1
|
Tolstenkov O, Chatzigeorgiou M, Gorbushin A. Neuronal gene expression in two generations of the marine parasitic worm, Cryptocotyle lingua. Commun Biol 2023; 6:1279. [PMID: 38110640 PMCID: PMC10728431 DOI: 10.1038/s42003-023-05675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Trematodes, or flukes, undergo intricate anatomical and behavioral transformations during their life cycle, yet the functional changes in their nervous system remain poorly understood. We investigated the molecular basis of nervous system function in Cryptocotyle lingua, a species of relevance for fisheries. Transcriptomic analysis revealed a streamlined molecular toolkit with the absence of key signaling pathways and ion channels. Notably, we observed the loss of nitric oxide synthase across the Platyhelminthes. Furthermore, we identified upregulated neuronal genes in dispersal larvae, including those involved in aminergic pathways, synaptic vesicle trafficking, TRPA channels, and surprisingly nitric oxide receptors. Using neuronal markers and in situ hybridization, we hypothesized their functional relevance to larval adaptations and host-finding strategies. Additionally, employing a behavior quantification toolkit, we assessed cercaria motility, facilitating further investigations into the behavior and physiology of parasitic flatworms. This study enhances our understanding of trematode neurobiology and provides insights for targeted antiparasitic strategies.
Collapse
Affiliation(s)
| | | | - Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St Petersburg, Russia
| |
Collapse
|
2
|
Fogarty CE, Suwansa-ard S, Phan P, McManus DP, Duke MG, Wyeth RC, Cummins SF, Wang T. Identification of Putative Neuropeptides That Alter the Behaviour of Schistosoma mansoni Cercariae. BIOLOGY 2022; 11:biology11091344. [PMID: 36138823 PMCID: PMC9495596 DOI: 10.3390/biology11091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Elucidating the infectivity of Schistosoma mansoni, one of the main etiological agents of human schistosomiasis, requires an improved understanding of the behavioural mechanisms of cercariae, the non-feeding mammalian infective stage. This study investigated the presence and effect of cercariae-derived putative neuropeptides on cercarial behaviour when applied externally. Cercariae were peptidomically analysed and 11 neuropeptide precursor proteins, all of which were specific to the Schistosoma genus and most of which highly expressed in the cercarial stage, were identified in cercariae for the first time. Protein–protein interaction analysis predicted the interaction of various neuropeptide precursors (e.g., Sm-npp-30, Sm-npp-33, Sm-npp-35) with cercarial structural proteins (e.g., myosin heavy chain and titin). In total, nine putative neuropeptides, selected based on their high hydrophobicity and small size (~1 kilodalton), were tested on cercariae (3 mg/mL) in acute exposure (1 min) and prolonged exposure (360 min) behavioural bioassays. The peptides AAYMDLPW-NH2, NRKIDQSFYSYY-NH2, FLLALPSP-OH, and NYLWDTRL-NH2 stimulated acute increases in cercarial spinning, stopping, and directional change during active states. However, only NRKIDQSFYSYY-NH2 caused the same behavioural changes at a lower concentration (0.1 mg/mL). After prolonged exposure, AAYMDLPW-NH2 and NYLWDTRL-NH2 caused increasing passive behaviour and NRKIDQSFYSYY-NH2 caused increasing body-first and head-pulling movements. These findings characterise behaviour-altering novel putative neuropeptides, which may inform future biocontrol innovations to prevent human schistosomiasis.
Collapse
Affiliation(s)
- Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Phong Phan
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Mary G. Duke
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Russell C. Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- Correspondence:
| |
Collapse
|
3
|
Analysis of rhodopsin G protein-coupled receptor orthologs reveals semiochemical peptides for parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) interplay. Sci Rep 2022; 12:8243. [PMID: 35581232 PMCID: PMC9114394 DOI: 10.1038/s41598-022-11996-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis is a medically significant disease caused by helminth parasites of the genus Schistosoma. The schistosome life cycle requires chemically mediated interactions with an intermediate (aquatic snail) and definitive (human) host. Blocking parasite development within the snail stage requires improved understanding of the interactions between the snail host and the Schistosoma water-borne free-living form (miracidium). Innovations in snail genomics and aquatic chemical communication provide an ideal opportunity to explore snail-parasite coevolution at the molecular level. Rhodopsin G protein-coupled receptors (GPCRs) are of particular interest in studying how trematode parasites navigate towards their snail hosts. The potential role of GPCRs in parasites makes them candidate targets for new antihelminthics that disrupt the intermediate host life-cycle stages, thus preventing subsequent human infections. A genomic-bioinformatic approach was used to identify GPCR orthologs between the snail Biomphalaria glabrata and miracidia of its obligate parasite Schistosoma mansoni. We show that 8 S. mansoni rhodopsin GPCRs expressed within the miracidial stage share overall amino acid similarity with 8 different B. glabrata rhodopsin GPCRs, particularly within transmembrane domains, suggesting conserved structural features. These GPCRs include an orphan peptide receptor as well as several with strong sequence homologies with rhabdomeric opsin receptors, a serotonin receptor, a sulfakinin (SK) receptor, an allatostatin-A (buccalin) receptor and an FMRFamide receptor. Buccalin and FMRFa peptides were identified in water conditioned by B. glabrata, and we show synthetic buccalin and FMRFa can stimulate significant rates of change of direction and turn-back responses in S. mansoni miracidia. Ortholog GPCRs were identified in S. mansoni miracidia and B. glabrata. These GPCRs may detect similar ligands, including snail-derived odorants that could facilitate miracidial host finding. These results lay the foundation for future research elucidating the mechanisms by which GPCRs mediate host finding which can lead to the potential development of novel anti-schistosome interventions.
