1
|
Ehsan M, Hu RS, Wang M, Hou JL, Rashid M, Malik MI. Immune modulation of goat monocytes by Fasciola gigantica Legumain-1 protein (Fg-LGMN-1). Exp Parasitol 2024; 256:108671. [PMID: 38081528 DOI: 10.1016/j.exppara.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Legumains belonging to C_13 peptidase family of proteins, and are ubiquitously disseminated among all vertebrate and invertebrate organisms, and have been implicated in innumerable biological and cellular functionality. Herein, we characterized and evaluated immunoregulatory characteristics of Legumain-1 from Fasciola gigantica (Fg-LGMN-1) during its interaction with host immune cells. The isopropyl-ß-d-thiogalactopyranoside (IPTG) stimulated RFg-LGMN-1 protein was positively detected by rat serum containing anti-RFg-LGMN-1 polyclonal antibodies. Furthermore, the uptake of RFg-LGMN-1 by goat monocytes was successfully confirmed using Immunofluorescence Assay (IFA). The immunohistochemical analysis revealed the native localization of LGMN-1 protein on the periphery and internal structures such as suckers, pharynx, and genital pore of the adult parasite, thereby validating its presence in excretory-secretory (ES) products of F. gigantica. The RFg-LGMN-1 co-incubated with concanavalin-A (Con-A) stimulated the increase of interleukin 2 (IL-2), IL-10, and IL-17 in monocytes derived from peripheral blood mononuclear cells (PBMCs) in the concentration-dependent manner. However, the IL-4 cytokine in response to the RFg-LGMN-1 protein declined. These results illuminated the role of LGMN-1 during the parasite-host interface. Our findings elaborated additional evidence that Legumain protein play a role in the manipulating host immune responses during parasite infections. However, further evaluation of RFg-LGMN-1 protein in context of its immunomodulatory roles should be conducted to enhance our understandings of the mechanisms employed by F. gigantica to evade host immune responses.
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| | - Rui-Si Hu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Jun-Ling Hou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| | - Muhammad Irfan Malik
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| |
Collapse
|
2
|
Zeng B, Liu YT, Feng ZR, Chen FR, Wu SF, Bass C, Gao CF. The overexpression of cytochrome P450 genes confers buprofezin resistance in the brown planthopper, Nilaparvata lugens (Stål). PEST MANAGEMENT SCIENCE 2023; 79:125-133. [PMID: 36098067 DOI: 10.1002/ps.7181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Buprofezin, an insect growth regulator, has been widely used to control brown planthopper (BPH), Nilaparvata lugens, one of the most destructive pests of rice crops in Asia. The intensive use of this compound has resulted in very high levels of resistance to buprofezin in the field, however, the underpinning mechanisms of resistance have not been fully resolved. RESULTS Insecticide bioassays using the P450 inhibitor piperonyl butoxide significantly synergized the toxicity of buprofezin in two resistant strains of BPH (BPR and YC2017) compared to a susceptible strain (Sus), suggesting P450s play a role in resistance to this compound. Whole transcriptome profiling identified 1110 genes that were upregulated in the BPR strain compared to the Sus strain, including 13 cytochrome P450 genes, eight esterases and one glutathione S-transferase. Subsequently, qPCR validation revealed that four of the P450 genes, CYP6ER1vA, CYP6CW1, CYP4C77, and CYP439A1 were significantly overexpressed in both the BRP and YC2017 strains compared with the Sus strain. Further functional analyses showed that only suppression of CYP6ER1vA, CYP6CW1, and CYP439A1 gene expression by RNA interference significantly increased the toxicity of buprofezin against BPH. However, only transgenic Drosophila melanogaster expressing CYP6ER1vA and CYP439A1 exhibited significant resistance to buprofezin. Finally, the BPR strain was found to exhibit modest but significant levels of resistance to acetamiprid, dinotefuran and pymetrozine. CONCLUSIONS Our findings provide strong evidence that the overexpression of CYP6ER1vA and CYP439A1 contribute to buprofezin resistance in BPH, and that resistance to this compound is associated with low-level resistance to acetamiprid, dinotefuran and pymetrozine. These results advance understanding of the molecular basis of BPH resistance to buprofezin and will inform the development of management strategies for the control of this highly damaging pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin Zeng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Ya-Ting Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Ze-Rui Feng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Fu-Rong Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| |
Collapse
|
3
|
Pereira I, Hidalgo C, Stoore C, Baquedano MS, Cabezas C, Bastías M, Riveros A, Meneses C, Cancela M, Ferreira HB, Sáenz L, Paredes R. Transcriptome analysis of Echinococcus granulosus sensu stricto protoscoleces reveals differences in immune modulation gene expression between cysts found in cattle and sheep. Vet Res 2022; 53:8. [PMID: 35090558 PMCID: PMC8796354 DOI: 10.1186/s13567-022-01022-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022] Open
Abstract
Cystic Echinococcosis (CE), a zoonotic parasitic disease, is caused by the cestode Echinococcus granulosus sensu lato. CE inflicts severe damage in cattle, sheep, and human hosts worldwide. Fertile CE cysts are characterized by the presence of viable protoscoleces. These parasite forms are studied with minimal contamination with host molecules. Hosts, cattle and sheep, show differences in their CE cyst fertility. The effect of the host in protoscolex transcriptome is not known. We genotyped and performed transcriptomic analysis on sheep protoscoleces obtained from liver and lung CE cysts. The transcriptomic data of Echinococcus granulosus sensu stricto protoscoleces from 6 lung CE cysts and 6 liver CE cysts were Collected. For host comparison analysis, 4 raw data files belonging to Echinococcus granulosus sensu stricto protoscoleces from cattle liver CE cysts were obtained from the NCBI SRA database. Principal component and differential expression analysis did not reveal any statistical differences between protoscoleces obtained from liver or lung cysts, either within the same sheep or different sheep hosts. Conversely, there are significant differences between cattle and sheep protoscolex samples. We found differential expression of immune-related genes. In cattle, 7 genes were upregulated in protoscoleces from liver cysts. In sheep, 3 genes were upregulated in protoscoleces from liver and lung CE cysts. Noteworthy, are the differential expression of antigen B, tegument antigen, and arginase-2 in samples obtained from sheep CE cysts, and basigin in samples from cattle CE cysts. These findings suggest that the host species is an important factor involved in the differential expression of immune related genes, which in turn is possibly related to the fertility of Echinococcus granulosus sensu stricto cysts.
