1
|
de la Fuente J, Kocan KM. The Impact of RNA Interference in Tick Research. Pathogens 2022; 11:pathogens11080827. [PMID: 35894050 PMCID: PMC9394339 DOI: 10.3390/pathogens11080827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past two decades, RNA interference (RNAi) in ticks, in combination with omics technologies, have greatly advanced the discovery of tick gene and molecular function. While mechanisms of RNAi were initially elucidated in plants, fungi, and nematodes, the classic 2002 study by Aljamali et al. was the first to demonstrate RNAi gene silencing in ticks. Subsequently, applications of RNAi have led to the discovery of genes that impact tick function and tick-host-pathogen interactions. RNAi will continue to lead to the discovery of an array of tick genes and molecules suitable for the development of vaccines and/or pharmacologic approaches for tick control and the prevention of pathogen transmission.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- The Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
- Correspondence: or
| | - Katherine M. Kocan
- The Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
2
|
Wulff JP, Temeyer KB, Tidwell JP, Schlechte KG, Xiong C, Lohmeyer KH, Pietrantonio PV. Pyrokinin receptor silencing in females of the southern cattle tick Rhipicephalus (Boophilus) microplus is associated with a reproductive fitness cost. Parasit Vectors 2022; 15:252. [PMID: 35818078 PMCID: PMC9272880 DOI: 10.1186/s13071-022-05349-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rhipicephalus microplus is the vector of deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. However, R. microplus populations worldwide have developed resistance to available acaricides, prompting the search for novel acaricide targets. G protein-coupled receptors (GPCRs) are involved in the regulation of many physiological processes and have been suggested as druggable targets for the control of arthropod vectors. Arthropod-specific signaling systems of small neuropeptides are being investigated for this purpose. The pyrokinin receptor (PKR) is a GPCR previously characterized in ticks. Myotropic activity of pyrokinins in feeding-related tissues of Rhipicephalus sanguineus and Ixodes scapularis was recently reported. METHODS The R. microplus pyrokinin receptor (Rhimi-PKR) was silenced through RNA interference (RNAi) in female ticks. To optimize RNAi, a dual-luciferase assay was applied to determine the silencing efficiency of two Rhimi-PKR double-stranded RNAs (dsRNA) prior to injecting dsRNA in ticks to be placed on cattle. Phenotypic variables of female ticks obtained at the endpoint of the RNAi experiment were compared to those of control female ticks (non-injected and beta-lactamase dsRNA-injected). Rhimi-PKR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS The Rhimi-PKR transcript was expressed in all developmental stages. Rhimi-PKR silencing was confirmed in whole ticks 4 days after injection, and in the tick carcass, ovary and synganglion 6 days after injection. Rhimi-PKR silencing was associated with an increased mortality and decreased weight of both surviving females and egg masses (P < 0.05). Delays in repletion, pre-oviposition and incubation periods were observed (P < 0.05). CONCLUSIONS Rhimi-PKR silencing negatively affected female reproductive fitness. The PKR appears to be directly or indirectly associated with the regulation of female feeding and/or reproductive output in R. microplus. Antagonists of the pyrokinin signaling system could be explored for tick control.
