we provide an account of kinase biology, the roles of kinases in diseases and their importance as drug targets, and drug discovery efforts in key socioeconomically important parasitic worms. In this context, we summarise methods and resources commonly used for the curation, identification, classification and functional annotation of protein kinase sequences from draft genomes; review recent advances made in the characterisation of the worm kinomes; and discuss the implications of these advances for investigating kinase signalling and developing small-molecule inhibitors as new anti-parasitic drugs.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
Adaptation of the secretome of Echinostoma caproni may contribute to parasite survival in a Th1 milieu. Parasitol Res 2018; 117:947-957. [PMID: 29435719 DOI: 10.1007/s00436-018-5758-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, broadly employed to study the host-dependent mechanisms that govern the evolution of intestinal helminth infections. Resistance against E. caproni homologous secondary infections has been reported in mice and appears to be related to the generation of a local Th2 response, whereas Th1 responses promote the development of chronic primary infections. Herein, the ability of E. caproni to modulate its secretome according to the host environment is investigated. A two-dimensional differential in gel electrophoresis (2D-DIGE) analysis was performed to elucidate changes in the excretory/secretory products of E. caproni adults after primary and secondary infections in mice. A total of 16 protein spots showed significant differences between groups, and 7 of them were successfully identified by mass spectrometry. Adult worms exposed to a primary infection appear to upregulate proteins involved in detoxification (aldo-keto reductase), stress response (GroEL), and enhancement of parasite survival (acetyl-CoA A-acetyltransferase and UTP-glucose-1-phosphate urydyltransferase). In contrast, any protein was found to be significantly upregulated after secondary infection. Upregulation of such proteins may serve to withstand the hostile Th1 environment generated in primary infections in mice. These results provide new insights into the resistance mechanisms developed by the parasites to ensure their long-term survival.
Collapse
|
10
|
Cortés A, Sotillo J, Muñoz-Antolí C, Molina-Durán J, Esteban JG, Toledo R. Antibody trapping: A novel mechanism of parasite immune evasion by the trematode Echinostoma caproni. PLoS Negl Trop Dis 2017; 11:e0005773. [PMID: 28715423 PMCID: PMC5531663 DOI: 10.1371/journal.pntd.0005773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/27/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022] Open
Abstract
Background Helminth infections are among the most prevalent neglected tropical diseases, causing an enormous impact in global health and the socioeconomic growth of developing countries. In this context, the study of helminth biology, with emphasis on host-parasite interactions, appears as a promising approach for developing new tools to prevent and control these infections. Methods/Principal findings The role that antibody responses have on helminth infections is still not well understood. To go in depth into this issue, work on the intestinal helminth Echinostoma caproni (Trematoda: Echinostomatidae) has been undertaken. Adult parasites were recovered from infected mice and cultured in vitro. Double indirect immunofluorescence at increasing culture times was done to show that in vivo-bound surface antibodies become trapped within a layer of excretory/secretory products that covers the parasite. Entrapped antibodies are then degraded by parasite-derived proteases, since protease inhibitors prevent for antibody loss in culture. Electron microscopy and immunogold-labelling of secreted proteins provide evidence that this mechanism is consistent with tegument dynamics and ultrastructure, hence it is feasible to occur in vivo. Secretory vesicles discharge their content to the outside and released products are deposited over the parasite surface enabling antibody trapping. Conclusion/Significance At the site of infection, both parasite secretion and antibody binding occur simultaneously and constantly. The continuous entrapment of bound antibodies with newly secreted products may serve to minimize the deleterious effects of the antibody-mediated attack. This mechanism of immune evasion may aid to understand the limited effect that antibody responses have in helminth infections, and may contribute to the basis for vaccine development against these highly prevalent diseases. Helminthiases are highly prevalent neglected tropical diseases, affecting millions of people worldwide, mainly in the poorest regions. The lack of vaccines against these infections is one of the major constraints in the current parasitology and massive efforts are being done in that direction. Herein, we present a potential mechanism for parasite immune evasion consisting in trapping of surface-bound antibodies within the excretory/secretory products that are deposited over the parasite. This mechanism is aided by parasite-derived proteases, well documented virulence factors that degrade the entrapped antibodies. Altogether, this parasite strategy may serve to minimize the antibody-mediated response and promote the development of chronic infections. The present study has been done using the model trematode Echinostoma caproni, though is expected to work in other helminths, even in other groups of extracellular pathogens. This opens new expectative to better understanding of host-parasite interactions and susceptibility to helminth infections. Therefore, the results presented in this manuscript may contribute to the basis of anti-helminth vaccine development.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- * E-mail:
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Javier Molina-Durán
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - J. Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
11
|
Ranasinghe SL, McManus DP. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends Parasitol 2017; 33:400-413. [PMID: 28089171 DOI: 10.1016/j.pt.2016.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets.
Collapse
|