Collapse
|
4
|
Kaiser A, Doerig C. Editorial: Heading Against Parasitic Resistance: A Screen for Next Generation Drugs Against Targets of cAMP- or cGMP-regulated Pathways. Front Microbiol 2021; 12:727978. [PMID: 34484170 PMCID: PMC8415706 DOI: 10.3389/fmicb.2021.727978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Annette Kaiser
- Medical Research Centre, University of Duisburg-Essen, Duisburg, Germany
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Culma MF. Strongyloides stercoralis proteome: A reverse approach to the identification of potential immunogenic candidates. Microb Pathog 2020; 152:104545. [PMID: 33091578 DOI: 10.1016/j.micpath.2020.104545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/15/2022]
Abstract
Strongyloides stercoralis is a parasite widely distributed in the tropical and subtropical areas in the world. Its treatment and diagnosis have a limitation as many other parasitic diseases. Nowadays, there is a great interest in designing an efficient epitope for vaccines or diagnostic. In this study, a bioinformatics-based screening approach has been incorporated in order to explore potential immunogens in the S. stercoralis proteome. Bioinformatic tools were used to predict diagnostic and vaccinology approaches. 12.851 cell immunology proteins from Uniprot were analyzed. Thirty-four immunogenic candidates were identified, they had higher antigenic activity, less than 2 α-helices, non-allergen activity and they do not have homology with host proteins, all of them have ortholog protein with Strongyloides ratti. Some of them presented a good binding with immunological cell (T and B cell). These proteins could be a good alternative as a candidate for the design of the novel vaccines or diagnostic tests of strongyloides stercoralis.
Collapse
|
6
|
Bertevello CR, Russo BRA, Tahira AC, Lopes-Junior EH, DeMarco R, Oliveira KC. The evolution of TNF signaling in platyhelminths suggests the cooptation of TNF receptor in the host-parasite interplay. Parasit Vectors 2020; 13:491. [PMID: 32977830 PMCID: PMC7519573 DOI: 10.1186/s13071-020-04370-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The TNF signaling pathway is involved in the regulation of many cellular processes (such as apoptosis and cell proliferation). Previous reports indicated the effect of human TNF-α on metabolism, physiology, gene expression and protein phosphorylation of the human parasite Schistosoma mansoni and suggested that its TNF receptor was responsible for this response. The lack of an endogenous TNF ligand reinforced the idea of the use of an exogenous ligand, but also opens the possibility that the receptor actually binds a non-canonical ligand, as observed for NGFRs. METHODS To obtain a more comprehensive view, we analyzed platyhelminth genomes deposited in the Wormbase ParaSite database to investigate the presence of TNF receptors and their respective ligands. Using different bioinformatics approaches, such as HMMer and BLAST search tools we identified and characterized the sequence of TNF receptors and ligand homologs. We also used bioinformatics resources for the identification of conserved protein domains and Bayesian inference for phylogenetic analysis. RESULTS Our analyses indicate the presence of 31 TNF receptors in 30 platyhelminth species. All platyhelminths display a single TNF receptor, and all are structurally remarkably similar to NGFR. It suggests no events of duplication and diversification occurred in this phylum, with the exception of a single species-specific duplication. Interestingly, we also identified TNF ligand homologs in five species of free-living platyhelminths. CONCLUSIONS These results suggest that the TNF receptor from platyhelminths may be able to bind canonical TNF ligands, thus strengthening the idea that these receptors are able to bind human TNF-α. This also raises the hypothesis that an endogenous ligand was substituted by the host ligand in parasitic platyhelminths. Moreover, our analysis indicates that death domains (DD) may be present in the intracellular region of most platyhelminth TNF receptors, thus pointing to a previously unreported apoptotic action of such receptors in platyhelminths. Our data highlight the idea that host-parasite crosstalk using the TNF pathway may be widespread in parasitic platyhelminths to mediate apoptotic responses. This opens up a new hypothesis to uncover what might be an important component to understand platyhelminth infections.
