1
|
Ulug D, Touray M, Hazal Gulsen S, Cimen H, Hazir C, Bode HB, Hazir S. A taste of a toxin paradise: Xenorhabdus and Photorhabdus bacterial secondary metabolites against Aedes aegypti larvae and eggs. J Invertebr Pathol 2024; 205:108126. [PMID: 38734162 DOI: 10.1016/j.jip.2024.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Aedes-transmitted arboviral infections such as Dengue, Yellow Fever, Zika and Chikungunya are increasing public health problems. Xenorhabdus and Photorhabdus bacteria are promising sources of effective compounds with important biological activities. This study investigated the effects of cell-free supernatants of X. szentirmaii, X. cabanillasii and P. kayaii against Ae. aegypti eggs and larvae and identified the bioactive larvicidal compound in X. szentirmaii using The EasyPACId method. Among the three tested bacterial species, X. cabanillasii exhibited the highest (96%) egg hatching inhibition and larvicidal activity (100% mortality), whereas P. kayaii was the least effective species in our study. EasyPACId method revealed that bioactive larvicidal compound in the bacterial supernatant was fabclavine. Fabclavines obtained from promoter exchange mutants of different bacterial species such as X. cabanillasii, X. budapestensis, X. indica, X. szentirmaii, X. hominckii and X. stockiae were effective against mosquito larvae. Results show that these bacterial metabolites have potential to be used in integrated pest management (IPM) programmes of mosquitoes.
Collapse
Affiliation(s)
- Derya Ulug
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye.
| | - Mustapha Touray
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| | - Sebnem Hazal Gulsen
- Department of Plant and Animal Production, Kocarli Vocational School, Aydin Adnan Menderes University, 09100 Aydin, Türkiye
| | - Harun Cimen
- Recombinant DNA and Recombinant Protein Application and Research Center, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| | - Canan Hazir
- Aydin Health Services Vocational School, Adnan Menderes University, 09100 Aydin, Türkiye
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany; Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Center for Synthetic Microbiology, Phillips University Marburg, 35043 Marburg, Germany; Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany; Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, 60325, Germany
| | - Selcuk Hazir
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| |
Collapse
|
2
|
Chaudhary S, Ali W, Yadav M, Singh G, Gupta N, Grover S, Ghosh C, Chandra S, Rathore JS. Computational exploration of the genomic assignments, molecular structure, and dynamics of the ccdABXn2 toxin-antitoxin homolog with its bacterial target, the DNA gyrase, in the entomopathogen Xenorhabdus nematophila. J Biomol Struct Dyn 2024:1-15. [PMID: 38321949 DOI: 10.1080/07391102.2024.2311337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Toxin-antitoxin (TA) modules, initially discovered on bacterial plasmids and subsequently identified within chromosomal contexts, hold a pivotal role in the realm of bacterial physiology. Among these, the pioneering TA system, ccd (Control of Cell Death), primarily localized on the F-plasmid, is known for its orchestration of plasmid replication with cellular division. Nonetheless, the precise functions of such systems within bacterial chromosomal settings remain a compelling subject that demands deeper investigation. To bridge this knowledge gap, our study focuses on exploring ccdABXn2, a chromosomally encoded TA module originating from the entomopathogenic bacterium Xenorhabdus nematophila. We meticulously delved into the system's genomic assignments, structural attributes, and functional interplay. Our findings uncovered intriguing patterns-CcdB toxin homologs exhibited higher conservation levels compared to their CcdA antitoxin counterparts. Moreover, we constructed secondary as well as tertiary models for both the CcdB toxin and CcdA antitoxin using threading techniques and subsequently validated their structural integrity. Our exploration extended to the identification of key interactions, including the peptide interaction with gyrase for the CcdB homolog and CcdB toxin interactions for the CcdA homolog, highlighting the intricate TA interaction network. Through docking and simulation analyses, we unequivocally demonstrated the inhibition of replication via binding the CcdB toxin to its target, DNA gyrase. These insights provide valuable knowledge about the metabolic and physiological roles of the chromosomally encoded ccdABXn2 TA module within the context of X. nematophila, significantly enhancing our comprehension of its functional significance within the intricate ecosystem of the bacterial host.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shobhi Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Waseem Ali
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Nomita Gupta
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Chaitali Ghosh
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, India
| | | |
Collapse
|
3
|
Son DJ, Kim GG, Choo HY, Chung NJ, Choo YM. Functional Comparison of Three Chitinases from Symbiotic Bacteria of Entomopathogenic Nematodes. Toxins (Basel) 2024; 16:26. [PMID: 38251242 PMCID: PMC10821219 DOI: 10.3390/toxins16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.
