1
|
Liu D, Wang J, Liu Y, Wang S, Zhu H, Jiang B, Li Y, Zhang Y, Chahan B, Zhang W. Molecular analysis of Anaplasma ovis, Theileria ovis and Brucella abortus in adult Ornithodoros lahorensis soft ticks (Acari: Ixodida: Argasidae) isolated from the Xinjiang Uygur Autonomous Region, China. J Vet Res 2024; 68:355-361. [PMID: 39318522 PMCID: PMC11418382 DOI: 10.2478/jvetres-2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Ticks are obligate blood-feeding arthropods that cause significant economic losses in domestic animal husbandry and threaten public health. However, information about soft ticks (Acari: Argasidae) and tick-borne pathogens in the Xinjiang Uygur Autonomous Region (XUAR) of China is scarce. Material and Methods In this study, PCR assays and gene sequencing were used to detect and analyse the epidemiological features of Anaplasma ovis, Theileria ovis and Brucella abortus parasitic infections in 366 Ornithodoros lahorensis soft ticks collected from five sampling sites in the XUAR from October 2019 to March 2022. The ticks were identified by morphological and molecular methods as O. lahorensis. The PCR was conducted using primers complementary to the major surface protein 4 (Msp4) gene of A. ovis, the 18S ribosomal RNA (18S rRNA) of T. ovis and the outer membrane protein 22 (Omp22) gene of B. abortus. Results The overall infection rate was 91/366 (24.9%) for A. ovis, 127/366 (34.7%) for T. ovis and 94/366 (25.6%) for B. abortus. Sequencing analysis indicated that A. ovis Msp4, T. ovis 18S rRNA and B. abortus Omp22 genes from XUAR isolates showed 99.58-100% identity with documented isolates from other countries. Conclusion This study provides fundamental evidence for the occurrence of A. ovis, T. ovis and B. abortus in O. lahorensis. Therefore, the potential threat of soft ticks to livestock and humans should not be ignored. This study expands the understanding of the existence of tick-borne pathogens in O. lahorensis and is expected to improve the strategies for prevention and control of ticks and tick-borne diseases in China.
Collapse
Affiliation(s)
- Dandan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Jinming Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Yutong Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Shuiyi Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Huiru Zhu
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Bingbing Jiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Yongchang Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Yang Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Bayin Chahan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| | - Wei Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, China
| |
Collapse
|
2
|
Stevanović O, Ilić T, Jovanović N, Vejnović B, Radalj A. High genetic diversity of Anaplasma ovis in sheep from Bosnia and Herzegovina. Mol Biol Rep 2024; 51:936. [PMID: 39182201 DOI: 10.1007/s11033-024-09869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ovine anaplasmosis (sensu stricto) is a rickettsial blood disease caused by the tick-borne species Anaplasma ovis. The disease is characterized by mild anemia, fever, and icterus. A more severe clinical presentation is possible in non-endemic areas. There is no existing data on the presence of Anaplasma ovis in Bosnia and Herzegovina. However, given the country's location within the Mediterranean Basin and the recent molecular detection of Babesia ovis, it is plausible that sheep in the region could naturally be infected with this tick-borne pathogen. METHODS AND RESULTS Blood samples from 81 sheep in the Podrinje and Herzegovina areas were examined by PCR. PCR positivity was found in 38 (46.9%) cases indicating a high number of infected sheep. Mixed infections with Babesia ovis and A.ovis were observed in 63.3% of cases. A higher number of positive sheep was recorded in the area of Herzegovina. Phylogenetic analysis of the gltA, groEL, and msp4 genes of A. ovis revealed numerous genotypes and significant genetic variability. This diversity was not related to geographic origin, tick-borne infection status, or sheep breeding practices in Podrinje and Herzegovina. CONCLUSIONS The data obtained in this study suggest that the emergence of new genotypes and the high genetic variability of A. ovis are driven by specific local and micro-environmental factors.
Collapse
Affiliation(s)
- Oliver Stevanović
- PI Veterinary Institute "Dr Vaso Butozan" Banja Luka, Branka Radičevića 18, 78000, Banja Luka, Bosnia and Herzegovina.
| | - Tamara Ilić
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Nemanja Jovanović
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Branislav Vejnović
- Department of Economics and Statistcs, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| | - Andrea Radalj
- Deparment of Microbiology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Republic of Serbia
| |
Collapse
|
3
|
Remesar S, Castro-Scholten S, Morrondo P, Díaz P, Jiménez-Martín D, Muñoz-Fernández L, Fajardo T, Cano-Terriza D, García-Bocanegra I. Occurrence of Anaplasma spp. in wild lagomorphs from Southern Spain: Molecular detection of new Anaplasma bovis lineages. Res Vet Sci 2024; 166:105093. [PMID: 37980815 DOI: 10.1016/j.rvsc.2023.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Wild lagomorphs can act as reservoirs of several pathogens of public and animal health concern. However, the number of studies assessing the presence of Anaplasma spp. in these species is scarce. The aim of the present study was to molecularly identify Anaplasma spp. in wild rabbits (Oryctolagus cuniculus) and Iberian hares (Lepus granatensis) from Southern Spain and assess their epidemiological role in the maintenance of the bacterium. During 2017-2021, spleen samples of 394 wild rabbits and 145 Iberian hares were collected. Anaplasma DNA was detected using different PCR assays (16S rRNA and groEL) and phylogenetic analyses were carried out by Bayesian approach. The possible influence of lagomorph species, age and sex on the prevalence of Anaplasma spp. was evaluated by a multiple logistic regression model. The 9.4% of the rabbits were positive to Anaplasma bovis, but all the hares were negative. No significant differences were found in Anaplasma spp. prevalence regarding to age or sex. This is the first report of A. bovis in lagomorphs from Europe. The phylogenetic analysis of A. bovis confirms the existence of different clusters suggesting the existence of several lineages. In addition, a high divergence of nucleotide identity was observed within the lineage 4, which could result in the under-detection of some strains when using A. bovis-specific PCR, hindering its detection and characterization. Since this analysis is based on a limited number of nucleotide bases and sequences, more studies are needed for further characterize A. bovis, as well as its relationship with other Anaplasma spp.