Collapse
Affiliation(s)
- Juan P. Wulff
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kevin B. Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Jason P. Tidwell
- Cattle Fever Tick Research Laboratory, USDA-ARS, 22675 N. Moorefield Rd. Building 6419, Edinburg, TX 78541-5033 USA
| | - Kristie G. Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475 USA
| | - Kimberly H. Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| | - Patricia V. Pietrantonio
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 2700 Fredericksburg Road, Kerrville, TX 78028-9184 USA
| |
Collapse
|
3
|
Ambivalent Roles of Oxidative Stress in Triangular Relationships among Arthropod Vectors, Pathogens and Hosts. Antioxidants (Basel) 2022; 11:antiox11071254. [PMID: 35883744 PMCID: PMC9312350 DOI: 10.3390/antiox11071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-feeding arthropods, particularly ticks and mosquitoes are considered the most important vectors of arthropod-borne diseases affecting humans and animals. While feeding on blood meals, arthropods are exposed to high levels of reactive oxygen species (ROS) since heme and other blood components can induce oxidative stress. Different ROS have important roles in interactions among the pathogens, vectors, and hosts. ROS influence various metabolic processes of the arthropods and some have detrimental effects. In this review, we investigate the various roles of ROS in these arthropods, including their innate immunity and the homeostasis of their microbiomes, that is, how ROS are utilized to maintain the balance between the natural microbiota and potential pathogens. We elucidate the mechanism of how ROS are utilized to fight off invading pathogens and how the arthropod-borne pathogens use the arthropods’ antioxidant mechanism to defend against these ROS attacks and their possible impact on their vector potentials or their ability to acquire and transmit pathogens. In addition, we describe the possible roles of ROS in chemical insecticide/acaricide activity and/or in the development of resistance. Overall, this underscores the importance of the antioxidant system as a potential target for the control of arthropod and arthropod-borne pathogens.
Collapse
|
4
|
Gęgotek A, Moniuszko-Malinowska A, Groth M, Pancewicz S, Czupryna P, Dunaj J, Atalay S, Radziwon P, Skrzydlewska E. Plasma Proteomic Profile of Patients with Tick-Borne Encephalitis and Co-Infections. Int J Mol Sci 2022; 23:ijms23084374. [PMID: 35457192 PMCID: PMC9031133 DOI: 10.3390/ijms23084374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the increasing number of patients suffering from tick-borne encephalitis (TBE), Lyme disease, and their co-infection, the mechanisms of the development of these diseases and their effects on the human body are still unknown. Therefore, the aim of this study was to evaluate the changes in the proteomic profile of human plasma induced by the development of TBE and to compare it with changes in TBE patients co-infected with other tick-borne pathogens. The results obtained by proteomic analysis using a nanoLC-Q Exactive HF mass spectrometer showed that the most highly elevated groups of proteins in the plasma of TBE patients with co-infection were involved in the pro-inflammatory response and protein degradation, while the antioxidant proteins and factors responsible for protein biosynthesis were mainly downregulated. These results were accompanied by enhanced GSH- and 4-HNE-protein adducts formation, observed in TBE and co-infected patients at a higher level than in the case of patients with only TBE. In conclusion, the differences in the proteomic profiles between patients with TBE and co-infected patients indicate that these diseases are significantly diverse and, consequently, require different treatment, which is particularly important for further research, including the development of novel diagnostics tools.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
- Correspondence: ; Tel.: +48-857485883
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland; (A.M.-M.); (M.G.); (S.P.); (P.C.); (J.D.)
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, M. Sklodowskiej-Curie 23, 15-950 Bialystok, Poland;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| |
Collapse
|
5
|
Ahmed W, Rajendran KV, Neelakanta G, Sultana H. An Experimental Murine Model to Study Acquisition Dynamics of Tick-Borne Langat Virus in Ixodes scapularis. Front Microbiol 2022; 13:849313. [PMID: 35495703 PMCID: PMC9048798 DOI: 10.3389/fmicb.2022.849313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/05/2022] Open
Abstract
Ixodes scapularis ticks acquire several pathogens from reservoir animals and transmit them to humans. Development of an animal model to study acquisition/transmission dynamics of these pathogens into and from ticks, respectively, is challenging due to the fact that in nature ticks feed for a longer duration and on multiple vertebrate hosts. To understand the complex nature of pathogen acquisition/transmission, it is essential to set up a successful tick blood feeding method on a suitable vertebrate host. In this study, we provide evidence that murine model can be successfully used to study acquisition dynamics of Langat virus (LGTV), a member of tick-borne flaviviruses. Mice were inoculated intraperitoneally with LGTV that showed detectable viral loads in blood, skin, and other tissues including the brain. Both larval and nymphal ticks that were allowed to feed on the murine host successfully acquired LGTV loads. Also, we found that after molting, LGTV was transstadially transmitted from larval to nymphal stage. In addition, we noted that LGTV down-regulated IsSMase expression in all groups of ticks possibly for its survival in its vector host. Taken together, we provide evidence for the use of murine model to not only study acquisition dynamics of LGTV but also to study changes in tick gene expression during acquisition of arboviruses into ticks.