Collapse
Affiliation(s)
- Da-Jeong Son
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea;
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| | - Geun-Gon Kim
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Ho-Yul Choo
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Nam-Jun Chung
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Young-Moo Choo
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| |
Collapse
|
4
|
Meesil W, Muangpat P, Sitthisak S, Rattanarojpong T, Chantratita N, Machado RAR, Shi YM, Bode HB, Vitta A, Thanwisai A. Genome mining reveals novel biosynthetic gene clusters in entomopathogenic bacteria. Sci Rep 2023; 13:20764. [PMID: 38007490 PMCID: PMC10676414 DOI: 10.1038/s41598-023-47121-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
The discovery of novel bioactive compounds produced by microorganisms holds significant potential for the development of therapeutics and agrochemicals. In this study, we conducted genome mining to explore the biosynthetic potential of entomopathogenic bacteria belonging to the genera Xenorhabdus and Photorhabdus. By utilizing next-generation sequencing and bioinformatics tools, we identified novel biosynthetic gene clusters (BGCs) in the genomes of the bacteria, specifically plu00736 and plu00747. These clusters were identified as unidentified non-ribosomal peptide synthetase (NRPS) and unidentified type I polyketide synthase (T1PKS) clusters. These BGCs exhibited unique genetic architecture and encoded several putative enzymes and regulatory elements, suggesting its involvement in the synthesis of bioactive secondary metabolites. Furthermore, comparative genome analysis revealed that these BGCs were distinct from previously characterized gene clusters, indicating the potential for the production of novel compounds. Our findings highlighted the importance of genome mining as a powerful approach for the discovery of biosynthetic gene clusters and the identification of novel bioactive compounds. Further investigations involving expression studies and functional characterization of the identified BGCs will provide valuable insights into the biosynthesis and potential applications of these bioactive compounds.
Collapse
Affiliation(s)
- Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10400, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Yi-Ming Shi
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University, Frankfurt, 60438, Frankfurt am Main, Germany
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University, Frankfurt, 60438, Frankfurt am Main, Germany
- Chemical Biology, Department of Chemistry, Philipps University Marburg, 35032, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- SYNMIKRO (Zentrum für Synthetische Mikrobiologie), 35032, Marburg, Germany
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
5
|
Yüksel E, Yıldırım A, İmren M, Canhilal R, Dababat AA. Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis. Pathogens 2023; 12:1095. [PMID: 37764903 PMCID: PMC10537861 DOI: 10.3390/pathogens12091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 107 cells mL-1) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.
Collapse
Affiliation(s)
- Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | - Alparslan Yıldırım
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye;
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Abant Izzet Baysal University, Bolu 14030, Türkiye;
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | | |
Collapse
|
6
|
Martin CL, Chester DW, Radka CD, Pan L, Yang Z, Hart RC, Binshtein EM, Wang Z, Nagy L, DeLucas LJ, Aller SG. Structures of the Insecticidal Toxin Complex Subunit XptA2 Highlight Roles for Flexible Domains. Int J Mol Sci 2023; 24:13221. [PMID: 37686027 PMCID: PMC10487846 DOI: 10.3390/ijms241713221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
The Toxin Complex (Tc) superfamily consists of toxin translocases that contribute to the targeting, delivery, and cytotoxicity of certain pathogenic Gram-negative bacteria. Membrane receptor targeting is driven by the A-subunit (TcA), which comprises IgG-like receptor binding domains (RBDs) at the surface. To better understand XptA2, an insect specific TcA secreted by the symbiont X. nematophilus from the intestine of entomopathogenic nematodes, we determined structures by X-ray crystallography and cryo-EM. Contrary to a previous report, XptA2 is pentameric. RBD-B exhibits an indentation from crystal packing that indicates loose association with the shell and a hotspot for possible receptor binding or a trigger for conformational dynamics. A two-fragment XptA2 lacking an intact linker achieved the folded pre-pore state like wild type (wt), revealing no requirement of the linker for protein folding. The linker is disordered in all structures, and we propose it plays a role in dynamics downstream of the initial pre-pore state.