Collapse
Affiliation(s)
- Ismael Pereira
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Christian Hidalgo
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Caroll Stoore
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - María Soledad Baquedano
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Macarena Bastías
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Aníbal Riveros
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Leonardo Sáenz
- Laboratorio de Vacunas Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
4
|
Luo X, Cui K, Wang Z, Li Z, Wu Z, Huang W, Zhu XQ, Ruan J, Zhang W, Liu Q. High-quality reference genome of Fasciola gigantica: Insights into the genomic signatures of transposon-mediated evolution and specific parasitic adaption in tropical regions. PLoS Negl Trop Dis 2021; 15:e0009750. [PMID: 34610021 PMCID: PMC8519440 DOI: 10.1371/journal.pntd.0009750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/15/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
Fasciola gigantica and Fasciola hepatica are causative pathogens of fascioliasis, with the widest latitudinal, longitudinal, and altitudinal distribution; however, among parasites, they have the largest sequenced genomes, hindering genomic research. In the present study, we used various sequencing and assembly technologies to generate a new high-quality Fasciola gigantica reference genome. We improved the integration of gene structure prediction, and identified two independent transposable element expansion events contributing to (1) the speciation between Fasciola and Fasciolopsis during the Cretaceous-Paleogene boundary mass extinction, and (2) the habitat switch to the liver during the Paleocene-Eocene Thermal Maximum, accompanied by gene length increment. Long interspersed element (LINE) duplication contributed to the second transposon-mediated alteration, showing an obvious trend of insertion into gene regions, regardless of strong purifying effect. Gene ontology analysis of genes with long LINE insertions identified membrane-associated and vesicle secretion process proteins, further implicating the functional alteration of the gene network. We identified 852 predicted excretory/secretory proteins and 3300 protein-protein interactions between Fasciola gigantica and its host. Among them, copper/zinc superoxide dismutase genes, with specific gene copy number variations, might play a central role in the phase I detoxification process. Analysis of 559 single-copy orthologs suggested that Fasciola gigantica and Fasciola hepatica diverged at 11.8 Ma near the Middle and Late Miocene Epoch boundary. We identified 98 rapidly evolving gene families, including actin and aquaporin, which might explain the large body size and the parasitic adaptive character resulting in these liver flukes becoming epidemic in tropical and subtropical regions.
Collapse
Affiliation(s)
- Xier Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Zhengjiao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Weiyi Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Weiyu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Fasciola gigantica tegumental calcium-binding EF-hand protein 4 exerts immunomodulatory effects on goat monocytes. Parasit Vectors 2021; 14:276. [PMID: 34022913 PMCID: PMC8141160 DOI: 10.1186/s13071-021-04784-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Background The liver fluke Fasciola gigantica secretes excretory-secretory proteins during infection to mediate its interaction with the host. In this study, we investigated the immunomodulatory effects of a recombinant tegumental calcium-binding EF-hand protein 4 of F. gigantica (rFg-CaBP4) on goat monocytes. Methods The rFg-CaBP4 protein was induced and purified by affinity chromatography. The immunogenic reaction of rFg-CaBP4 against specific antibodies was detected through western blot analysis. The binding of rFg-CaBP4 on surface of goat monocytes was visualized by immunofluorescence assay. The localization of CaBP4 within adult fluke structure was detected by immunohistochemical analysis. The cytokine transcription levels in response to rFg-CaBP4 were examined using ABI 7500 real-time PCR system. The expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) in response to rFg-CaBP4 protein was analyzed using Flow cytometry. Results The isopropyl-ß-D-thiogalactopyranoside-induced rFg-CaBP4 protein reacted with rat sera containing anti-rFg-CaBP4 polyclonal antibodies in a western blot analysis. The adhesion of rFg-CaBP4 to monocytes was visualized by immunofluorescence and laser scanning confocal microscopy. Immunohistochemical analysis localized native CaBP4 to the oral sucker, pharynx, genital pore, acetabulum and tegument of adult F. gigantica. Co-incubation of rFg-CaBP4 with concanavalin A-stimulated monocytes increased the transcription levels of interleukin (IL)-2, IL-4, interferon gamma and transforming growth factor-β. However, a reduction in the expression of IL-10 and no change in the expression of tumor necrosis factor-α were detected. Additionally, rFg-CaBP4-treated monocytes exhibited a marked increase in the expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) and a decrease in MHC-I expression, in a dose-dependent manner. Conclusions These findings provide additional evidence that calcium-binding EF-hand proteins play roles in host-parasite interaction. Further characterization of the immunomodulatory role of rFg-CaBP4 should expand our understanding of the strategies used by F. gigantica to evade the host immune responses. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04784-5.