Collapse
|
6
|
Fasae KD, Neelakanta G, Sultana H. Alterations in arthropod and neuronal exosomes reduce virus transmission and replication in recipient cells. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:247-279. [PMID: 36939419 PMCID: PMC10018778 DOI: 10.20517/evcna.2022.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aim Targeting the modes of pathogen shedding/transmission via exosomes or extracellular vesicles has been envisioned as the best approach to control vector-borne diseases. This study is focused on altering exosomes stability to affect the pathogen transmission from infected to naïve recipient cells. Methods In this study, neuronal or arthropod exosomes were treated at different temperatures or with different salts or pH conditions to analyze their ability and efficiency in the transmission of tick-borne Langat virus (LGTV) from infected to naïve recipient cells. Results Quantitative real-time PCR (qRT-PCR) and immunoblotting analyses revealed that treatment of neuronal or tick exosomes at warmer temperatures of 37 °C or 23 °C, respectively, or with sulfate salts such as Magnesium or Ammonium sulfates or with highly alkaline pH of 9 or 11.5, dramatically reduced transmission of LGTV via infectious exosomes (human or tick cells-derived) to human neuronal (SH-SY5Y) cells or skin keratinocytes (HaCaT cells), respectively. Conclusion Overall, this study suggests that exosome-mediated viral transmission of vector-borne pathogens to the vertebrate host or the viral dissemination and replication within or between the mammalian host can be reduced by altering the ability of exosomes with basic changes in temperatures, salts or pH conditions.
Collapse
Affiliation(s)
- Kehinde Damilare Fasae
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
Stockmal KA, Downs LP, Davis AN, Kemp LK, Karim S, Morgan SE. Cationic Glycopolyelectrolytes for RNA Interference in Tick Cells. Biomacromolecules 2021; 23:34-46. [PMID: 34793129 DOI: 10.1021/acs.biomac.1c00824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector-host-pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition-fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.
Collapse
Affiliation(s)
- Kelli A Stockmal
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Latoyia P Downs
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Ashley N Davis
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Lisa K Kemp
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States.,Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| |
Collapse
|
8
|
Salata C, Moutailler S, Attoui H, Zweygarth E, Decker L, Bell-Sakyi L. How relevant are in vitro culture models for study of tick-pathogen interactions? Pathog Glob Health 2021; 115:437-455. [PMID: 34190676 PMCID: PMC8635668 DOI: 10.1080/20477724.2021.1944539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although tick-borne infectious diseases threaten human and animal health worldwide, with constantly increasing incidence, little knowledge is available regarding vector-pathogen interactions and pathogen transmission. In vivo laboratory study of these subjects using live, intact ticks is expensive, labor-intensive, and challenging from the points of view of biosafety and ethics. Several in vitro models have been developed, including over 70 continuous cell lines derived from multiple tick species and a variety of tick organ culture systems, facilitating many research activities. However, some limitations have to be considered in the translation of the results from the in vitro environment to the in vivo situation of live, intact ticks, and vertebrate hosts. In this review, we describe the available in vitro models and selected results from their application to the study of tick-borne viruses, bacteria, and protozoa, where possible comparing these results to studies in live, intact ticks. Finally, we highlight the strengths and weaknesses of in vitro tick culture models and their essential role in tick-borne pathogen research.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Sara Moutailler
- Laboratoire De Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Maisons-Alfort, France
| | - Houssam Attoui
- Department of Animal Health, UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Erich Zweygarth
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Lygia Decker