Collapse
Affiliation(s)
- Susana Remesar
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sabrina Castro-Scholten
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Patrocinio Morrondo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díaz
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Débora Jiménez-Martín
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Leonor Muñoz-Fernández
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Tomás Fajardo
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Ulucesme MC, Ozubek S, Aktas M. Molecular Prevalence and Genetic Diversity Based on Msp1a Gene of Anaplasma ovis in Goats from Türkiye. Life (Basel) 2023; 13:life13051101. [PMID: 37240746 DOI: 10.3390/life13051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma ovis is a tick-borne obligated intraerythrocytic bacterium that infects domestic sheep, goats, and wild ruminants. Recently, several studies have been carried out using 16S rRNA and msp4 genes to identify the genetic diversity of A. ovis. Instead of these genes, which are known to be highly stable among heterologous strains, Msp1a, which is accepted as a stable molecular marker to classify A. marginale strains, was used in A. ovis genetic diversity studies. The genetic diversity of A. ovis strains according to the Msp1a gene has not been extensively reported. Therefore, the purpose of this study was to examine the genetic diversity of A. ovis in goats specifically using analysis of the Msp1a gene. Blood samples were taken from the vena jugularis to the EDTA tubes from 293 randomly selected goats (apparently healthy) in the Antalya and Mersin provinces of Mediterranean region of Türkiye. The Msp1a gene of A. ovis was amplified in all DNA samples through the use of PCR, using a specific set of primers named AoMsp1aF and AoMsp1aR. Among the amplified products, well-defined bands with different band sizes were subjected to sequence analysis. The obtained sequence data were converted into amino acid sequences using an online bioinformatics program and the tandem regions were examined. The Msp1a gene of A. ovis was amplified in 46.1% (135 out of 293) of the goats. Through tandem analysis, five distinct tandems (Ao8, Ao18, Tr15-16-17) were identified, and it was found that three of these tandems (Tr15-16-17) were previously unknown and were therefore defined as new tandems. The study also involved examination of ticks from goats. It was observed that the goats in the area were infested with several tick species, including Rhipicephalus bursa (888/1091, 81.4%), R. turanicus (96/1091, 8.8%), Dermacentor raskemensis (92/1091, 8.4%), Hyalomma marginatum (9/1091, 0.8%), and R. sanguineus s.l. (6/1091, 0.5%). This study provides important data for understanding the genetic diversity and evolution of A. ovis based on tandem repeats in the Msp1a protein.
Collapse
Affiliation(s)
- Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| |
Collapse
|
5
|
Addo SO, Bentil RE, Yartey KN, Ansah-Owusu J, Behene E, Opoku-Agyeman P, Bruku S, Asoala V, Mate S, Larbi JA, Baidoo PK, Wilson MD, Diclaro JW, Dadzie SK. First molecular identification of multiple tick-borne pathogens in livestock within Kassena-Nankana, Ghana. ANIMAL DISEASES 2023. [DOI: 10.1186/s44149-022-00064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractThe risk of pathogen transmission continues to increase significantly in the presence of tick vectors due to the trade of livestock across countries. In Ghana, there is a lack of data on the incidence of tick-borne pathogens that are of zoonotic and veterinary importance. This study, therefore, aimed to determine the prevalence of such pathogens in livestock using molecular approaches. A total of 276 dry blood spots were collected from cattle (100), sheep (95) and goats (81) in the Kassena-Nankana Districts. The samples were analyzed using Polymerase Chain Reaction (qPCR) and conventional assays and Sanger sequencing that targeted pathogens including Rickettsia, Coxiella, Babesia, Theileria, Ehrlichia and Anaplasma. An overall prevalence of 36.96% was recorded from the livestock DBS, with mixed infections seen in 7.97% samples. Furthermore, the prevalence of infections in livestock was recorded to be 19.21% in sheep, 14.13% in cattle, and 3.62% in goats. The pathogens identified were Rickettsia spp. (3.26%), Babesia sp. Lintan (8.70%), Theileria orientalis (2.17%), Theileria parva (0.36%), Anaplasma capra (18.48%), Anaplasma phagocytophilum (1.81%), Anaplasma marginale (3.26%) and Anaplasma ovis (7.25%). This study reports the first molecular identification of the above-mentioned pathogens in livestock in Ghana and highlights the use of dry blood spots in resource-limited settings. In addition, this research provides an update on tick-borne pathogens in Ghana, suggesting risks to livestock production and human health. Further studies will be essential to establish the distribution and epidemiology of these pathogens in Ghana.