Collapse
|
6
|
Wang SS, Chen D, He JJ, Zheng WB, Tian AL, Zhao GH, Elsheikha HM, Zhu XQ. Fasciola gigantica-Derived Excretory-Secretory Products Alter the Expression of mRNAs, miRNAs, lncRNAs, and circRNAs Involved in the Immune Response and Metabolism in Goat Peripheral Blood Mononuclear Cells. Front Immunol 2021; 12:653755. [PMID: 33912180 PMCID: PMC8072156 DOI: 10.3389/fimmu.2021.653755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Fasciola gigantica produces excretory-secretory products (ESPs) with immune-modulating effects to promote its own survival. In this study, we performed RNA-seq to gain a comprehensive global understanding of changes in the expression of mRNAs, miRNAs, lncRNAs, and circRNAs in goat peripheral blood mononuclear cells (PBMCs) treated with F. gigantica ESPs. A total of 1,544 differently expressed mRNAs (790 upregulated and 754 downregulated genes), 30 differently expressed miRNAs (24 upregulated and 6 downregulated genes), 136 differently expressed circRNAs (83 upregulated and 53 downregulated genes), and 1,194 differently expressed lncRNAs (215 upregulated and 979 downregulated genes) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that F. gigantica ESPs altered the expression of genes associated with the host immune response, receptor signaling, disease and metabolism. Results from RNA-seq were validated by qRT-PCR. These findings provide an important resource for future investigation of the role of mRNAs and non-coding RNAs in mediating the immune-modulating effects of F. gigantica ESPs.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dan Chen
- School of Science, Fudan University, Shanghai, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China.,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Shi W, He JJ, Mei XF, Lu KJ, Zeng ZX, Zhang YY, Sheng ZA, Elsheikha HM, Huang WY, Zhu XQ. Dysregulation of hepatic microRNA expression in C57BL/6 mice affected by excretory-secretory products of Fasciola gigantica. PLoS Negl Trop Dis 2020; 14:e0008951. [PMID: 33332355 PMCID: PMC7775122 DOI: 10.1371/journal.pntd.0008951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The excretory-secretory products released by the liver fluke Fasciola gigantica (FgESPs) play important roles in regulating the host immune response during the infection. Identification of hepatic miRNAs altered by FgESPs may improve our understanding of the pathogenesis of F. gigantica infection. In this study, we investigated the alterations in the hepatic microRNAs (miRNAs) in mice treated with FgESPs using high-throughput small RNA (sRNA) sequencing and bioinformatics analysis. The expression of seven miRNAs was confirmed by quantitative stem-loop reverse transcription quantitative PCR (qRT-PCR). A total of 1,313 miRNAs were identified in the liver of mice, and the differentially expressed (DE) miRNAs varied across the time lapsed post exposure to FgESPs. We identified 67, 154 and 53 dysregulated miRNAs at 1, 4 and 12 weeks post-exposure, respectively. 5 miRNAs (miR-126a-3p, miR-150-5p, miR-155-5p, miR-181a-5p and miR-362-3p) were commonly dysregulated at the three time points. We also found that most of the DE miRNAs were induced by FgESPs in the mouse liver after 4 weeks of exposure. These were subjected to Gene Ontology (GO) enrichment analysis, which showed that the predicted targets of the hepatic DE miRNAs of mice 4 weeks of FgESPs injection were enriched in GO terms, including cell membrane, ion binding, cellular communication, organelle and DNA damage. KEGG analysis indicated that the predicted targets of the most downregulated miRNAs were involved in 15 neural activity-related pathways, 6 digestion-related pathways, 20 immune response-related pathways and 17 cancer-related pathways. These data provide new insights into how FgESPs can dysregulate hepatic miRNAs, which play important roles in modulating several aspects of F. gigantica pathogenesis.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- * E-mail:
| | - Xue-Fang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ke-Jing Lu
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zi-Xuan Zeng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yao-Yao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhao-An Sheng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Wei-Yi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People’s Republic of China
| |
Collapse
|
8
|
Proteomic Profiling of the Liver, Hepatic Lymph Nodes, and Spleen of Buffaloes Infected with Fasciola gigantica. Pathogens 2020; 9:pathogens9120982. [PMID: 33255373 PMCID: PMC7759843 DOI: 10.3390/pathogens9120982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
In the present study, we used an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics technology to characterize the differentially expressed proteins (DEPs) in the liver, hepatic lymph nodes (hLNs), and spleen of buffaloes infected with Fasciola gigantica (F. gigantica). We also used the parallel reaction monitoring (PRM) method to verify the expression levels of the DEPs in the three infected tissues. At three days post-infection (dpi), 225, 1821, and 364 DEPs were detected in the liver, hLNs, and spleen, respectively. At 42 dpi, 384, 252, and 214 DEPs were detected in the liver, hLNs, and spleen, respectively. At 70 dpi, 125, 829, and 247 DEPs were detected in the liver, hLNs, and spleen, respectively. Downregulation of metabolism was prominent in infected livers at all time points, and upregulation of immune responses was marked in the hLNs during early infection (three dpi); however, no changes in the immune response were detected at the late stages of infection (42 and 70 dpi). Compared to the hLNs, there was no significant upregulation in the levels of immune responses in the infected spleen. All the identified DEPs were used to predict the subcellular localization of the proteins, which were related to extracellular space and membrane and were involved in host immune responses. Further PRM analysis confirmed the expression of 18 proteins. These data provide the first simultaneous proteomic profiles of multiple organs of buffaloes experimentally infected with F. gigantica.
Collapse
|
9
|
Men WQ, Xu SG, Mou R. Hepatic transcriptome study of Taenia asiatica infection in suckling pigs. Microb Pathog 2020; 152:104598. [PMID: 33157217 DOI: 10.1016/j.micpath.2020.104598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023]
Abstract
Taenia asiatica is a crucial Taenia that is prevalent in East and Southeast Asia. Domestic pigs and wild boars are essential intermediate hosts for Taenia. Cysticercus larvae are mainly parasitic in the liver of domestic pigs. The Taenia asiatica was collected from Liangmu Township, Duyun City, Guizhou Province. Twelve Yorkshire Suckling pigs of 20 days of age were randomly divided into an experimental and control group of 6 pigs each. RNA sequencing (RNA-seq) technology was used to detect the expression differences of the mRNA transcriptomes in the liver of the experimental and control group at different infection times. Differential genes were analyzed by bioinformatics and verified by Real Time-PCR(RT-PCR). On the 15th and 75th days after infection, 152 and 558 differentially expressed genes were detected in the liver of the experimental group, respectively, accounting for 0.85% and 3.12% of all identified transcribed RNA genes, respectively. Through GO and KEGG related bioinformatics analysis, it was found that these differentially expressed genes are involved in the immune response, material metabolism, fibrosis, and tissue proliferation and repair of suckling pig liver, and related to MHC antigen processing and presentation, cytochrome P450, transforming growth factor-beta (TGF-β) signaling pathway and so on. Cysticercus asiatica parasites cause significant differential gene expression in the liver of suckling pigs. Specific differentially expressed genes are involved in biological processes such as liver metabolism, immune response, and tissue repair or regeneration in suckling pigs. The immune evasion is related to the immuno-suppressive response of the intermediate host.