Collapse
Affiliation(s)
- Claudio R Bertevello
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruno R A Russo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana C Tahira
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ednilson Hilário Lopes-Junior
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Katia C Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Buddenborg SK, Kamel B, Hanelt B, Bu L, Zhang SM, Mkoji GM, Loker ES. The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata. PLoS Negl Trop Dis 2019; 13:e0007013. [PMID: 31568484 PMCID: PMC6797213 DOI: 10.1371/journal.pntd.0007013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 10/17/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The full scope of the genes expressed by schistosomes during intramolluscan development has yet to be characterized. Understanding the gene products deployed by larval schistosomes in their snail hosts will provide insights into their establishment, maintenance, asexual reproduction, ability to castrate their hosts, and their prolific production of human-infective cercariae. Using the Illumina platform, the intramolluscan transcriptome of Schistosoma mansoni was investigated in field-derived specimens of the prominent vector species Biomphalaria pfeifferi at 1 and 3 days post infection (d) and from snails shedding cercariae. These S. mansoni samples were derived from the same snails used in our complementary B. pfeifferi transcriptomic study. We supplemented this view with microarray analyses of S. mansoni from B. glabrata at 2d, 4d, 8d, 16d, and 32d to highlight robust features of S. mansoni transcription, even when a different technique and vector species was used. PRINCIPAL FINDINGS Transcripts representing at least 7,740 (66%) of known S. mansoni genes were expressed during intramolluscan development, with the greatest number expressed in snails shedding cercariae. Many transcripts were constitutively expressed throughout development featuring membrane transporters, and metabolic enzymes involved in protein and nucleic acid synthesis and cell division. Several proteases and protease inhibitors were expressed at all stages, including some proteases usually associated with cercariae. Transcripts associated with G-protein coupled receptors, germ cell perpetuation, and stress responses and defense were well represented. We noted transcripts homologous to planarian anti-bacterial factors, several neural development or neuropeptide transcripts including neuropeptide Y, and receptors that may be associated with schistosome germinal cell maintenance that could also impact host reproduction. In at least one snail the presence of larvae of another digenean species (an amphistome) was associated with repressed S. mansoni transcriptional activity. CONCLUSIONS/SIGNIFICANCE This in vivo study, emphasizing field-derived snails and schistosomes, but supplemented with observations from a lab model, provides a distinct view from previous studies of development of cultured intramolluscan stages from lab-maintained organisms. We found many highly represented transcripts with suspected or unknown functions, with connection to intramolluscan development yet to be elucidated.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| | - Bishoy Kamel
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Ben Hanelt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairob,i Kenya
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
8
|
Comparative study of excretory-secretory proteins released by Schistosoma mansoni-resistant, susceptible and naïve Biomphalaria glabrata. Parasit Vectors 2019; 12:452. [PMID: 31521183 PMCID: PMC6744689 DOI: 10.1186/s13071-019-3708-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Schistosomiasis is a harmful neglected tropical disease caused by infection with Schistosoma spp., such as Schistosoma mansoni. Schistosoma must transition within a molluscan host to survive. Chemical analyses of schistosome-molluscan interactions indicate that host identification involves chemosensation, including naïve host preference. Proteomic technique advances enable sophisticated comparative analyses between infected and naïve snail host proteins. This study aimed to compare resistant, susceptible and naïve Biomphalaria glabrata snail-conditioned water (SCW) to identify potential attractants and deterrents. METHODS Behavioural bioassays were performed on S. mansoni miracidia to compare the effects of susceptible, F1 resistant and naïve B. glabrata SCW. The F1 resistant and susceptible B. glabrata SCW excretory-secretory proteins (ESPs) were fractionated using SDS-PAGE, identified with LC-MS/MS and compared to naïve snail ESPs. Protein-protein interaction (PPI) analyses based on published studies (including experiments, co-expression, text-mining and gene fusion) identified S. mansoni and B. glabrata protein interaction. Data are available via ProteomeXchange with identifier PXD015129. RESULTS A total of 291, 410 and 597 ESPs were detected in the susceptible, F1 resistant and naïve SCW, respectively. Less overlap in ESPs was identified between susceptible and naïve snails than F1 resistant and naïve snails. F1 resistant B. glabrata ESPs were predominately associated with anti-pathogen activity and detoxification, such as leukocyte elastase and peroxiredoxin. Susceptible B. glabrata several proteins correlated with immunity and anti-inflammation, such as glutathione S-transferase and zinc metalloproteinase, and S. mansoni sporocyst presence. PPI analyses found that uncharacterised S. mansoni protein Smp_142140.1 potentially interacts with numerous B. glabrata proteins. CONCLUSIONS This study identified ESPs released by F1 resistant, susceptible and naïve B. glabrata to explain S. mansoni miracidia interplay. Susceptible B. glabrata ESPs shed light on potential S. mansoni miracidia deterrents. Further targeted research on specific ESPs identified in this study could help inhibit B. glabrata and S. mansoni interactions and stop human schistosomiasis.