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Grabowski JM, Kissinger R. Ixodid Tick Dissection and Tick Ex Vivo Organ Cultures for Tick-Borne Virus Research. ACTA ACUST UNITED AC 2021; 59:e118. [PMID: 33030816 DOI: 10.1002/cpmc.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tick-borne viruses cause thousands of cases of disease worldwide every year. Specific countermeasures to many tick-borne viruses are not commercially available. Very little is known regarding tick-virus interactions and increasing this knowledge can lead to potential targets for countermeasure development. Virus infection of ex vivo organ cultures from ticks can provide an approach to identify susceptible cell types of tissue to infection. Additionally, these organ cultures can be used for functional genomic studies to pinpoint tick-specific genes involved in the virus lifecycle. Provided here are step-by-step procedures to set up basic tick organ cultures in combination with virus infection and/or functional genomic studies. These procedures can be adapted for future use to characterize other tick-borne pathogen infections as well as tick-specific biological processes. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Loading 96-well plates with gelfoam substrate Basic Protocol 2: Step-by-step aseptic dissection of unfed female/male Ixodes scapularis ticks for multiple organs Basic Protocol 3: Step-by-step aseptic dissection of fed female Ixodes scapularis ticks to remove salivary glands Basic Protocol 4: Metabolic viability analyses of tick organ cultures Basic Protocol 5: Virus infection of tick organ cultures Basic Protocol 6: Functional RNA interference analyses using tick organ cultures.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Ryan Kissinger
- Visual Medical Arts, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
10
|
Talactac MR, Hernandez EP, Hatta T, Yoshii K, Kusakisako K, Tsuji N, Tanaka T. The antiviral immunity of ticks against transmitted viral pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104012. [PMID: 33484780 DOI: 10.1016/j.dci.2021.104012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Ticks, being obligate hematophagous arthropods, are exposed to various blood-borne pathogens, including arboviruses. Consequently, their feeding behavior can readily transmit economically important viral pathogens to humans and animals. With this tightly knit vector and pathogen interaction, the replication and transmission of tick-borne viruses (TBVs) must be highly regulated by their respective tick vectors to avoid any adverse effect on the ticks' biological development and viability. Knowledge about the tick-virus interface, although gaining relevant advances in recent years, is advancing at a slower pace than the scientific developments related to mosquito-virus interactions. The unique and complicated feeding behavior of ticks, compared to that of other blood-feeding arthropods, also limits the studies that would further elaborate the antiviral immunity of ticks against TBVs. Hence, knowledge of molecular and cellular immune mechanisms at the tick-virus interface, will further elucidate the successful viral replication of TBVs in ticks and their effective transmission to human and animal hosts.
Collapse
Affiliation(s)
- Melbourne Rio Talactac
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines
| | - Emmanuel Pacia Hernandez
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kentaro Yoshii
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
11
|
Hernandez EP, Talactac MR, Vitor RJS, Yoshii K, Tanaka T. An Ixodes scapularis glutathione S-transferase plays a role in cell survival and viability during Langat virus infection of a tick cell line. Acta Trop 2021; 214:105763. [PMID: 33242485 DOI: 10.1016/j.actatropica.2020.105763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Ticks are important vectors of diseases affecting both humans and animals. To be an efficient vector, ticks have to survive infection by pathogens such as the Langat virus (LGTV). One method utilized by ticks is their complex antioxidant mechanism. Included in the vast antioxidant processes are several enzymes involved in redox homeostasis. The ubiquitous glutathione S-transferases (GSTs) belong to the antioxidant family of enzymes. In this study, we evaluated the role of a GST during LGTV infection. ISE6 cells were infected with LGTV with a multiplicity of infection (MOI) of 0.01 and observed daily. The infection success was monitored via indirect immunofluorescent antibody test (IFAT) for LGTV for up to 4 days. The gene expression of IsGST1 was determined by real-time polymerase chain reaction (PCR) using IsGST1 gene-specific primers. Knockdown of the IsGST1 gene with subsequent LGTV infection was also performed. Afterward, ISE6 cell mortality and viability were checked daily until the fourth day. The virus titer from supernatants of IsGST1-knockdown cells was quantified using a focus-formation assay. IFAT data showed that LGTV infects ISE6 cells in a time-dependent manner with increasing infection from day 0 to day 4. The IsGST1 genes showed an increasing expression until day 2 of infection, while decreased expression was observed from day 3 to day 4 post-infection. Knockdown of the IsGST1 resulted in increased mortality on the third day of infection, while the cell viability was also negatively affected by the knockdown of the IsGST1 genes from day 0 to day 4 post-infection. Knockdown of the IsGST1 genes also resulted in a decreased viral titer from the supernatants of the ISE6 cells infected with LGTV. Based on the results, GSTs are possibly utilized both by cells and the virus for mutual survival and proliferation.