Collapse
Affiliation(s)
- Wan-Qi Men
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Shi-Gang Xu
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Rong Mou
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Tian AL, Tian X, Chen D, Lu M, Calderón-Mantilla G, Yuan XD, Li X, Elsheikha HM, Zhu XQ. Modulation of the Functions of Goat Peripheral Blood Mononuclear Cells by Fasciola gigantica Thioredoxin Peroxidase In Vitro. Pathogens 2020; 9:pathogens9090758. [PMID: 32957426 PMCID: PMC7559183 DOI: 10.3390/pathogens9090758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The liver fluke Fasciola gigantica has a remarkable ability to establish a long-term infection within the hepatobiliary system of the mammalian definitive host. F. gigantica achieves this by producing excretory-secretory molecules, which have immunomodulatory activities. In an effort to elucidate the immunomodulatory functions of F. gigantica thioredoxin peroxidase protein (FgTPx), we expressed recombinant FgTPx (rFgTPx) in Escherichia coli bacteria and examined its effects on several functions of goat peripheral blood mononuclear cells (PBMCs) in vitro. Sequence analysis revealed that FgTPx is related to a thioredoxin-like superfamily. Western blot analysis showed that rFgTPx was recognized by the sera of goats experimentally infected by F. gigantica. The specific binding of rFgTPx protein to the surface of goat PBMCs was demonstrated by immunofluorescence staining. We investigated the influence of serial concentrations of rFgTPx on various functions of goat PBMCs. All concentrations of rFgTPx increased the secretion of interleukin-2 (IL-2), IL-4, IL-10, IL-17, transforming growth factor-beta (TGF-β), and interferon gamma (IFN-γ), but inhibited PBMC proliferation, migration, and monocyte phagocytosis. Goat PBMCs exposed to 20-40 μg/mL of rFgTPx secreted increased levels of nitric oxide (NO), and 10-40 μg/mL of rFgTPx promoted cell apoptosis. These findings indicate that rFgTPx influences various functions of goat PBMCs by interacting with a large number of cellular targets, ultimately to promote the parasite's survival. The roles of rFgTPx and their interacting proteins warrant further investigation.
Collapse
Affiliation(s)
- Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.-L.T.); (D.C.); (X.-D.Y.)
| | - Xiaowei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.T.); (M.L.); (X.L.)
| | - Dan Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.-L.T.); (D.C.); (X.-D.Y.)
| | - Mingmin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.T.); (M.L.); (X.L.)
| | - Guillermo Calderón-Mantilla
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca 140013, Colombia;
| | - Xiao-Dan Yuan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.-L.T.); (D.C.); (X.-D.Y.)
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.T.); (M.L.); (X.L.)
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (H.M.E.); (X.-Q.Z.)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.-L.T.); (D.C.); (X.-D.Y.)
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (H.M.E.); (X.-Q.Z.)
| |
Collapse
|
11
|
Mei X, Shi W, Zhao W, Luo H, Zhang Y, Wang Y, Sheng Z, Wang D, Zhu XQ, Huang W. Fasciola gigantica excretory-secretory products (FgESPs) modulate the differentiation and immune functions of buffalo dendritic cells through a mechanism involving DNMT1 and TET1. Parasit Vectors 2020; 13:355. [PMID: 32680546 PMCID: PMC7368760 DOI: 10.1186/s13071-020-04220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Fasciola gigantica infection threatens the health of both humans and animals in the world. The excretory/secretory products (ESPs) of this fluke has been reported to impair the activation and maturation of immune cells. We have previously shown the influence of F. gigantica ESPs (FgESPs) on the maturation of buffalo dendritic cells (DCs). However, the underlying mechanisms remain unclear. The objective of this study was to investigate the potency of FgESPs in shifting the differentiation and immune functions of buffalo DCs. Methods Buffalo DCs were incubated with FgESPs directly or further co-cultured with lymphocytes in vitro. qRT-PCR was employed to determine the gene expression profile of DCs or the mixed cells, and an ELISA was used to measure cytokine levels in the supernatants. Hoechst and Giemsa staining assays, transmission electron microscopy, caspase-3/7 activity test and histone methylation test were performed to determine DC phenotyping, apoptosis and methylation. To investigate the mechanism involved with DNA methylation, a Co-IP assay and immunofluorescent staining assay were performed to observe if there was any direct interaction between FgESPs and DNMT1/TET1 in buffalo DCs, while RNAi technology was employed to knockdown DNMT1 and TET1 in order to evaluate any different influence of FgESPs on DCs when these genes were absent. Results qRT-PCR and ELISA data together demonstrated the upregulation of DC2 and Th2/Treg markers in DCs alone and DCs with a mixed lymphocyte reaction (MLR), suggesting a bias of DC2 that potentially directed Th2 differentiation in vitro. DC apoptosis was also found and evidenced morphologically and biochemically, which might be a source of tolerogenic DCs that led to Treg differentiation. In addition, FgESPs induced methylation level changes of histones H3K4 and H3K9, which correlate with DNA methylation. Co-IP and immunofluorescent subcellular localization assays showed no direct interaction between the FgESPs and DNMT1/TET1 in buffalo DCs. The productions of IL-6 and IL-12 were found separately altered by the knockdown of DNMT1 and TET1 in DCs after FgESPs treatment. Conclusions FgESPs may induce the DC2 phenotype or the apoptosis of buffalo DCs to induce the downstream Th2/Treg response of T cells, possibly through a DNMT1- or TET1-dependent manner(s).![]()
Collapse
Affiliation(s)
- Xuefang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wenping Zhao
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yaoyao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yurui Wang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhaoan Sheng
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dongying Wang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Weiyi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
12
|
Bracamonte SE, Johnston PR, Monaghan MT, Knopf K. Gene expression response to a nematode parasite in novel and native eel hosts. Ecol Evol 2019; 9:13069-13084. [PMID: 31871630 PMCID: PMC6912882 DOI: 10.1002/ece3.5728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/19/2023] Open
Abstract
Invasive parasites are involved in population declines of new host species worldwide. The high susceptibilities observed in many novel hosts have been attributed to the lack of protective immunity to the parasites which native hosts acquired during their shared evolution. We experimentally infected Japanese eels (Anguilla japonica) and European eels (Anguilla anguilla) with Anguillicola crassus, a nematode parasite that is native to the Japanese eel and invasive in the European eel. We inferred gene expression changes in head kidney tissue from both species, using RNA-seq data to determine the responses at two time points during the early stages of infection (3 and 23 days postinfection). At both time points, the novel host modified the expression of a larger and functionally more diverse set of genes than the native host. Strikingly, the native host regulated immune gene expression only at the earlier time point and to a small extent while the novel host regulated these genes at both time points. A low number of differentially expressed immune genes, especially in the native host, suggest that a systemic immune response was of minor importance during the early stages of infection. Transcript abundance of genes involved in cell respiration was reduced in the novel host which may affect its ability to cope with harsh conditions and energetically demanding activities. The observed gene expression changes in response to a novel parasite that we observed in a fish follow a general pattern observed in amphibians and mammals, and suggest that the disruption of physiological processes, rather than the absence of an immediate immune response, is responsible for the higher susceptibility of the novel host.