Collapse
Affiliation(s)
- Cole L. Martin
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
| | - David W. Chester
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
| | - Christopher D. Radka
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Lurong Pan
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
| | - Zhengrong Yang
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Rachel C. Hart
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (R.C.H.); (E.M.B.)
| | - Elad M. Binshtein
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (R.C.H.); (E.M.B.)
| | - Zhao Wang
- Biochemistry & Molecular Pharmacology, Cryo-Electron Microscopy and Tomography Core, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Lisa Nagy
- Department of Mathematics, Engineering & Physical Sciences, Jefferson State Community College, Jefferson Campus, Birmingham, AL 35215, USA;
| | - Lawrence J. DeLucas
- Predictive Oncology Inc., 200 Riverhills Business Park, Suite 250, Birmingham, AL 35242, USA;
| | - Stephen G. Aller
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
| |
Collapse
|
7
|
Machado RAR, Bhat AH, Castaneda-Alvarez C, Askary TH, Půža V, Pagès S, Abolafia J. Xenorhabdus aichiensis sp. nov., Xenorhabdus anantnagensis sp. nov., and Xenorhabdus yunnanensis sp. nov., Isolated from Steinernema Entomopathogenic Nematodes. Curr Microbiol 2023; 80:300. [PMID: 37493817 PMCID: PMC10371910 DOI: 10.1007/s00284-023-03373-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/27/2023]
Abstract
Three bacterial strains, XENO-2T, XENO-7T, and XENO-10T, isolated from Steinernema entomopathogenic nematodes, were found to represent novel Xenorhabdus species. In this study, we describe these new species by whole-genome and whole-proteome phylogenomic reconstructions, by calculating sequence identity scores using core genome sequences, and by phenotypic characterization. Phylogenomic reconstructions using ribosomal and house-keeping genes, and whole-genome and whole-proteome sequences show that XENO-2T and XENO-10T are closely related to Xenorhabdus japonica DSM 16522T and that XENO-7T is closely related to Xenorhabdus bovienii subsp. africana XENO-1T and to X. bovienii subsp. bovienii T228T. The dDDH values between XENO-2T and XENO-10T and between XENO-2T and X. japonica DSM 16522T are 56.4 and 51.8%, respectively. The dDDH value between XENO-10T and X. japonica DSM 16522T is 53.4%. The dDDH values between XENO-7T and X. bovienii subsp. africana XENO-1T and between XENO-7T and X. bovienii subsp. bovienii T228T are 63.6 and 69.4%, respectively. These dDDH values are below the 70% divergence threshold for prokaryotic species delineation. The newly described species are highly pathogenic to G. mellonella larvae, grow at pH between 5 and 9 (optimum 5-7), at salt concentrations of 1-3% (optimum 1-2%), and temperatures between 20 and 37 °C (optimum 28-30 °C). Biochemical tests such as lysine decarboxylase, ornithine decarboxylase, urease, gelatinase, citrate utilization, indole and acetoin production, and cytochrome oxidase tests allow to differentiate the novel species from their more closely related species. Considering these genetic and phenotypic divergencies, we propose the following new species: Xenorhabdus aichiensis sp. nov. with XENO-7T (= CCM 9233T = CCOS 2024T) as the type strain, Xenorhabdus anantnagensis sp. nov., with XENO-2T (= CCM 9237T = CCOS 2023T) as the type strain, and Xenorhabdus yunnanensis sp. nov., with XENO-10T (= CCM 9322T = CCOS 2071T) as the type strain. Our study contributes to a better understanding of the biodiversity and phylogenetic relationships of entomopathogenic bacteria associated with insect parasitic nematodes.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Aashaq Hussain Bhat
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Department of Biosciences, University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Carlos Castaneda-Alvarez
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Tarique Hassan Askary
- Division of Entomology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura Campus, Jammu, Jammu and Kashmir, India
| | - Vladimir Půža