Collapse
|
12
|
Hart CE, Thangamani S. Tick-virus interactions: Current understanding and future perspectives. Parasite Immunol 2021; 43:e12815. [PMID: 33368375 DOI: 10.1111/pim.12815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Ticks are the primary vector of arboviruses in temperate climates worldwide. They are both the vector of these pathogens to humans and an integral component of the viral sylvatic cycle. Understanding the tick-pathogen interaction provides information about the natural maintenance of these pathogens and informs the development of countermeasures against human infection. In this review, we discuss currently available information on tick-viral interactions within the broader scope of general tick immunology. While the tick immune response to several pathogens has been studied extensively, minimal work centres on responses to viral infection. This is largely due to the high pathogenicity of tick-borne viruses; this necessitates high-containment laboratories or low-pathogenicity substitute viruses. This has biased most research towards tick-borne flaviviruses. More work is required to fully understand the role of tick-virus interaction in sylvatic cycling and transmission of diverse tick-borne viruses.
Collapse
Affiliation(s)
- Charles Edward Hart
- Institute for Global Health and Translational Science, Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Saravanan Thangamani
- Institute for Global Health and Translational Science, Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
13
|
Hernandez EP, Talactac MR, Fujisaki K, Tanaka T. The case for oxidative stress molecule involvement in the tick-pathogen interactions -an omics approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103409. [PMID: 31200008 DOI: 10.1016/j.dci.2019.103409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The blood-feeding behavior of ticks has resulted in them becoming one of the most important vectors of disease-causing pathogens. Ticks possess a well-developed innate immune system to counter invading pathogens. However, the coevolution of ticks with tick-borne pathogens has adapted these pathogens to the tick's physiology and immune response through several mechanisms including transcriptional regulation. The recent development in tick and tick-borne disease research greatly involved the "omics" approach. The omics approach takes a look en masse at the different genes, proteins, metabolomes, and the microbiome of the ticks that could be differentiated during pathogen infection. Data from this approach revealed that oxidative stress-related molecules in ticks are differentiated and possibly being exploited by the pathogens to evade the tick's immune response. In this study, we review and discuss transcriptomic and proteomic data for some oxidative stress molecules differentially expressed during pathogen infection. We also discuss metabolomics and microbiome data as well as functional genomics in order to provide insight into the tick-pathogen interaction.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
14
|
Cabezas-Cruz A, Espinosa P, Alberdi P, de la Fuente J. Tick-Pathogen Interactions: The Metabolic Perspective. Trends Parasitol 2019; 35:316-328. [PMID: 30711437 DOI: 10.1016/j.pt.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/03/2023]
Abstract
The first tick genome published in 2016 provided an invaluable tool for studying the molecular basis of tick-pathogen interactions. Metabolism is a key element in host-pathogen interactions. However, our knowledge of tick-pathogen metabolic interactions is very limited. Recently, a systems biology approach, using omics datasets, has revealed that tick-borne pathogen infection induces transcriptional reprograming affecting several metabolic pathways in ticks, facilitating infection, multiplication, and transmission. Results suggest that the response of tick cells to tick-borne pathogens is associated with tolerance to infection. Here we review our current understanding of the modulation of tick metabolism by tick-borne pathogens, with a focus on the model intracellular bacterium Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France.