Collapse
|
6
|
Onyiche TE, Mofokeng LS, Thekisoe O, MacLeod ET. Molecular survey for tick-borne pathogens and associated risk factors in sheep and goats in Kano Metropolis, Nigeria. Vet Parasitol Reg Stud Reports 2022; 33:100753. [PMID: 35820726 DOI: 10.1016/j.vprsr.2022.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Tick-borne pathogens (TBPs) pose an increased health and productivity risk to livestock in sub-Saharan Africa. Information regarding TBPs infecting small ruminants in Kano metropolis is scarce. Therefore, we investigated the molecular epidemiology of tick-borne pathogens of economic importance from sheep and goats in Kano, Nigeria using Polymerase chain reaction (PCR). A total of 346 blood DNA samples were collected from small ruminants and analyzed for TBPs using PCR and sequencing. Risk of infection was determined for age, sex, breed and animal species. Our results indicate the absence of piroplasmids (Babesia/Theileria) and Rickettsia spp. infections. The overall prevalence for Anaplasma spp. was 9.25% (32/346) with a higher prevalence in goats 13.59% (25/184) compared with sheep 4.32% (7/162). With respect to age of animals, goats >4 years had the highest prevalence of 32.45% (11/37) which differs significantly (P = 0.0059) compared with other age categories. Cross breed goats had a prevalence of 15.63% (5/32) compared with Kano brown breed 14.08 (20/142). Sex significant difference (P = 0.029) was observed in the goats with females having the highest prevalence 20.89% (14/67) compared with males 9.40% (11/117). Furthermore, with regards to sheep, no significant difference (P > 0.05) was observed with respect to age and breed. Finally, no significant difference (P > 0.05) was observed with the prevalence of Anaplasma spp. due to Body condition score (BCS) in both sheep and goats. Conclusively, the occurrence of TBPs in small ruminants is low. Continuous efforts in tick control must be sustained to ensure high productive yield and reduced disease burden associated with TBPs of sheep and goats in Kano metropolis.
Collapse
Affiliation(s)
- ThankGod E Onyiche
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK; Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria.
| | - Lehlohonolo S Mofokeng
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Ewan Thomas MacLeod
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| |
Collapse
|
7
|
Said MB, Attia KA, Alsubki RA, Mohamed AA, Kimiko I, Selim A. Molecular epidemiological survey, genetic characterization and phylogenetic analysis of Anaplasma ovis infecting sheep in Northern Egypt. Acta Trop 2022; 229:106370. [PMID: 35157843 DOI: 10.1016/j.actatropica.2022.106370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Anaplasma ovis is the most common etiologic agent of ovine anaplasmosis, mainly transmitted by ticks. The present study aimed to determine the molecular prevalence of A. ovis in sheep from Egypt and assessed the associated risk factors. The study was conducted, between January and December 2020, in four governorates situated in Northern Egypt. Blood samples from 355 asymptomatic sheep were collected and examined by the use of PCR specific to A. ovis. Diversity analysis and phylogenetic study based on partial msp4 gene sequence were performed on revealed A. ovis DNA. Overall, the molecular prevalence rate of A. ovis was 15.5% and the highest rate was observed in Kafr ElSheikh governorate (16.8%). Statistical analysis revealed that A. ovis infection was significantly related to sheep gender and to tick infestation. The risk factors that were found to be associated with A. ovis infection in exposed sheep were: female sex (OR=2.6, 95%CI: 1.13-6.12), and infestation with ticks (OR=2.1, 95%CI: 1.11-3.79). The analysis of A. ovis msp4 sequences revealed two different genotypes classified in the Old World sub-cluster with other Egyptian isolates. Investigation on prevalence, risk factors and genetic variability of A. ovis in sheep reported in this study is important for the implementation of control programs. Further studies are needed to determine the vectors and reservoirs of A. ovis in Egyptian small ruminants and to identify the real economic impact of A. ovis infection on the country.
Collapse
Affiliation(s)
- Mourad Ben Said
- Higher Institute of Biotechnology, BiotechPôlet, BP-66, 2020, Sidi Thabet, Ariana Tunis, University of Manouba, Tunisia; Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, Ariana Tunis, University of Manouba, Tunisia.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arif A Mohamed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
8
|
Molecular Detection and Genetic Diversity of Tick-Borne Pathogens in Goats from the Southern Part of Thailand. Pathogens 2022; 11:pathogens11040477. [PMID: 35456152 PMCID: PMC9032176 DOI: 10.3390/pathogens11040477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Tick-borne hemoprotozoan and rickettsial diseases affect the health and productivity of small ruminants in tropical and subtropical regions. Despite the large population of goats in the southern part of Thailand, there is limited information on the prevalence of tick-borne pathogens. In this study, polymerase chain reaction was used to detect the presence of Theileria spp., T. ovis, T. orientalis, Babesia ovis, Anaplasma ovis, and A. marginale in 262 goats from three provinces in the southern part of Thailand. In this investigation, Theileria spp. and A. ovis were detected while T. ovis, B. ovis, and A. marginale were not detected. Overall infection rates of Theileria spp. and A. ovis were 10.3% and 1.5%, respectively. The co-infections of two parasites was observed in 1.5% of goats. Sequence analysis showed the presence of T. luwenshuni and T. orientalis in the goat samples. This study is the first to use the molecular detection of T. orientalis in Thai goats, and presents genetic characterization using the major piroplasm surface protein (MPSP) gene. In the phylogenetic analysis, the T. orientalis MPSP sequence was classified as type 7. The A. ovis major surface protein 4 (MSP4) gene sequences shared high identities and similarity with each other and clustered with isolates from other regions. This study provides information about the prevalence and genetic diversity of tick-borne pathogens in goats in the study area, and is expected to be valuable for the development of effective control measures to prevent disease in animals in Thailand.