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Sylvie Pagès
- INRAe, Université de Montpellier, Montpellier, France
| | - Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus 'Las Lagunillas', Jaén, Spain
| |
Collapse
|
8
|
Ardpairin J, Subkrasae C, Dumidae A, Janthu P, Meesil W, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Entomopathogenic nematodes isolated from agricultural areas of Thailand and their activity against the larvae of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae). Acta Trop 2023; 240:106842. [PMID: 36702446 DOI: 10.1016/j.actatropica.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis have been considered to be effective biological control agents for several insects. In this study, we isolated and identified EPNs from soil samples in agricultural areas of northern Thailand and evaluated their efficacy for controlling larvae of three mosquito vector species, Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. A total of 51 of 1,000 soil samples were positive (5.1% prevalence) for EPNs, which were identified through sequencing of the rDNA and ITS to 37 Steinernema isolates (3.7%) and 14 Heterorhabditis isolates (1.4%). For the bioassay, the larvae of mosquitoes were exposed to Steinernema surkhetense (eALN6.3_TH), Steinernema lamjungense (eALN11.5_TH), Heterorhabditis indica (eACM14.2_TH) and Heterorhabditis bacteriophora (eALN18.2_TH). Heterorhabditis bacteriophora showed the highest efficacy against Ae. aegypti and Cx. quinquefasciatus. At 96 h after exposure, the mortality rates were 60.0 and 91.7%, respectively. The EPNs were observed in the dead mosquito larvae, which were mostly found in the thorax followed by the head and abdomen. Some EPNs were dead with melanization, and some were able to survive in the cavity of mosquito larvae. Our results show the low prevalence of EPN in agricultural areas of Thailand. Moreover, H. bacteriophora may be considered an alternative biocontrol agent for managing and controlling these vector mosquitoes.
Collapse
Affiliation(s)
- Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichamon Janthu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000 Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000 Thailand.
| |
Collapse
|
9
|
Sanda NB, Hou Y. The Symbiotic Bacteria- Xenorhabdus nematophila All and Photorhabdus luminescens H06 Strongly Affected the Phenoloxidase Activation of Nipa Palm Hispid, Octodonta nipae (Coleoptera: Chrysomelidae) Larvae. Pathogens 2023; 12:pathogens12040506. [PMID: 37111392 PMCID: PMC10142170 DOI: 10.3390/pathogens12040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
Symbiotic bacteria form a mutualistic relationship with nematodes and are pathogenic to many insect pests. They kill insects using various strategies to evade or suppress their humoral and cellular immunity. Here we evaluate the toxic effects of these bacteria and their secondary metabolites on the survival and phenoloxidase (PO) activation of Octodonta nipae larvae using biochemical and molecular methods. The results show P. luminescens H06 and X. nematophila All treatments caused significant reductions in the number of O. nipae larvae in a dose-dependent manner. Secondly, the O. nipae immune system recognizes symbiotic bacteria at early and late stages of infection via the induction of C-type lectin. Live symbiotic bacteria significantly inhibit PO activity in O. nipae whereas heat-treated bacteria strongly increase PO activity. Additionally, expression levels of four O. nipae proPhenoloxidase genes following treatment with P. luminescens H06 and X. nematophila All were compared. We found that the expression levels of all proPhenoloxidase genes were significantly down-regulated at all-time points. Similarly, treatments of O. nipae larvae with metabolites benzylideneacetone and oxindole significantly down-regulated the expression of the PPO gene and inhibited PO activity. However, the addition of arachidonic acid to metabolite-treated larvae restored the expression level of the PPO gene and increased PO activity. Our results provide new insight into the roles of symbiotic bacteria in countering the insect phenoloxidase activation system.