Collapse
Affiliation(s)
- Seraina E. Bracamonte
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Faculty of Life SciencesHumboldt‐Universität zu BerlinBerlinGermany
| | - Paul R. Johnston
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Michael T. Monaghan
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Klaus Knopf
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
- Faculty of Life SciencesHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
13
|
Garcia-Campos A, Correia CN, Naranjo-Lucena A, Garza-Cuartero L, Farries G, Browne JA, MacHugh DE, Mulcahy G. Fasciola hepatica Infection in Cattle: Analyzing Responses of Peripheral Blood Mononuclear Cells (PBMC) Using a Transcriptomics Approach. Front Immunol 2019; 10:2081. [PMID: 31555289 PMCID: PMC6727689 DOI: 10.3389/fimmu.2019.02081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
The parasitic helminth Fasciola hepatica (liver fluke) causes economic loss to the livestock industry globally and also causes zoonotic disease. New control strategies such as vaccines are urgently needed, due to the rise of drug resistance in parasite populations. Vaccine development requires a comprehensive understanding of the immunological events during infection. Previous in vivo studies by our group have investigated global differentially expressed genes (DEGs) in ovine peripheral blood mononuclear cells (PBMC) in response to both acute and chronic F. hepatica infection. This work demonstrated that pathways involved in the pathogenesis of ovine fasciolosis included fibrosis, inhibition of macrophage nitric oxide production, and antibody isotype switching, among others. Transcriptomic changes in PBMC populations following F. hepatica infection in cattle, in which the disease phenotype is quite different, have not yet been examined. Using RNA sequencing we investigated gene expression changes in PBMC isolated from 9 non-infected and 11 F. hepatica-experimentally-infected calves immediately before infection, at 1 and at 14 weeks post-infection. Longitudinal time-course comparisons between groups revealed 21 and 1,624 DEGs driven exclusively by F. hepatica infection in cattle at acute and chronic stages, respectively. These results show that fewer DEGs at the acute stage of infection can be identified in cattle, as compared with sheep. In addition, the log2 fold-changes of these DEGs were relatively low (−1 to 3) reflecting the different clinical presentation of F. hepatica infection in cattle. Gene pathways for hepatic fibrosis and hepatic cholestasis along with apoptosis of antigen-presenting cells were enriched at chronic stages. Our results reflect the major differences in the disease phenotype between cattle and sheep and may indicate pathways to target in vaccine development.
Collapse
Affiliation(s)
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | | | - Gabriella Farries
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Guo X, Guo A. Profiling circulating microRNAs in serum of Fasciola gigantica-infected buffalo. Mol Biochem Parasitol 2019; 232:111201. [PMID: 31377228 DOI: 10.1016/j.molbiopara.2019.111201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 01/25/2023]
Abstract
Circulating miRNAs are stably existed in serum and plasma and can serve as a novel class of biomarkers for the diagnosis of helminthic infection. Fasciola gigantica, the causative agents of fascioliasis, live in the liver of in humans and ruminants, especially cattle, goat and sheep. In this study, a total of 121 host circulating miRNAs were differentially expressed (2 ≥ fold change, p < 0.05), of which 44 miRNAs were up-regulated and 77 miRNAs were significantly down-regulated. Consistent with the sequencing data, qRT-PCR results showed that the expression levels of bta-miR-21-5p and bta-miR-23a were elevated gradually and bta-miR-125a was decreased gradually at the F. gigantica infection time points. Four F. gigantica-specific miRNAs, including three known miRNAs (fgi-miR-87, fgi-miR-71, and fgi-miR-124), and one novel miRNA (novel miR-1) were identified in the sera of F. gigantica-infected buffaloes. Further analyses demonstrated that two parasite-derived miRNAs (fgi-miR-87 and fgi-miR-71) were specifically detected in sera of F. gigantica-infected buffaloes. These findings will be helpful to understand the roles of circulating miRNAs in host-parasite interaction and to potentiate serum miRNAs as diagnostic targets for F. gigantica.