Collapse
|
9
|
Yan Y, Wang K, Cui Y, Zhou Y, Zhao S, Zhang Y, Jian F, Wang R, Zhang L, Ning C. Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China. Sci Rep 2021; 11:14155. [PMID: 34238975 PMCID: PMC8266805 DOI: 10.1038/s41598-021-93629-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Anaplasma species, which are distributed worldwide, are gram-negative obligate intracellular tick-borne bacteria that pose a threat to human and animal health. Haemaphysalis longicornis ticks play a vital role as vectors in the transmission of Anaplasma pathogens. However, the Anaplasma species carried by H. longicornis in China are yet to be characterized. In this study, 1074 H. longicornis specimens were collected from goats in four provinces of China from 2018 to 2019 and divided into 371 sample pools. All tick sample pools were examined for the presence of Anaplasma species via nested PCR amplification of 16S ribosomal RNA, major surface protein 4 (msp4), or citric acid synthase (gltA) genes, which were sequenced to determine the molecular and phylogenetic characteristics of the isolates. The overall Anaplasma spp-positive rate of H. longicornis was determined to be 26.68% (99/371). The percentage prevalence of A. phagocytophilum-like1, A. bovis, A. ovis, A. marginale, and A. capra were 1.08% (4/371), 13.21% (49/371), 13.21% (49/371), 1.35% (5/371), and 10.24% (38/371), respectively, and the co-infection rate of two or more types of Anaplasma was 6.47% (24/371). Phylogenetic analyses led to the classification of A. phagocytophilum into an A. phagocytophilum-like1 (Anaplasma sp. Japan) group. Anaplasma bovis sequences obtained in this study were 99.8–100% identical to those of an earlier strain isolated from a Chinese tick (GenBank accession no. KP314251). Anaplasma ovis sequences showed 99.3–99.6% identity to an A. ovis human strain identified from a Cypriot patient (GenBank accession no. FJ460443). Only one msp4 sequence of A. marginale was detected and was grouped with those of other A. marginale isolates, and these A. capra isolates obtained in this present study may be zoonotic. The detection and characterization of four Anaplasma species in H. longicornis in this study have added to the current knowledge of the parasite and provided data on multiple Anaplasma species with veterinary and medical significance from four provinces of China.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Kunlun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yanyan Cui
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
| | - Yongchun Zhou
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Shanshan Zhao
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yajun Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Fuchun Jian
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Rongjun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Changshen Ning
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
10
|
Shahbazi P, Nouri Gharajalar S, Mohebbi K, Taeb J, Hashemzadeh Farhang H, Nikvand AA, Norouzi R. First Survey on the Presence and Distribution of Oxytetracycline-Resistance Genes in Anaplasma Species. Acta Parasitol 2021; 66:501-507. [PMID: 33180256 DOI: 10.1007/s11686-020-00306-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/22/2020] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Anaplasma sp. is an obligatory intracellular Gram-negative tick-transmitted bacterial pathogen of humans and animals. Oxytetracycline and chlortetracycline are the drugs of choice for treating domestic animals with acute anaplasmosis. Lack of documented information about oxytetracycline resistance in Anaplasma species in the world was the scope of this study to screen by PCR for the detection of the oxytetracycline-resistance genes in Anaplasma species from infected cattle and sheep in the Northwest and Southwest of Iran. MATERIALS AND METHODS Total of 100 cattle and sheep blood samples collected from 2 provinces in the Northwest and 1 province in the Southwest of Iran were tested microscopically by the Giemsa staining examination and confirmed by PCR. Then the presence of two different oxytetracycline-resistance genes (otrA, and otrB) was detected by PCR in positive samples. RESULTS The results showed that 60% of Anaplasma-infected samples were identified to have an otrA-resistance gene, and 26.67% had an otrB-resistance gene. The coexistence of two oxytetracycline-resistance determinants was encountered in 13.33% of the isolates. The significant difference in the frequency of otr genes was found among three Anaplasma species (A. marginale, A. centrale and A. ovis), and among three studied regions in Iran (p < 0.05). The identified sequences were submitted to the GenBank and deposited under accession numbers MN880729 and MN895439 for otrB and otrA genes. CONCLUSION This study, for the first time, indicated the oxytetracycline-resistance genes in the three most prevalent Anaplasma species in ruminants. This finding helps to select an appropriate treatment strategy for eradication of anaplasmosis.
Collapse
Affiliation(s)
- Parisa Shahbazi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, 29th Bahman Street, 5166616471, Tabriz, Iran.
| | - Sahar Nouri Gharajalar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, 29th Bahman Street, 5166616471, Tabriz, Iran
| | - Kolsoum Mohebbi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, 29th Bahman Street, 5166616471, Tabriz, Iran
| | - Jafar Taeb
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, 29th Bahman Street, 5166616471, Tabriz, Iran
| | - Hosein Hashemzadeh Farhang
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Ali Abbas Nikvand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, 29th Bahman Street, 5166616471, Tabriz, Iran
| |
Collapse
|
11
|
Epizootic Situation on Anaplasmosis of Small Ruminants in the Irkutsk Region. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anaplasmosis of ruminants is a group of natural focal infections caused by bacteria from the genus Anaplasma of the Anaplasmataceae family. The main etiological agent of anaplasmosis in sheep, goats, and wild ruminants is Anaplasma ovis, which parasitizes in the erythrocytes of these animals. The purpose of this study was the finding and identification of Anaplasma spp. in the blood of small ruminants using genetic methods and obtaining data on the distribution of anaplasmosis in the Irkutsk region. 20 goat blood samples, 611 sheep blood samples and 209 Dermacentor nuttalli ticks from 12 districts of the Irkutsk region were examined for the presence of Anaplasma spp. Only one type of anaplasma, A. ovis, was found among the genotyped samples. A. ovis was found in the blood of sheep and goats in all of the studied districts of the Irkutsk region. The proportion of sheep blood samples containing anaplasma DNA varied from 30 % to 85 %, in goats – from 10 % to 100 % in different districts, and averaged 57.8 % in sheep and 55,0 % in goats. Frequency of infection of D. nuttalli ticks with A. ovis was 5.7 %. The nucleotide sequences of the samples detected in the blood of small ruminants on the territory of the Irkutsk region differed from each other by a single nucleotide substitution and were identical to the sequences of the type strain Haibei, as well as the sequences of A. ovis previously found in the blood of sheep from Mongolia, deer from China, and Dermacentor niveus and Dermacentor nuttalli ticks from China. These sequences were also identical to the sequences previously found in the blood of sheep from Altai and in Dermacentor nuttalli ticks from Tuva, which indicates the wide distribution of these A. ovis genovariants in Siberia and the probable role of D. nuttalli as a carrier of the agent of anaplasmosis of small ruminants in the Irkutsk region.