Collapse
Affiliation(s)
- Nafiu Bala Sanda
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Crop Protection, Faculty of Agriculture, Bayero University Kano, Gwarzo Road, Kano 3011, Nigeria
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Thanwisai A, Muangpat P, Meesil W, Janthu P, Dumidae A, Subkrasae C, Ardpairin J, Tandhavanant S, Yoshino TP, Vitta A. Entomopathogenic Nematodes and Their Symbiotic Bacteria from the National Parks of Thailand and Larvicidal Property of Symbiotic Bacteria against Aedes aegypti and Culex quinquefasciatus. BIOLOGY 2022; 11:biology11111658. [PMID: 36421372 PMCID: PMC9687835 DOI: 10.3390/biology11111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Entomopathogenic nematodes (EPNs) are insect-parasitizing nematodes of the genera Heterorhabditis and Steinernema that are symbiotically associated with the symbiotic bacteria Photorhabdus and Xenorhabdus, respectively. Heterorhabditis indica, H. baujardi, Heterorhabditis SGmg3, Steinernema guangdongense, S. surkhetense, S. minutum, and S. longicaudum were isolated from soil samples in the national parks of Thailand. For symbiotic bacterial isolates, P. luminescens subsp. akhurstii, P. luminescens subsp. hainanensis, P. luminescens subsp. australis, Xenorhabdus stockiae, X. indica, X. griffiniae, X. japonica, and X. hominickii were isolated from those EPNs. In mosquito larvicidal bioassays, Photorhabdus isolates were effective against both Aedes aegypti and Culex quinquefasciatus. In conclusion, a wide diversity of entomopathogenic nematodes and symbiotic bacteria was found in the national parks of Thailand. Moreover, isolated Photorhabdus bacteria were shown to have potential as biocontrol agents to control culicine mosquitoes. Abstract Entomopathogenic nematodes (EPNs) are insect parasitic nematodes of the genera Het-erorhabditis and Steinernema. These nematodes are symbiotically associated with the bacteria, Photorhabdus and Xenorhabdus, respectively. National parks in Thailand are a potentially rich resource for recovering native EPNs and their symbiotic bacteria. The objectives of this study are to isolate and identify EPNs and their bacterial flora from soil samples in four national parks in Thailand and to evaluate their efficacy for controlling mosquito larvae. Using a baiting method with a Galleria mellonella moth larvae and a White trap technique, 80 out of 840 soil samples (9.5%) from 168 field sites were positive for EPNs. Sequencing of an internal transcribed spacer resulted in the molecular identification of Heterorhabditis nematode isolates as H. indica, H. baujardi and Heterorhabditis SGmg3, while using 28S rDNA sequencing, Steinernema nematode species were identified as S. guang-dongense, S. surkhetense, S. minutum, S. longicaudum and one closely related to S. yirgalemense. For the symbiotic bacterial isolates, based on recA sequencing, the Photorhabdus spp. were identified as P. luminescens subsp. akhurstii, P. luminescens subsp. hainanensis and P. luminescens subsp. australis. Xenorhabdus isolates were identified as X. stockiae, X. indica, X. griffiniae, X. japonica and X. hominickii. Results of bioassays demonstrate that Photorhabdus isolates were effective on both Aedes aegypti and Culex quinquefasciatus. Therefore, we conclude that soil from Thailand’s national parks contain a high diversity of entomopathogenic nematodes and their symbiotic bacteria. Photorhabdus bacteria are larvicidal against culicine mosquitoes and may serve as effective biocontrol agents.
Collapse
Affiliation(s)
- Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichamon Janthu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence:
| |
Collapse
|
11
|
Ünal M, Yüksel E, Canhilal R. Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Exp Parasitol 2022; 242:108394. [PMID: 36179855 DOI: 10.1016/j.exppara.2022.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
Abstract
The black cutworm (BCW), Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is one of the destructive cutworm species. Black cutworm is a highly polyphagous pest that feeds on more than 30 plants, many of which are of economic importance such as maize, sugar beet, and potato. The control of BCW larvae relies heavily on the application of synthetic insecticides which have a detrimental impact on human health and the natural environment. In addition, increasing insecticide resistance in many insect species requires a novel and sustainable approach to controlling insect pests. The endosymbionts of entomopathogenic nematodes (EPNs) (Xenorhabdus and Phorohabdus spp.) represent a newly emerging green approach to controlling a wide range of insect pests. In the current study, the oral and contact efficacy of cell suspension (4 × 107 cells ml-1) and cell-free supernatants of different symbiotic bacteria (X. nematophilai, X. bovienii, X. budapestensis, and P. luminescent subsp. kayaii) were evaluated against the mixed groups of 1st-2nd and 3rd-4th instars larvae of BCW under controlled conditions. The oral treatment of the cell suspension and cell-free supernatants resulted in higher mortality rates than contact treatments. In general, larval mortality was higher in the 1st-2nd instar larvae than in the 3rd-4th instar larvae. The highest (75%) mortality was obtained from the cell suspension of X. budapestensis. The results indicated that the oral formulations of the cell suspension and cell-free supernatants of bacterial strains may have a good control potential against the 1st-2nd larvae BCW. However, the efficacy of the cell suspension and cell-free supernatants of tested bacterial strains should be further evaluated under greenhouse and field conditions.