Collapse
Affiliation(s)
- Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, Gansu, China.
| | - Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, Gansu, China
| |
Collapse
|
15
|
Mei XF, Shi W, Zhang YY, Zhu B, Wang YR, Hou LJ, Zhao WP, Li J, Wang DY, Luo HL, Huang WY. DNA methylation and hydroxymethylation profiles reveal possible role of highly methylated TLR signaling on Fasciola gigantica excretory/secretory products (FgESPs) modulation of buffalo dendritic cells. Parasit Vectors 2019; 12:358. [PMID: 31337442 PMCID: PMC6647289 DOI: 10.1186/s13071-019-3615-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Excretory/secretory products (ESPs) released by parasites influence the development and functions of host dendritic cells (DCs). However, little is known about changes of DNA (hydroxy)methylation on DC development during Fasciola gigantica infection. The present study aimed to investigate whether F. gigantica ESPs (FgESPs) affects the development and functions of buffalo DCs through altering the DNA (hydroxy)methylation of DCs. METHODS Buffalo DCs were prepared from peripheral blood mononuclear cells (PBMCs) and characterized using scanning and transmission electron microscopy (SEM/TEM) and quantitative reverse transcriptional PCR (qRT-RCR). DCs were treated with 200 μg/ml of FgESPs in vitro, following DNA extraction. The DNA methylome and hydroxymethylome were profiled based on (hydroxy)methylated DNA immunoprecipitation sequencing [(h)MeDIP-Seq] and bioinformatics analyses. qRT-RCR was also performed to assess the gene transcription levels of interest. RESULTS FgESPs markedly suppressed DC maturation evidenced by morphological changes and downregulated gene expression of CD1a and MHC II. Totals of 5432 and 360 genes with significant changes in the 5-methylcytosine (5-mC) and the 5-hydroxymethylcytosine (5-hmC) levels, respectively, were identified in buffalo DCs in response to FgESPs challenge. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these differentially expressed genes were highly enriched in pathways associated with immune response. Some cancer-related pathways were also indicated. There were 111 genes demonstrating changes in both 5-mC and 5-hmC levels, 12 of which were interconnected and enriched in 12 pathways. The transcription of hypermethylated genes TLR2, TLR4 and IL-12B were downregulated or in a decreasing trend, while the mRNA level of high-hydroxymethylated TNF gene was upregulated in buffalo DCs post-exposure to FgESPs in vitro. CONCLUSIONS To our knowledge, the present study provides for the first time a unique genome-wide profile of DNA (hydroxy)methylation for DCs that interact with FgESPs, and suggests a possible mechanism of FgESPs in suppressing DC maturation and functions that are involved in TLR signaling.
Collapse
Affiliation(s)
- Xue-Fang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Yao-Yao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Bin Zhu
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Yu-Rui Wang
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Lin-Jing Hou
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Wen-Ping Zhao
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Dong-Ying Wang
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China.
| | - Hong-Lin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, People's Republic of China.
| | - Wei-Yi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China.
| |
Collapse
|
16
|
Mao Y, He C, Li H, Lu K, Fu Z, Hong Y, Jin Y, Lin J, Zhang X, Liu J. Comparative analysis of transcriptional profiles of Schistosoma japonicum adult worms derived from primary-infected and re-infected water buffaloes. Parasit Vectors 2019; 12:340. [PMID: 31296252 PMCID: PMC6625002 DOI: 10.1186/s13071-019-3600-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Schistosoma japonicum (S. japonicum) is an important zoonotic parasite that is prevalent in China and parts of Southeast Asia. Water buffaloes are an important reservoir and the main transmission sources of S. japonicum. However, self-curing and resistance to re-infection have been observed in water buffaloes. RESULTS In this study, we compared the morphometry and differences in transcriptional expression of adult S. japonicum worms recovered from primary-infected and re-infected water buffaloes using Illumina RNA-sequencing (RNA-Seq) technology. Results of morphometry analysis revealed that adult S. japonicum worms recovered from re-infected water buffaloes were runtish with smaller organs. The ventral length of male worms was shorter in re-infected buffaloes (328 ± 13 vs 273 ± 8 µm, P < 0.05), and in female worms the oral sucker length (44 ± 3 vs 33 ± 5 µm, P < 0.05), ovary length (578 ± 23 vs 297 ± 27 µm, P < 0.05) and width (150 ± 8 vs 104 ± 9 µm, P < 0.05) were shorter, with fewer eggs in the uteri (41 ± 2 vs 12 ± 1, P < 0.05). Of 13,605 identified genes, 112 were differentially expressed, including 51 upregulated and 61 downregulated genes, in worms from re-infected compared with primary-infected water buffaloes. Gene ontology (GO) enrichment analysis revealed that GO terms such as "oxidation-reduction process", "calcium-dependent phospholipid binding", "lipid binding" and "calcium ion binding" were significantly enriched in downregulated genes, whereas GO terms related to metabolism and biosynthesis were significantly enriched in upregulated genes. The results revealed that the downregulation of some important genes might contribute to a reduction in worm numbers and maldevelopment of surviving worms in re-infected water buffaloes. Furthermore, upregulation of genes related to metabolic processes and biosynthesis might be a compensatory mechanism of worms in disadvantageous environments. CONCLUSIONS To our knowledge, our results present the first large-scale transcriptional expression study identifying the differences between adult S. japonicum worms from primary-infected and re-infected water buffaloes, and particularly emphasize differential expression that may affect the survival and growth of worms in re-infected water buffalo. This will provide new insight into screening for anti-schistosome targets and vaccine candidates.
Collapse
Affiliation(s)
- Yudan Mao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Chuanchuan He
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
17
|
Zhang FK, Hu RS, Elsheikha HM, Sheng ZA, Zhang WY, Zheng WB, Zhu XQ, He JJ. Global serum proteomic changes in water buffaloes infected with Fasciola gigantica. Parasit Vectors 2019; 12:281. [PMID: 31159882 PMCID: PMC6547537 DOI: 10.1186/s13071-019-3533-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The liver fluke Fasciola gigantica modulates several signaling pathways in infected buffaloes to facilitate its survival and establishment of persistent infection. In response to the parasite invasion, buffaloes activate innate and adaptive immune responses to counter the parasite infection. To detect new proteins that might be involved in the interaction between F. gigantica and the buffaloes, and that also might serve as biomarkers for fasciolosis, we used proteomic techniques to study the serum proteome of buffaloes during F. gigantica infection. Here, we used an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach to identify serum proteins that are differentially expressed in infected buffaloes compared to uninfected control buffaloes. Additionally, we applied a parallel reaction monitoring (PRM) assay to validate specific proteins identified by the iTRAQ method. RESULTS A total of 313, 459 and 399 proteins were identified at 3, 42 and 70 days post-infection, respectively; of these 92, 93 and 138 were differentially abundant proteins. Some of the identified differentially abundant proteins, including complement factor H related 5, complement component C6, complement component C7, amine oxidase, plasma serine protease inhibitor and lysozyme, are known to be involved in complement system activation, blood coagulation, platelet activation, lymphocyte's adhesion and lysozyme hydrolysis. Analysis of data for all three time points after infection identified six significantly upregulated proteins in infected serum that separated infected and uninfected buffaloes into distinct clusters. Further PRM analysis confirmed the expression of five proteins, namely MHC class I antigen, Beta-2-microglobulin, NID2 protein, Fetuin-B and Fibrinogen gamma-B chain. CONCLUSIONS These findings provide novel insights into the serum proteomics signature of buffaloes during F. gigantica infection.