Collapse
|
12
|
Rar V, Tkachev S, Tikunova N. Genetic diversity of Anaplasma bacteria: Twenty years later. INFECTION GENETICS AND EVOLUTION 2021; 91:104833. [PMID: 33794351 DOI: 10.1016/j.meegid.2021.104833] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/04/2023]
Abstract
The genus Anaplasma (family Anaplasmataceae, order Rickettsiales) includes obligate intracellular alphaproteobacteria that multiply within membrane-bound vacuoles and are transmitted by Ixodidae ticks to vertebrate hosts. Since the last reclassification of Anaplasmataceae twenty years ago, two new Anaplasma species have been identified. To date, the genus includes eight Anaplasma species (A. phagocytophilum, A. marginale, A. centrale, A. ovis, A. bovis, A. platys, A. odocoilei, and A. capra) and a large number of unclassified genovariants that cannot be assigned to known species. Members of the genus can cause infection in humans and a wide range of domestic animals with different degrees of severity. Long-term persistence which, in some cases, is manifested as cyclic bacteremia has been demonstrated for several Anaplasma species. Zoonotic potential has been shown for A. phagocytophilum, the agent of human granulocytic anaplasmosis, and for some other Anaplasma spp. that suggests a broader medical relevance of this genus. Genetic diversity of Anaplasma spp. has been intensively studied in recent years, and it has been shown that some Anaplasma spp. can be considered as a complex of genetically distinct lineages differing by geography, vectors, and host tropism. The aim of this review was to summarize the current knowledge concerning the natural history, pathogenic properties, and genetic diversity of Anaplasma spp. and some unclassified genovariants with particular attention to their genetic characteristics. The high genetic variability of Anaplasma spp. prompted us to conduct a detailed phylogenetic analysis for different Anaplasma species and unclassified genovariants, which were included in this review. The genotyping of unclassified genovariants has led to the identification of at least four distinct clades that might be considered in future as new candidate species.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
13
|
Tumwebaze MA, Byamukama B, Tayebwa DS, Byaruhanga J, Angwe MK, Galon EM, Liu M, Lee SH, Ringo AE, Adjou Moumouni PF, Li J, Li Y, Ji S, Vudriko P, Xuan X. First Molecular Detection of Babesia ovis, Theileria spp., Anaplasma spp., and Ehrlichia ruminantium in Goats from Western Uganda. Pathogens 2020; 9:pathogens9110895. [PMID: 33121172 PMCID: PMC7692732 DOI: 10.3390/pathogens9110895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Ticks and tick-borne diseases are major impediments to livestock production. To date, there have been several studies on the prevalence of tick-borne pathogens (TBPs) in cattle, but very few studies have documented TBPs in goats in Uganda. In this study, polymerase chain reaction assays and sequence analysis of different molecular markers were used to assess the presence and genetic characteristics of TBPs in 201 goats from Kasese district in western Uganda. The risk factors associated with TBP infections were also analyzed. We detected Theileria spp. (13.4%), Anaplasma phagocytophilum (10.9%), Anaplasma ovis (5.5%), Babesia ovis (5.5%), and Ehrlichia ruminantium (0.5%). The sequences of B. ovis ssu rRNA and A. ovismsp4 genes showed some degree of diversity among the parasite isolates in this study. The E. ruminantium pCS20 sequence formed a well-supported clade with isolates from Amblyomma variegatum ticks from Uganda. Wildlife interaction, sampling location, low body condition score, tick infestation, and herd size were significantly associated with TBP infections in the goats. The findings in this study provide important information on the epidemiology of tick-borne pathogens in Uganda, and show that goats could be potential reservoirs for tick-borne pathogens.
Collapse
Affiliation(s)
- Maria Agnes Tumwebaze
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
| | - Benedicto Byamukama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
| | - Dickson Stuart Tayebwa
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
- Department of Veterinary Pharmacy, Clinical & Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
| | - Joseph Byaruhanga
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
| | - Martin Kamilo Angwe
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- Zanzibar Livestock Research Institute, Ministry of Agriculture, Natural Resources, Livestock and Fisheries, P.O. Box 159 Zanzibar, Tanzania
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
| | - Patrick Vudriko
- Research Center for Tropical Diseases and Vector Control, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda; (D.S.T.); (J.B.); (M.K.A.)
- Department of Veterinary Pharmacy, Clinical & Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
- Correspondence: (P.V.); (X.X.)
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; (M.A.T.); (B.B.); (E.M.G.); (M.L.); (S.-H.L.); (A.E.R.); (P.F.A.M.); (J.L.); (Y.L.); (S.J.)
