1
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. Front Cell Infect Microbiol 2024; 14:1427562. [PMID: 39086604 PMCID: PMC11288922 DOI: 10.3389/fcimb.2024.1427562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
2
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592465. [PMID: 38765993 PMCID: PMC11100627 DOI: 10.1101/2024.05.03.592465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
3
|
Gong S, Liang J, Li G, Xu L, Tan Y, Zheng X, Jin X, Yu K, Xia X. Linking coral fluorescence phenotypes to thermal bleaching in the reef-building Galaxea fascicularis from the northern South China Sea. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:155-167. [PMID: 38433965 PMCID: PMC10902222 DOI: 10.1007/s42995-023-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 03/05/2024]
Abstract
Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions, yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations, associated with fluorescence phenotypes due to GFP-like proteins, remains unclear. In this study, the relationship between the thermal sensitivity and phenotypic plasticity of corals was investigated using two phenotypes of Galaxea fascicularis, green and brown. The results reveal that brown G. fascicularis was more susceptible to bleaching than green G. fascicularis when exposed to a higher growth temperature of 32 °C. Both phenotypes of G. fascicularis were associated with the thermotolerant Symbiodiniaceae symbiont, Durusdinium trenchii. However, the brown G. fascicularis showed a significant decrease in Symbiodiniaceae cell density and a significant increase in pathogenic bacteria abundance when the growth temperature was raised from 29 to 32 °C. The physiological traits and transcriptomic profiles of Symbiodiniaceae were not notably affected, but there were differences in the transcriptional levels of certain genes between the two phenotype hosts of G. fascicularis. Under heat stress of 32 °C, the gene encoding green fluorescent protein (GFP)-like and chromosome-associated proteins, as well as genes related to oxidative phosphorylation, cell growth and death showed lower transcriptional levels in the brown G. fascicularis compared to the green G. fascicularis. Overall, the results demonstrate that the green form of G. fascicularis is better able to tolerate ocean warming and defend against pathogenic bacteria, likely due to higher gene transcription levels and defense ability. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00190-1.
Collapse
Affiliation(s)
- Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, 53004 China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Lijia Xu
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, 510530 China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Xinqing Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - Xuejie Jin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, 53004 China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| |
Collapse
|
4
|
Zhang R, Liu W, Fu J, Zhang Z. MicroRNA-989 controls Aedes albopictus pupal-adult transition process by influencing cuticle chitin metabolism in pupae. Parasit Vectors 2023; 16:397. [PMID: 37919799 PMCID: PMC10623821 DOI: 10.1186/s13071-023-05976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Aedes albopictus is a vector of numerous devastating arboviruses and places heavy burdens on global public health. Chitin is one of the important components of cuticles and targeting chitin metabolism is a promising strategy for preventing mosquito dispersal and mosquito-borne diseases. Increasing evidence suggests that microRNAs (miRNAs) play crucial roles in various physiological processes of insects. METHODS A previous analysis suggested that the microRNA miR-989 is potentially involved in chitin metabolism in Ae. albopictus pupae. In the present study, we found that the expression level of miR-989 was significantly overexpressed after injection of agomir. A dual-luciferase assay was used to determine the direct target of miR-989. Survival rate, eclosion rate and malformation rate were statistically analyzed to evaluate the potential effect of miR-989. Hematoxylin-eosin staining and chitin staining were used to evaluate the microstructural changes in the cuticles of Ae. albopictus pupae. RESULTS Overexpression of miR-989 resulted in a significantly reduced survival rate and eclosion rate of pupae and an elevated malformation rate of adults. The results suggested that miR-989 acted as a regulator of chitin metabolism in Ae. albopictus pupae by affecting the transcript levels of the Ae. albopictus genes encoding chitin synthase 1 (AaCHS1) and chitinase 10 (AaCht10). The altered expression levels of the two chitin metabolism-related enzymes (CHS1 and Cht10, respectively) caused the structural changes in cuticles and further affected the pupal-adult transition process of Ae. albopictus. XM_029863591.1 was proven to be the target gene of miR-989 and displayed similar effects on pupae as miR-989. CONCLUSIONS The microRNA miR-989 was found to be essential for chitin metabolism in old and new cuticles of Ae. albopictus pupae. The results of the current study suggested that miR-989 could be used as a potential target to control Ae. albopictus.