| | - Pedro Espinosa
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
15
|
Dissecting Flavivirus Biology in Salivary Gland Cultures from Fed and Unfed Ixodes scapularis (Black-Legged Tick). mBio 2019; 10:mBio.02628-18. [PMID: 30696737 PMCID: PMC6355982 DOI: 10.1128/mbio.02628-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tick-borne flaviviruses (TBFVs) are responsible for more than 15,000 human disease cases each year, and Powassan virus lineage 2 (POWV-L2) deer tick virus has been a reemerging threat in North America over the past 20 years. Rapid transmission of TBFVs in particular emphasizes the importance of preventing tick bites, the difficulty in developing countermeasures to prevent transmission, and the importance of understanding TBFV infection in tick salivary glands (SGs). Tick blood feeding is responsible for phenomenal physiological changes and is associated with changes in TBFV multiplication within the tick and in SGs. Using SG cultures from Ixodes scapularis female ticks, the primary aims of this study were to identify cellular localization of virus-like particles in acini of infected SGs from fed and unfed ticks, localization of TBFV infection in infected SGs from fed ticks, and a tick transcript (with associated metabolic function) involved in POWV-L2 infection in SG cultures. The Ixodes scapularis tick transmits a number of pathogens, including tick-borne flaviviruses (TBFVs). In the United States, confirmed human infections with the Powassan virus (POWV) TBFV have a fatality rate of ∼10% and are increasing in incidence. Tick salivary glands (SGs) serve as an organ barrier to TBFV transmission, and little is known regarding the location of TBFV infection in SGs from fed ticks. Previous studies showed I. scapularis vanin (VNN) involved with TBFV infection of I. scapularis ISE6 embryonic cells, suggesting a potential role for this gene. The overall goal of this study was to use SG cultures to compare data on TBFV biology in SGs from fully engorged, replete (fed) ticks and from unfed ticks. TBFV multiplication was higher in SGs from fed ticks than in those from unfed ticks. Virus-like particles were observed only in granular acini of SGs from unfed ticks. The location of TBFV infection of SGs from fed ticks was observed in cells lining lobular ducts and trachea but not observed in acini. Transcript knockdown of VNN decreased POWV multiplication in infected SG cultures from both fed and unfed ticks. This work was the first to identify localization of TBFV multiplication in SG cultures from a fed tick and a tick transcript important for POWV multiplication in the tick SG, an organ critical for TBFV transmission. This research exemplifies the use of SG cultures in deciphering TBFV biology in the tick and as a translational tool for screening and identifying potential tick genes as potential countermeasure targets.
Collapse
|
16
|
Petit MJ, Shah PS. Mapping Arbovirus-Vector Interactions Using Systems Biology Techniques. Front Cell Infect Microbiol 2019; 8:440. [PMID: 30666300 PMCID: PMC6330711 DOI: 10.3389/fcimb.2018.00440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
Studying how arthropod-borne viruses interact with their arthropod vectors is critical to understanding how these viruses replicate and are transmitted. Until recently, these types of studies were limited in scale because of the lack of classical tools available to study virus-host interaction for non-model viruses and non-model organisms. Advances in systems biology "-omics"-based techniques such as next-generation sequencing (NGS) and mass spectrometry can rapidly provide an unbiased view of arbovirus-vector interaction landscapes. In this mini-review, we discuss how arbovirus-vector interaction studies have been advanced by systems biology. We review studies of arbovirus-vector interactions that occur at multiple time and length scales, including intracellular interactions, interactions at the level of the organism, viral and vector populations, and how new techniques can integrate systems-level data across these different scales.
Collapse
Affiliation(s)
- Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Bell-Sakyi L, Darby A, Baylis M, Makepeace BL. The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis 2018; 9:1364-1371. [PMID: 29886187 PMCID: PMC6052676 DOI: 10.1016/j.ttbdis.2018.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom.