- Correspondence: (P.V.); (X.X.)
| |
Collapse
|
14
|
Tumwebaze MA, Lee SH, Adjou Moumouni PF, Mohammed-Geba K, Sheir SK, Galal-Khallaf A, Abd El Latif HM, Morsi DS, Bishr NM, Galon EM, Byamukama B, Liu M, Li J, Li Y, Ji S, Ringo AE, Rizk MA, Suzuki H, Ibrahim HM, Xuan X. First detection of Anaplasma ovis in sheep and Anaplasma platys-like variants from cattle in Menoufia governorate, Egypt. Parasitol Int 2020; 78:102150. [PMID: 32485226 DOI: 10.1016/j.parint.2020.102150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022]
Abstract
Tick-borne diseases are of global economic importance, especially due to the costs associated with disease treatment and productivity losses in livestock. In this study, 244 livestock animals (cattle N = 92, buffaloes N = 86 and sheep N = 66) from Menoufia, Egypt were tested for Anaplasma, Ehrlichia and Babesia species using PCR. Results revealed detection of A. ovis (9.1%) in sheep while Anaplasma spp. (14.1%), A. marginale (15.2%), B. bigemina (6.5%) and B. bovis (5.4%) in cattle. On the other hand, Anaplasma spp. (1.2%), A. marginale (1.2%) and B. bovis (1.2%), were detected in buffaloes. Significantly higher detection rates were observed in cattle for Anaplasma spp. (P = .020), A. marginale (P = .001) and B. bigemina (P = .022) than in buffaloes. Sequence analysis of Anaplasma spp. isolates from cattle, revealed A. platys-like strains. Phylogenetic analyses of the A. platys-like isolates revealed variation among the strains infecting cattle. The A. marginale buffalo isolate, on the other hand, showed some level of divergence from the cattle isolates. This study reports the first detection of A. ovis in sheep and A. platys-like strains in cattle in Menoufia and Egypt at large. The results of the current study provide valuable information on the epidemiology and genetic characteristics of tick-borne pathogens infecting livestock in Egypt.
Collapse
Affiliation(s)
- Maria Agnes Tumwebaze
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan; College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Khaled Mohammed-Geba
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Sherin K Sheir
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Asmaa Galal-Khallaf
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Heba M Abd El Latif
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Dalia S Morsi
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Nora M Bishr
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Benedicto Byamukama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Hany M Ibrahim
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan.
| |
Collapse
|
15
|
Ben Said M, Selmi R, Rhouma MH, Belkahia H, Messadi L. Molecular phylogeny and genetic diversity based on msp1a, groEL and gltA genes of Anaplasma ovis Tunisian isolates compared to available worldwide isolates and strains. Ticks Tick Borne Dis 2020; 11:101447. [PMID: 32499148 DOI: 10.1016/j.ttbdis.2020.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Anaplasma ovis, the causative agent of ovine anaplasmosis in tropical and subtropical countries, is a tick-borne obligatory intraerythrocytic bacterium of sheep, goats and wild ruminants. In Tunisia, data about the molecular phylogeny and the genetic diversity of A. ovis isolates are limited to the analysis of msp4 and groEL genes. The aim of this study was to genetic characterize 40 A. ovis isolates infecting 28 goats, 10 sheep, one camel and one Rhipicephalus turanicus tick located in different geographic regions of Tunisia on the basis of 3 partial genes (gltA, groEL and msp1a). Sequence analysis revealed 6 and 17 different genotypes in the partial gltA and groEL genes, respectively. Phylogenetic analysis revealed, as expected for the groEL gene, that sequences from small ruminants and their infesting ticks clustered separately from those isolated from camels. The analysis of amino-acid Msp1a sequences identified 18 novel genotypes of Msp1a repeats from 20 A. ovis isolates. These Msp1a repeats were highly variable with 33-47 amino-acids, and the number of repeats is one for 19 isolates infecting 18 goats and one R. turanicus tick, and 4 for a single isolate found in one sheep. Phylogenetic trees based on Msp1a partial sequences revealed that the N-terminal region of Msp1a protein appear to be relatively more informative phylogeographically compared to other markers especially according to countries. The presented data give a more detailed knowledge regarding the molecular phylogeny and the genetic diversity of A. ovis isolates occurring in different animal species and their associated ticks in Tunisia.
Collapse
Affiliation(s)
- Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia.
| | - Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia
| | - Mohamed Hamza Rhouma
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia
| | - Hanène Belkahia
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, 2020 Sidi Thabet, Tunisia.
| |
Collapse
|
16
|
Selmi R, Ben Said M, Dhibi M, Ben Yahia H, Abdelaali H, Messadi L. Genetic diversity of groEL and msp4 sequences of Anaplasma ovis infecting camels from Tunisia. Parasitol Int 2019; 74:101980. [PMID: 31518651 DOI: 10.1016/j.parint.2019.101980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/30/2019] [Indexed: 01/28/2023]
Abstract
To date, no information is available regarding the infection of camels (Camelus dromedarius) by Anaplasma ovis in North African region. Several animal species can be infected by A. ovis which further complicates its natural infection cycle. In this paper, we investigated the occurrence and the genetic diversity of A. ovis in camels and ticks collected from them in Tunisia and the risk factor analysis. Camel blood samples (n = 412) and tick (n = 300) samples, identified as Hyalomma dromedarii (n = 149, 49.6%), H. impeltatum (n = 142, 47.3%) and H. excavatum (n = 9, 3%), were analyzed by conventional PCR followed by the sequencing of msp4 and groEL genes. A. ovis DNA was identified in five camels (1.2%), but not in infesting ticks (0%). The microscopic examination revealed the specific infection of camel erythrocytes by Anaplasma inclusions. The msp4 and groEL typing confirmed the natural infection of camels by A. ovis and revealed two different msp4 genotypes earlier detected in Tunisian small ruminants and their infested ticks, and five different and novel groEL genetic variants forming a separately sub-cluster within A. ovis cluster. The occurrence of different A. ovis strains specific to camels associated with a low prevalence of this Anaplasma species in camels may enrich knowledge regarding the distribution and the transmission cycle of this bacterium in arid and Saharan areas of Tunisia.