Collapse
Affiliation(s)
- Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei-Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
18
|
Affiliation(s)
- Thomas E Tomasi
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Briana N Anderson
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California – Riverside, Riverside, CA, USA
| |
Collapse
|
19
|
Proteomic analysis of Fasciola gigantica excretory and secretory products (FgESPs) interacting with buffalo serum of different infection periods by shotgun LC-MS/MS. Parasitol Res 2018; 118:453-460. [PMID: 30565193 DOI: 10.1007/s00436-018-6169-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is an important zoonotic disease in the world. It affects livestock, especially for sheep and cattle, causing major economic loss due to morbidity and mortality. Although the excretory and secretory products (ESPs) of F. hepatica have been relatively well studied, little is known about the interaction between the ESP and host, and the mechanism of the key proteins involved in interaction. In this study, buffaloes were infected by Fasciola gigantica, and infection serum was collected at three different periods (42dpi, 70dpi, and 98dpi). The interaction proteins were pulled down with three different period serum by Co-IP assay, respectively, and then identified by LC-MS/MS analysis. A number of proteins were identified; some of them related to the biological function of the parasite, while most of them the functions were unknown. For the annotated proteins, 13, 5, and 7 proteins were pulled down by the infected serum in 42dpi, 70dpi, and 98dpi, respectively, and 18 proteins could be detected in all three periods. Among them, 13 belong to the cathepsin family, 4 proteins related to glutathione S-transferase, and 3 proteins are calcium-binding protein; other proteins related to catalytic activity and cellular process. This study could provide new insights into the central role played by ESPs in the protection of F. gigantica from the host immune response. At the same time, our research provided material for further studies about the interaction between F. gigantica and host.
Collapse
|
20
|
Tian AL, Lu M, Calderón-Mantilla G, Petsalaki E, Dottorini T, Tian X, Wang Y, Huang SY, Hou JL, Li X, Elsheikha HM, Zhu XQ. A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells. Parasit Vectors 2018; 11:152. [PMID: 29510740 PMCID: PMC5840819 DOI: 10.1186/s13071-018-2745-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background The molecular structure of Fasciola gigantica 14-3-3 protein has been characterized. However, the involvement of this protein in parasite pathogenesis remains elusive and its effect on the functions of innate immune cells is unknown. We report on the cloning and expression of a recombinant F. gigantica 14-3-3 epsilon protein (rFg14-3-3e), and testing its effects on specific functions of goat peripheral blood mononuclear cells (PBMCs). Methods rFg14-3-3e protein was expressed in Pichia pastoris. Western blot and immunofluorescence assay (IFA) were used to examine the reactivity of rFg14-3-3e protein to anti-F. gigantica and anti-rFg14-3-3e antibodies, respectively. Various assays were used to investigate the stimulatory effects of the purified rFg14-3-3e protein on specific functions of goat PBMCs, including cytokine secretion, proliferation, migration, nitric oxide (NO) production, phagocytosis, and apoptotic capabilities. Potential protein interactors of rFg14-3-3e were identified by querying the databases Intact, String, BioPlex and BioGrid. A Total Energy analysis of each of the identified interaction was performed. Gene Ontology (GO) enrichment analysis was conducted using Funcassociate 3.0. Results Sequence analysis revealed that rFg14-3-3e protein had 100% identity to 14-3-3 protein from Fasciola hepatica. Western blot analysis showed that rFg14-3-3e protein is recognized by sera from goats experimentally infected with F. gigantica and immunofluorescence staining using rat anti-rFg14-3-3e antibodies demonstrated the specific binding of rFg14-3-3e protein to the surface of goat PBMCs. rFg14-3-3e protein stimulated goat PBMCs to produce interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), corresponding with low levels of IL-4 and interferon gamma (IFN-γ). Also, this recombinant protein promoted the release of NO and cell apoptosis, and inhibited the proliferation and migration of goat PBMCs and suppressed monocyte phagocytosis. Homology modelling revealed 65% identity between rFg14-3-3e and human 14-3-3 protein YWHAE. GO enrichment analysis of the interacting proteins identified terms related to apoptosis, protein binding, locomotion, hippo signalling and leukocyte and lymphocyte differentiation, supporting the experimental findings. Conclusions Our data suggest that rFg14-3-3e protein can influence various cellular and immunological functions of goat PBMCs in vitro and may be involved in mediating F. gigantica pathogenesis. Because of its involvement in F. gigantica recognition by innate immune cells, rFg14-3-3e protein may have applications for development of diagnostics and therapeutic interventions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2745-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guillermo Calderón-Mantilla
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Tania Dottorini
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
21
|
Zhang FK, Hou JL, Guo AJ, Tian AL, Sheng ZA, Zheng WB, Huang WY, Elsheikha HM, Zhu XQ. Expression profiles of genes involved in TLRs and NLRs signaling pathways of water buffaloes infected with Fasciola gigantica. Mol Immunol 2017; 94:18-26. [PMID: 29241030 DOI: 10.1016/j.molimm.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/02/2017] [Accepted: 12/06/2017] [Indexed: 01/18/2023]
Abstract
Infection of ruminants and humans with Fasciola gigantica is attracting increasing attention due to its economic impact and public health significance. However, little is known of innate immune responses during F. gigantica infection. Here, we investigated the expression profiles of genes involved in Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways in buffaloes infected with 500F. gigantica metacercariae. Serum, liver and peripheral blood mononuclear cell (PBMC) samples were collected from infected and control buffaloes at 3, 10, 28, and 70days post infection (dpi). Then, the levels of 12 cytokines in serum samples were evaluated by ELISA. Also, the levels of expression of 42 genes, related to TLRs and NLRs signaling, in liver and PBMCs were determined using custom RT2 Profiler PCR Arrays. At 3 dpi, modest activation of TLR4 and TLR8 and the adaptor protein (TICAM1) was detected. At 10 dpi, NF-κB1 and Interferon Regulatory Factor signaling pathways were upregulated along with activation of TLR1, TLR2, TLR6, TLR10, TRAF6, IRF3, TBK1, CASP1, CD80, and IFNA1 in the liver, and inflammatory response with activated TLR4, TLR9, TICAM1, NF-κB1, NLRP3, CD86, IL-1B, IL-6, and IL-8 in PBMCs. At 28 dpi, there was increase in the levels of cytokines along with induction of NLRP1 and NLRP3 inflammasomes-dependent immune responses in the liver and PBMCs. At 70 dpi, F. gigantica activated TLRs and NLRs, and their downstream interacting molecules. The activation of TLR7/9 signaling (perhaps due to increased B-cell maturation and activation) and upregulation of NLRP3 gene were also detected. These findings indicate that F. gigantica alters the expression of TLRs and NLRs genes to evade host immune defenses. Elucidation of the roles of the downstream effectors interacting with these genes may aid in the development of new interventions to control disease caused by F. gigantica infection.