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom; NIHR Health Protection Research Institute in Emerging and Zoonotic Infections, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, United Kingdom.
| | - Benjamin L Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom.
| |
Collapse
|
18
|
Antunes S, Couto J, Ferrolho J, Rodrigues F, Nobre J, Santos AS, Santos-Silva MM, de la Fuente J, Domingos A. Rhipicephalus bursa Sialotranscriptomic Response to Blood Feeding and Babesia ovis Infection: Identification of Candidate Protective Antigens. Front Cell Infect Microbiol 2018; 8:116. [PMID: 29780749 PMCID: PMC5945973 DOI: 10.3389/fcimb.2018.00116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/23/2018] [Indexed: 02/03/2023] Open
Abstract
Ticks are among the most prevalent blood-feeding arthropods, and they act as vectors and reservoirs for numerous pathogens. Sialotranscriptomic characterizations of tick responses to blood feeding and pathogen infections can offer new insights into the molecular interplay occurring at the tick-host-pathogen interface. In the present study, we aimed to identify and characterize Rhipicephalus bursa salivary gland (SG) genes that were differentially expressed in response to blood feeding and Babesia ovis infection. Our experimental approach consisted of RNA sequencing of SG from three different tick samples, fed-infected, fed-uninfected, and unfed-uninfected, for characterization and inter-comparison. Overall, 7,272 expressed sequence tags (ESTs) were constructed from unfed-uninfected, 13,819 ESTs from fed-uninfected, and 15,292 ESTs from fed-infected ticks. Two catalogs of transcripts that were differentially expressed in response to blood feeding and B. ovis infection were produced. Four genes coding for a putative vitellogenin-3, lachesin, a glycine rich protein, and a secreted cement protein were selected for RNA interference functional studies. A reduction of 92, 65, and 51% was observed in vitellogenin-3, secreted cement, and lachesin mRNA levels in SG, respectively. The vitellogenin-3 knockdown led to increased tick mortality, with 77% of ticks dying post-infestation. The reduction of the secreted cement protein-mRNA levels resulted in 46% of ticks being incapable of correctly attaching to the host and significantly lower female weights post-feeding in comparison to the control group. The lachesin knockdown resulted in a 70% reduction of the levels associated with B. ovis infection in R. bursa SG and 70% mortality. These results improved our understanding of the role of tick SG genes in Babesia infection/proliferation and tick feeding. Moreover, lachesin, vitellogenin-3, and secreted cement proteins were validated as candidate protective antigens for the development of novel tick and tick-borne disease control measures.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fábio Rodrigues
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Nobre
- Instituto Nacional de Investigação Agrária e Veterinária, Pólo de Santarém, Vale de Santarém, Portugal
| | - Ana S Santos
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Centro de Estudos de Vectores e Doenças Infecciosas Dr. Francisco Cambournac (CEVDI/INSA), Águas de Moura, Portugal
| | - M Margarida Santos-Silva
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Centro de Estudos de Vectores e Doenças Infecciosas Dr. Francisco Cambournac (CEVDI/INSA), Águas de Moura, Portugal
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Grabowski JM, Offerdahl DK, Bloom ME. The Use of Ex Vivo Organ Cultures in Tick-Borne Virus Research. ACS Infect Dis 2018; 4:247-256. [PMID: 29473735 DOI: 10.1021/acsinfecdis.7b00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each year there are more than 15 000 cases of human disease caused by infections with tick-borne viruses (TBVs). These illnesses occur worldwide and can range from very mild illness to severe encephalitis and hemorrhagic fever. Although TBVs are currently identified as neglected vector-borne pathogens and receive less attention than mosquito-borne viruses, TBVs are expanding into new regions, and infection rates are increasing. Furthermore, effective vaccines, diagnostic tools, and other countermeasures are limited. The application of contemporary technologies to TBV infections presents an excellent opportunity to develop improved, effective countermeasures. Experimental tick and mammal models of infection can be used to characterize determinants of infection, transmission, and virulence and to test candidate countermeasures. The use of ex vivo tick cultures in TBV research provides a unique way to look at infection in specific tick organs. Mammal ex vivo organ slice and, more recently, organoid cultures are additional models that can be used to elucidate direct tissue-specific responses to infection. These ex vivo model systems are convenient for testing methods involving transcript knockdown and small molecules under tightly controlled conditions. They can also be combined with in vitro and in vivo studies to tease out possible host factors and potential vaccine or therapeutic candidates. In this brief perspective, we describe how ex vivo cultures can be combined with modern technologies to advance research on TBV infections.