Collapse
|
9
|
Hahnel S, Wheeler N, Lu Z, Wangwiwatsin A, McVeigh P, Maule A, Berriman M, Day T, Ribeiro P, Grevelding CG. Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni. PLoS Pathog 2018; 14:e1006718. [PMID: 29346437 PMCID: PMC5773224 DOI: 10.1371/journal.ppat.1006718] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Schistosomes are blood-dwelling trematodes with global impact on human and animal health. Because medical treatment is currently based on a single drug, praziquantel, there is urgent need for the development of alternative control strategies. The Schistosoma mansoni genome project provides a platform to study and connect the genetic repertoire of schistosomes to specific biological functions essential for successful parasitism. G protein-coupled receptors (GPCRs) form the largest superfamily of transmembrane receptors throughout the Eumetazoan phyla, including platyhelminths. Due to their involvement in diverse biological processes, their pharmacological importance, and proven druggability, GPCRs are promising targets for new anthelmintics. However, to identify candidate receptors, a more detailed understanding of the roles of GPCR signalling in schistosome biology is essential. An updated phylogenetic analysis of the S. mansoni GPCR genome (GPCRome) is presented, facilitated by updated genome data that allowed a more precise annotation of GPCRs. Additionally, we review the current knowledge on GPCR signalling in this parasite and provide new insights into the potential roles of GPCRs in schistosome reproduction based on the findings of a recent tissue-specific transcriptomic study in paired and unpaired S. mansoni. According to the current analysis, GPCRs contribute to gonad-specific functions but also to nongonad, pairing-dependent processes. The latter may regulate gonad-unrelated functions during the multifaceted male-female interaction. Finally, we compare the schistosome GPCRome to that of another parasitic trematode, Fasciola, and discuss the importance of GPCRs to basic and applied research. Phylogenetic analyses display GPCR diversity in free-living and parasitic platyhelminths and suggest diverse functions in schistosomes. Although their roles need to be substantiated by functional studies in the future, the data support the selection of GPCR candidates for basic and applied studies, invigorating the exploitation of this important receptor class for drug discovery against schistosomes but also other trematodes.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nic Wheeler
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Arporn Wangwiwatsin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Paul McVeigh
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Aaron Maule
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Timothy Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Montreal, Canada
| | | |
Collapse
|
10
|
Molecular context of Schistosoma mansoni transmission in the molluscan environments: A mini-review. Acta Trop 2017; 176:98-104. [PMID: 28754250 DOI: 10.1016/j.actatropica.2017.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022]
Abstract
Schistosoma mansoni, being transmitted by some freshwater Biomphalaria snails, is a major causative agent of human schistosomiasis. In the absence of effective vaccine and alternative drug designs to fight against the disease, and with the limitations of molluscicide application, developing more efficient strategies to interrupt the snail-mediated parasite transmission is being emphasized as potentially instrumental in the efforts toward schistosomiasis elimination, hence, necessitating thorough and comprehensive understanding of the fundamental mechanisms involved in the transmission process. Based on the current advances, this paper presents a concise exposition of the cellular, biochemical, genetic and immunological dynamics of the complex and statge-by-stage interactions between the parasite and its vector in their aquatic environment. It also highlights the possible crosstalk between the parasite's intracellular cyclic adenosine monophosphate (cAMP) and p38 mitogen-activated protein kinase (p38 MAPK) during the intramolluscan stage. Undoubtedly, decades of intensive investigation have untangled many S. mansoni-B. glabrata complexities, yet many aspects of the parasite-vector cycle which can help define potential control clues await further elucidation.
Collapse
|
11
|
Zhao M, Wang T, Stewart MJ, Bose U, Suwansa-ard S, Storey KB, Cummins SF. eSnail: A transcriptome-based molecular resource of the central nervous system for terrestrial gastropods. Mol Ecol Resour 2017; 18:147-158. [DOI: 10.1111/1755-0998.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Min Zhao
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Tianfang Wang
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Michael J. Stewart
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Utpal Bose
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Saowaros Suwansa-ard
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - Kenneth B. Storey
- Department of Biology; Institute of Biochemistry; Carleton University; Ottawa ON Canada
| | - Scott F. Cummins
- School of Engineering; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Qld Australia
| |
Collapse
|
12
|
The protein pheromone temptin is an attractant of the gastropod Biomphalaria glabrata. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:855-866. [DOI: 10.1007/s00359-017-1198-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
|