Collapse
Affiliation(s)
- Ruiling Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China.
- School of Laboratory Animal (Shandong Laboratory Animal Center), Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China.
| | - Wenjuan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China
| | - Jingwen Fu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China
| | - Zhong Zhang
- School of Clinical and Basic Medical Science, Shandong Academy of Medical Sciences), Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
5
|
Mills MK, Rozo-Lopez P, Bryant WB, Drolet BS. microRNA Expression Dynamics in Culicoides sonorensis Biting Midges Following Blood-Feeding. INSECTS 2023; 14:611. [PMID: 37504617 PMCID: PMC10380374 DOI: 10.3390/insects14070611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023]
Abstract
Culicoides sonorensis midges vector multiple livestock arboviruses, resulting in significant economic losses worldwide. Due to the tight association between virus transmission, blood feeding, and egg development, understanding midge physiology is paramount to limiting pathogen transmission. Previous studies have demonstrated the importance of small non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), in multiple aspects of vector physiology. These small ncRNAs regulate gene expression at the post-transcriptional level and display differential expression during pathogen infection. Due to the lack of annotated miRNAs in the biting midge and associated expression profiles, we used small RNA-Seq and miRDeep2 analyses to determine the Culicoides miRNAs in whole females and midgut tissues in response to blood feeding. Our analyses revealed 76 miRNAs within C. sonorensis composed of 73 orthologous and three candidate novel miRNAs, as well as conserved miRNA clusters. miRNA conservation suggests an interesting evolutionary relationship between miRNA expression and hematophagy in the infraorder Culicomorpha. We also identified multiple blood meal-regulated and tissue-enriched miRNAs. Lastly, we further identified miRNAs with expression patterns potentially associated with virus infection by probing publicly available datasets. Together, our data provide a foundation for future ncRNA work to untangle the dynamics of gene regulation associated with midge physiology.
Collapse
Affiliation(s)
- Mary Katherine Mills
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC 29801, USA
| | - Paula Rozo-Lopez
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - William Bart Bryant
- Department of Medicine and Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
6
|
Gupta H, Wassmer SC. Harnessing the Potential of miRNAs in Malaria Diagnostic and Prevention. Front Cell Infect Microbiol 2021; 11:793954. [PMID: 34976869 PMCID: PMC8716737 DOI: 10.3389/fcimb.2021.793954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Despite encouraging progress over the past decade, malaria remains a major global health challenge. Its severe form accounts for the majority of malaria-related deaths, and early diagnosis is key for a positive outcome. However, this is hindered by the non-specific symptoms caused by malaria, which often overlap with those of other viral, bacterial and parasitic infections. In addition, current tools are unable to detect the nature and degree of vital organ dysfunction associated with severe malaria, as complications develop silently until the effective treatment window is closed. It is therefore crucial to identify cheap and reliable early biomarkers of this wide-spectrum disease. microRNAs (miRNAs), a class of small non-coding RNAs, are rapidly released into the blood circulation upon physiological changes, including infection and organ damage. The present review details our current knowledge of miRNAs as biomarkers of specific organ dysfunction in patients with malaria, and both promising candidates identified by pre-clinical models and important knowledge gaps are highlighted for future evaluation in humans. miRNAs associated with infected vectors are also described, with a view to expandind this rapidly growing field of research to malaria transmission and surveillance.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Xu TL, Sun YW, Feng XY, Zhou XN, Zheng B. Development of miRNA-Based Approaches to Explore the Interruption of Mosquito-Borne Disease Transmission. Front Cell Infect Microbiol 2021; 11:665444. [PMID: 34235091 PMCID: PMC8256169 DOI: 10.3389/fcimb.2021.665444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/02/2021] [Indexed: 01/21/2023] Open
Abstract
MicroRNA (miRNA or miR)-based approaches to interrupt the transmission of mosquito-borne diseases have been explored since 2005. A review of these studies and areas in which to proceed is needed. In this review, significant progress is reviewed at the level of individual miRNAs, and miRNA diversification and relevant confounders are described in detail. Current miRNA studies in mosquitoes include four steps, namely, identifying miRNAs, validating miRNA-pathogen interactions, exploring action mechanisms, and performing preapplication investigations. Notably, regarding the Plasmodium parasite, mosquito miRNAs generally bind to mosquito immunity- or development-related mRNAs, indirectly regulating Plasmodium infection; However, regarding arboviruses, mosquito miRNAs can bind to the viral genome, directly modifying viral replication. Thus, during explorations of miRNA-based approaches, researchers need select an ideal miRNA for investigation based on the mosquito species, tissue, and mosquito-borne pathogen of interest. Additionally, strategies for miRNA-based approaches differ for arboviruses and protozoan parasites.