Collapse
Affiliation(s)
- Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Ai-Jiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region 530005, PR China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region 530005, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, PR China.
| |
Collapse
|
22
|
Shi W, Wei ZY, Elsheikha HM, Zhang FK, Sheng ZA, Lu KJ, Wang DY, Huang WY, Zhu XQ. Dynamic expression of cytokine and transcription factor genes during experimental Fasciola gigantica infection in buffaloes. Parasit Vectors 2017; 10:602. [PMID: 29216911 PMCID: PMC5721666 DOI: 10.1186/s13071-017-2538-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Here, we examined the differential gene expression of cytokines and transcription factors in the liver of F. gigantica-infected buffaloes, over the course of infection. METHODS Water buffaloes (swamp type) were infected orally with 500 F. gigantica encysted metacercariae. Liver tissue samples were collected 3, 10, 28, 42, 70 and 98 days post-infection (dpi). Levels of gene expression of nine cytokines (IFN-γ, TGF-β, IL-1β, IL-4, IL-6, IL-10, IL-12B, IL-13 and IL-17A) and four transcription factors (T-bet, GATA-3, Foxp3 and ROR-γτ) were determined using quantitative real-time PCR (qRT-PCR). We evaluated any correlation between gene expression of these immune-regulatory factors and the severity of liver pathology. RESULTS Histopathological examination revealed that cellular infiltration, hemorrhage and fibrosis without calcification in the liver parenchyma of infected buffaloes, increased over the course of infection. This progressive pathology was attributed to dysregulated and excessive inflammatory responses induced by infection. The early infection phase (3-10 dpi) was marked by a generalized immunosuppression and elevated TGF-β expression in order to facilitate parasite colonization. A mixed Th1/Th2 immune response was dominant from 28 to 70 dpi, to promote parasite survival while minimizing host tissue damage. During late infection (98 dpi), the response was biased towards Th1/Treg in order to inhibit the host's Th2 protective response and promote chronic infection. Both IL-10 and IL-17A and the Th17/Treg balance, played key roles in mediating the inflammatory and immunoregulatory mechanisms in the liver during chronic fasciolosis. CONCLUSIONS Our data showed distinct CD4+ T helper (Th) polarization and cytokine dysregulation in response to F. gigantica infection in water buffaloes over the course of infection. Characterizing the temporal expression profiles for host immune genes during infection should provide important information for defining how F. gigantica adapts and survives in the liver of buffaloes and how host immune responses influence F. gigantica pathogenicity.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Zhi-Yong Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Ke-Jing Lu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Ying Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
23
|
Zhang FK, Guo AJ, Hou JL, Sun MM, Sheng ZA, Zhang XX, Huang WY, Elsheikha HM, Zhu XQ. Serum levels of cytokines in water buffaloes experimentally infected with Fasciola gigantica. Vet Parasitol 2017; 244:97-101. [PMID: 28917326 DOI: 10.1016/j.vetpar.2017.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/03/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
Fasciola gigantica infection in water buffaloes causes significant economic losses especially in developing countries. Although modulation of the host immune response by cytokine neutralization or vaccination is a promising approach to control infection with this parasite, our understanding of cytokine's dynamic during F. gigantica infection is limited. To address this, we quantified the levels of serum cytokines produced in water buffaloes following experimental infection with F. gigantica. Five buffaloes were infected via oral gavage with 500 viable F. gigantica metacercariae and blood samples were collected from buffaloes one week before infection and for 13 consecutive weeks thereafter. The levels of 10 cytokines in serum samples were simultaneously determined using ELISA. F. gigantica failed to elicit the production of various pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-2, IL-6, IL-12, and IFN-γ. On the other hand, evidence of a Th2 type response was detected, but only early in the course of parasite colonization and included modest increase in the levels of IL-10 and IL-13. The results also revealed suppression of the immune responses as a feature of chronic F. gigantica infection in buffaloes. Taken together, F. gigantica seems to elicit a modest Th2 response at early stage of infection in order to downregulate harmful Th1- and Th17-type inflammatory responses in experimentally infected buffaloes. The full extent of anti-F. gigantica immune response and its relation to pathogenesis requires further study.
Collapse
Affiliation(s)
- Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Ai-Jiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Miao-Miao Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530005, PR China
| | - Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530005, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, PR China.
| |
Collapse
|