Collapse
Affiliation(s)
- Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie; Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie; Institut National Agronomique de Tunis, Université de Carthage, Tunisie
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie
| | - Mokhtar Dhibi
- Service de Parasitologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie
| | - Houcine Ben Yahia
- Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie
| | - Hedi Abdelaali
- Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie.
| |
Collapse
|
17
|
Han R, Yang JF, Mukhtar MU, Chen Z, Niu QL, Lin YQ, Liu GY, Luo JX, Yin H, Liu ZJ. Molecular detection of Anaplasma infections in ixodid ticks from the Qinghai-Tibet Plateau. Infect Dis Poverty 2019; 8:12. [PMID: 30728069 PMCID: PMC6366118 DOI: 10.1186/s40249-019-0522-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Anaplasma species are tick-transmitted obligate intracellular bacteria that infect many wild and domestic animals and humans. The prevalence of Anaplasma spp. in ixodid ticks of Qinghai Province is poorly understood. In this study, a total of 1104 questing adult ticks were investigated for the infection of Anaplasma species. As a result, we demonstrated the total infection rates of 3.1, 11.1, 5.6, and 4.5% for A. phagocytophilum, A. bovis, A. ovis and A. capra, respectively. All of the tick samples were negative for A. marginale. The positive rates of A. phagocytophilum, A. ovis and A. capra in different tick species were significantly different. The positive rates of A. capra and A. bovis in the male ticks were significantly higher than that in the female ticks. Sequence analysis of A. ovis showed 99.5-100% identity to the previous reported isolates. The sequences of A. phagocytophilum had 100% identity to strains Ap-SHX21, JC3-3 and ZAM dog-181 from sheep, Mongolian gazelles, and dogs. Two genotypes of A. capra were found based on 16S rRNA, citrate synthase (gltA) gene and heat shock protein (groEL) gene analysis. In conclusion, A. bovis, A. ovis, A. phagocytophilum, and A. capra were present in the ticks in Qinghai Province. Anaplasma infection is associated with tick species, gender and distribution. These data will be helpful for understanding prevalence status of Anaplasma infections in ticks in Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Rong Han
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, 810003 China
| | - Ji-Fei Yang
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
| | - Muhammad Uzair Mukhtar
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
| | - Ze Chen
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
| | - Qing-Li Niu
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
| | - Yuan-Qing Lin
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, 810003 China
| | - Guang-Yuan Liu
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
| | - Jian-Xun Luo
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
| | - Hong Yin
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Zhi-Jie Liu
- 0000 0001 0018 8988grid.454892.6State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 China
| |
Collapse
|
18
|
Liu Z, Peasley AM, Yang J, Li Y, Guan G, Luo J, Yin H, Brayton KA. The Anaplasma ovis genome reveals a high proportion of pseudogenes. BMC Genomics 2019; 20:69. [PMID: 30665414 PMCID: PMC6341658 DOI: 10.1186/s12864-018-5374-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/16/2018] [Indexed: 01/07/2023] Open
Abstract
Background The genus Anaplasma is made up of organisms characterized by small genomes that are undergoing reductive evolution. Anaplasma ovis, one of the seven recognized species in this genus, is an understudied pathogen of sheep and other ruminants. This tick-borne agent is thought to induce only mild clinical disease; however, small deficits may add to larger economic impacts due to the wide geographic distribution of this pathogen. Results In this report we present the first complete genome sequence for A. ovis and compare the genome features with other closely related species. The 1,214,674 bp A. ovis genome encodes 933 protein coding sequences, the split operon arrangement for ribosomal RNA genes, and more pseudogenes than previously recognized for other Anaplasma species. The metabolic potential is similar to other Anaplasma species. Anaplasma ovis has a small repertoire of surface proteins and transporters. Several novel genes are identified. Conclusions Analyses of these important features and significant gene families/genes with potential to be vaccine candidates are presented in a comparative context. The availability of this genome will significantly facilitate research for this pathogen.
Collapse
Affiliation(s)
- Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Austin M Peasley
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases, Yangzhou, China
| | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA.