Collapse
Affiliation(s)
- Tie-Long Xu
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
| | - Ya-Wen Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
| | - Xin-Yu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Farley EJ, Eggleston H, Riehle MM. Filtering the Junk: Assigning Function to the Mosquito Non-Coding Genome. INSECTS 2021; 12:186. [PMID: 33671692 PMCID: PMC7926655 DOI: 10.3390/insects12020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
The portion of the mosquito genome that does not code for proteins contains regulatory elements that likely underlie variation for important phenotypes including resistance and susceptibility to infection with arboviruses and Apicomplexan parasites. Filtering the non-coding genome to uncover these functional elements is an expanding area of research, though identification of non-coding regulatory elements is challenging due to the lack of an amino acid-like code for the non-coding genome and a lack of sequence conservation across species. This review focuses on three types of non-coding regulatory elements: (1) microRNAs (miRNAs), (2) long non-coding RNAs (lncRNAs), and (3) enhancers, and summarizes current advances in technical and analytical approaches for measurement of each of these elements on a genome-wide scale. The review also summarizes and highlights novel findings following application of these techniques in mosquito-borne disease research. Looking beyond the protein-coding genome is essential for understanding the complexities that underlie differential gene expression in response to arboviral or parasite infection in mosquito disease vectors. A comprehensive understanding of the regulation of gene and protein expression will inform transgenic and other vector control methods rooted in naturally segregating genetic variation.
Collapse
Affiliation(s)
| | | | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (E.J.F.); (H.E.)
| |
Collapse
|
9
|
Small RNA-Seq Analysis Reveals miRNA Expression Dynamics Across Tissues in the Malaria Vector, Anopheles gambiae. G3-GENES GENOMES GENETICS 2019; 9:1507-1517. [PMID: 30846481 PMCID: PMC6505144 DOI: 10.1534/g3.119.400104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malaria continues to be a major global health problem, where disease transmission is deeply linked to the repeated blood feeding nature of the anautogenous mosquito. Given the tight link between blood feeding and disease transmission, understanding basic biology behind mosquito physiology is a requirement for developing effective vector-borne disease control strategies. In the mosquito, numerous loss of function studies with notable phenotypes demonstrate microRNAs (miRNAs) play significant roles in mosquito physiology. While the field appreciates the importance of a handful of miRNAs, we still need global mosquito tissue miRNA transcriptome studies. To address this need, our goal was to determine the miRNA transcriptome for multiple tissues of the pre-vitellogenic mosquito. To this end, by using small RNA-Seq analysis, we determined miRNA transcriptomes in tissues critical for mosquito reproduction and immunity including (i) fat body-abdominal wall enriched tissues, (ii) midguts, (iii) ovaries, and (iv) remaining tissues comprised of the head and thorax. We found numerous examples of miRNAs exhibiting pan-tissue high- or low- expression, tissue exclusion, and tissue enrichment. We also updated and consolidated the miRNA catalog and provided a detailed genome architecture map for the malaria vector, Anopheles gambiae. This study aims to build a foundation for future research on how miRNAs and potentially other small RNAs regulate mosquito physiology as it relates to vector-borne disease transmission.
Collapse
|
10
|
Arcà B, Colantoni A, Fiorillo C, Severini F, Benes V, Di Luca M, Calogero RA, Lombardo F. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci Rep 2019; 9:2955. [PMID: 30814633 PMCID: PMC6393464 DOI: 10.1038/s41598-019-39880-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza University", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmine Fiorillo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
11
|
Ruzzante L, Reijnders MJ, Waterhouse RM. Of Genes and Genomes: Mosquito Evolution and Diversity. Trends Parasitol 2019; 35:32-51. [DOI: 10.1016/j.pt.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
|