Collapse
Affiliation(s)
- Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| |
Collapse
|
20
|
Grabowski JM, Hill CA. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era. Front Cell Infect Microbiol 2017; 7:519. [PMID: 29312896 PMCID: PMC5744076 DOI: 10.3389/fcimb.2017.00519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
21
|
Grabowski JM, Tsetsarkin KA, Long D, Scott DP, Rosenke R, Schwan TG, Mlera L, Offerdahl DK, Pletnev AG, Bloom ME. Flavivirus Infection of Ixodes scapularis (Black-Legged Tick) Ex Vivo Organotypic Cultures and Applications for Disease Control. mBio 2017; 8:e01255-17. [PMID: 28830948 PMCID: PMC5565970 DOI: 10.1128/mbio.01255-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Ixodes scapularis ticks transmit many infectious agents that cause disease, including tick-borne flaviviruses (TBFVs). TBFV infections cause thousands of human encephalitis cases worldwide annually. In the United States, human TBFV infections with Powassan virus (POWV) are increasing and have a fatality rate of 10 to 30%. Additionally, Langat virus (LGTV) is a TBFV of low neurovirulence and is used as a model TBFV. TBFV replication and dissemination within I. scapularis organs are poorly characterized, and a deeper understanding of virus biology in this vector may inform effective countermeasures to reduce TBFV transmission. Here, we describe short-term, I. scapularis organ culture models of TBFV infection. Ex vivo organs were metabolically active for 9 to 10 days and were permissive to LGTV and POWV replication. Imaging and videography demonstrated replication and spread of green fluorescent protein-expressing LGTV in the organs. Immunohistochemical staining confirmed LGTV envelope and POWV protein synthesis within the infected organs. LGTV- and POWV-infected organs produced infectious LGTV and POWV; thus, the ex vivo cultures were suitable for study of virus replication in individual organs. LGTV- and POWV-infected midgut and salivary glands were subjected to double-stranded RNA (dsRNA) transfection with dsRNA to the LGTV 3' untranslated region (UTR), which reduced infectious LGTV and POWV replication, providing a proof-of-concept use of RNA interference in I. scapularis organ cultures to study the effects on TBFV replication. The results contribute important information on TBFV localization within ex vivo I. scapularis organs and provide a significant translational tool for evaluating recombinant, live vaccine candidates and potential tick transcripts and proteins for possible therapeutic use and vaccine development to reduce TBFV transmission.IMPORTANCE Tick-borne flavivirus (TBFV) infections cause neurological and/or hemorrhagic disease in humans worldwide. There are currently no licensed therapeutics or vaccines against Powassan virus (POWV), the only TBFV known to circulate in North America. Evaluating tick vector targets for antitick vaccines directed at reducing TBFV infection within the arthropod vector is a critical step in identifying efficient approaches to controlling TBFV transmission. This study characterized infection of female Ixodes scapularis tick organ cultures of midgut, salivary glands, and synganglion with the low-neurovirulence Langat virus (LGTV) and the more pathogenic POWV. Cell types of specific organs were susceptible to TBFV infection, and a difference in LGTV and POWV replication was noted in TBFV-infected organs. This tick organ culture model of TBFV infection will be useful for various applications, such as screening of tick endogenous dsRNA corresponding to potential control targets within midgut and salivary glands to confirm restriction of TBFV infection.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Konstantin A Tsetsarkin
- Neurotropic Flaviviruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Tom G Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Danielle K Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Alexander G Pletnev
- Neurotropic Flaviviruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| |
Collapse
|
22
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|