| |
Collapse
|
19
|
Cabezas-Cruz A, Gallois M, Fontugne M, Allain E, Denoual M, Moutailler S, Devillers E, Zientara S, Memmi M, Chauvin A, Agoulon A, Vayssier-Taussat M, Chartier C. Epidemiology and genetic diversity of Anaplasma ovis in goats in Corsica, France. Parasit Vectors 2019; 12:3. [PMID: 30606253 PMCID: PMC6318933 DOI: 10.1186/s13071-018-3269-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/12/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Anaplasma ovis is a major cause of small ruminant anaplasmosis, a tick-borne disease mainly affecting small ruminants in tropical and subtropical regions of the world. Due to health and production problems in dairy goat flocks in Corsica, France, and the demonstration of A. ovis infection in some animals, an extensive survey was conducted in the island in spring 2016. The aim of the survey was to determine the prevalence and geographical distribution of A. ovis infections in goats and ticks as well as possible relationships with anaemia and other health indicators. In addition, the genetic diversity of A. ovis was evaluated. METHODS Blood and faecal samples were collected in 55 clinically healthy flocks (10 goats per flock) for A. ovis qPCR, haematocrit determination, paratuberculosis ELISA seropositivity and gastrointestinal nematode egg excretion quantification. Ticks were collected, identified and processed for A. ovis DNA detection. RESULTS A high prevalence of A. ovis DNA detection was found at the individual (52.0%) and flock levels (83.6%) with a within-flock prevalence ranging between 0-100%. Rhipicephalus bursa was the only tick species collected on goats (n = 355) and the detection rate of A. ovis DNA in ticks was 20.3%. Anaplasma ovis DNA prevalence was higher in flocks located at an altitude above 168 m, in goats of Corsican/crossbred breed and in goats > 3 years-old. No relationship was found between A. ovis DNA detection at the individual or flock level and haematocrit, paratuberculosis seropositivity or gastrointestinal parasites. Positive A. ovis goat samples were used for amplification of gltA and msp4 genes for species confirmation and strain identification, respectively. Sequence and phylogenetic analysis of these genes confirmed the detection of A. ovis and allowed identification of six different strains of this pathogen (named Corsica 1-6 (COR1-6). While the msp4 sequence of strain COR1 had 100% identity with strains previously reported, COR2 to 6 were found to be novel strains. The strain COR1 was the most represented, corresponding to 94.6% of the msp4 sequences obtained. CONCLUSIONS The results showed a relatively high genetic diversity of A. ovis associated with high bacterial prevalence in goats.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Mélanie Gallois
- Fédération Régionale des Groupements de Défense Sanitaire du Bétail de Corse (FRGDSB20), 20090 Ajaccio, France
| | - Mélanie Fontugne
- Fédération Régionale des Groupements de Défense Sanitaire du Bétail de Corse (FRGDSB20), 20090 Ajaccio, France
- BIOEPAR, INRA, Oniris, 44307 Nantes, France
| | - Eléonore Allain
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Myriam Denoual
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
- BIOEPAR, INRA, Oniris, 44307 Nantes, France
| | - Sara Moutailler
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Elodie Devillers
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Stephan Zientara
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Marc Memmi
- Laboratoire d’Analyses de Corse, site de Bastia, 20600 Bastia, France
| | | | | | - Muriel Vayssier-Taussat
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
- Département Santé Animale, INRA, 37380 Nouzilly, France
| | | |
Collapse
|
20
|
Zhao L, He B, Li KR, Li F, Zhang LY, Li XQ, Liu YH. First report of Anaplasma ovis in pupal and adult Melophagus ovinus (sheep ked) collected in South Xinjiang, China. Parasit Vectors 2018; 11:258. [PMID: 29673387 PMCID: PMC5909264 DOI: 10.1186/s13071-018-2788-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Melophagus ovinus (sheep ked) is a blood-feeding ectoparasite that belongs to the family Hippoboscidae (Diptera: Hippoboscoidea) and mainly parasitizes sheep. The life-cycle of M. ovinus consists of three stages: larva, pupa and adult. It has a worldwide distribution and has been found in four provinces of China, especially South Xinjiang. In addition to causing direct damage to animal hosts, M. ovinus serves as a vector for disease transmission. In this study, our aim was to investigate the presence of Anaplasma spp. in pupal and adult M. ovinus. Methods A total of 93 specimens (including eight pupal specimens) of M. ovinus collected in South Xinjiang were selected for isolation of genomic DNA, followed by PCR amplification and sequencing of the msp4 gene of Anaplasma spp. The sequences were analyzed in MEGA 7.0 software and via online BLAST. Results PCR and sequencing results showed that all the specimens collected in 2013 were free of Anaplasma spp., whereas three and 25 specimens (including five pupal specimens) collected in 2016 and 2017, respectively, tested positive for Anaplasma spp. The analysis of 24 msp4 gene sequences (from four pupal specimens) confirmed the presence of A. ovis in M. ovinus specimens collected in South Xinjiang, China. The detected A. ovis isolates belong to Genotypes II and III. Conclusions To the best of our knowledge, this is the first report of the detection of A. ovis DNA in pupal M. ovinus, confirming the vertical transmission of A. ovis in M. ovinus and the potential of M. ovinus to serve as a vector for A. ovis.
Collapse
Affiliation(s)
- Li Zhao
- College of Animal Science, Tarim University, 705 Hongqiao South Road, Aral, 843300, People's Republic of China.,Key Laboratory of Tarim Animanl Husbandry Science and Technology of Xinjiang Production & Construction Corps, 705 Hongqiao South Road, Aral, 843300, People's Republic of China
| | - Bo He
- College of Animal Science, Tarim University, 705 Hongqiao South Road, Aral, 843300, People's Republic of China
| | - Kai-Rui Li
- College of Animal Science, Tarim University, 705 Hongqiao South Road, Aral, 843300, People's Republic of China
| | - Fei Li
- College of Animal Science, Tarim University, 705 Hongqiao South Road, Aral, 843300, People's Republic of China.,Animal Loimia Controlling and Diagnostic Center of Aksu Region, Friendship Road, Aksu, 843000, People's Republic of China
| | - Lu-Yao Zhang
- College of Animal Science, Tarim University, 705 Hongqiao South Road, Aral, 843300, People's Republic of China
| | - Xian-Qiang Li
- College of Animal Science, Tarim University, 705 Hongqiao South Road, Aral, 843300, People's Republic of China.,Key Laboratory of Tarim Animanl Husbandry Science and Technology of Xinjiang Production & Construction Corps, 705 Hongqiao South Road, Aral, 843300, People's Republic of China
| | - Yong-Hong Liu
- College of Animal Science, Tarim University, 705 Hongqiao South Road, Aral, 843300, People's Republic of China. .,Key Laboratory of Tarim Animanl Husbandry Science and Technology of Xinjiang Production & Construction Corps, 705 Hongqiao South Road, Aral, 843300, People's Republic of China.
| |
Collapse
|
21
|
Anaplasma ovis genetic diversity detected by major surface protein 1a and its prevalence in small ruminants. Vet Microbiol 2018; 217:13-17. [DOI: 10.1016/j.vetmic.2018.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/02/2023]
|