Collapse
Affiliation(s)
- Merve Ünal
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey
| | - Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey.
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey
| |
Collapse
|
12
|
Yüksel E, Özdemir E, Albayrak Delialioğlu R, Canhilal R. Insecticidal activities of the local entomopathogenic nematodes and cell-free supernatants from their symbiotic bacteria against the larvae of fall webworm, Hyphantriacunea. Exp Parasitol 2022; 242:108380. [PMID: 36116520 DOI: 10.1016/j.exppara.2022.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
The fall webworm (FWW), Hyphantria cunea Drury (Lepidoptera: Erebidae), is an invasive and polyphagous insect pest of many economically important crops such as hazelnuts, apple, and mulberry. Recently, there have been an increasing number of reports about the damaging activities of FWW from hazelnut growing areas of Turkey indicating that currently existing control methods fail to satisfy the expectations of growers. Entomopathogenic nematodes (EPNs) in the Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) families and the symbiotic bacteria they carry in their intestine have a great potential for the management of many agriculturally important pests. In this study, the symbiotic bacteria of local EPN species (Heterorhabditis bacteriophora AVB-15, Steinernema feltiae KCS-4S, and Steinernema bicornotum MGZ-4S) recovered from the central Anatolia region was characterized using recA gene region as Photorhabdus luminescens, Xenorhabdus bovienii and Xenorhabdus budapestensis. The contact (25, 50, 100, 200 IJs/Petri) and oral efficacies of the infective juveniles (IJs) (25, 50, 100, 200 IJs/leaf) of these EPN isolates determined on 3rd/4th instar larvae, and cell-free supernatants from the identified symbiotic bacteria were evaluated separately on the 3rd and 4th larval instars of FWW in Petri dish environment under laboratory conditions (25 ± 1 °C, 60% of RH). In the Petri dish bioassays of EPN species, the most pathogenic isolate at the 1st DAT and 4th DAT was S. feltiae which caused 50% mortality at the highest concentration (200 IJs/Petri) and the highest mortality rate (97.5%) were achieved at 4th DAT by H. bacteriophora AVB-15 isolate. Surprisingly, the mortality rates were generally higher at the lowest concentrations and 82.5% mortality were reached 4th DAT by S. bicornotum at the lowest concentration (25 IJs/leaf) in the leaf bioassays. Mortality rates were higher in both Petri dish and filter paper efficacies of cell-free supernatants at the 2nd DAT and the highest mortality (87.5%) was reached in the contact efficacy studies when applied X. bovienii KCS-4S strain. The results suggest that the tested EPN species and CFSs have good potential for biological control of the larvae of FWW and can contribute to the IPM programs of FWW. However, the efficacy of both IJs of EPNs and CFSs of their symbiotic bacteria on larvae of FWW requires further studies to verify their efficiency in the field.
Collapse
Affiliation(s)
- Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38039, Kayseri, Turkey
| | - Esengül Özdemir
- Department of Plant Protection, Faculty of Agriculture, Şırnak University, 73300, Şırnak, Turkey.
| | | | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
13
|
Larvicidal activity of Photorhabdus and Xenorhabdus bacteria isolated from insect parasitic nematodes against Aedes aegypti and Aedes albopictus. Acta Trop 2022; 235:106668. [PMID: 36030882 DOI: 10.1016/j.actatropica.2022.106668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Aedes aegypti and Aedes albopictus are important vectors for several arboviruses such as the dengue virus. The chemical control of Aedes spp., which is usually implemented, affects both humans and the environment. The biological control of Aedes spp. with entomopathogenic bacteria such as Photorhabdus and Xenorhabdus may be an alternative method that can overcome such issues. This study aimed to isolate and identify Photorhabdus and Xenorhabdus bacteria from entomopathogenic nematodes (EPNs) collected in Thailand and evaluate their larvicidal properties in controlling A. aegypti and A. albopictus. Colony morphology and recA sequencing of the 118 symbiotic isolated bacteria indicated that most were P. luminescens subsp. akhurstii and X. stockiae with minor prevalence of P. luminescens subsp. hainanensis, P. asymbiotica subsp. australis, X. indica, X. griffiniae, X. japonica, X. thuongxuanensis, and X. eapokensis . The larvicidal bioassay with the third- and fourth-instar mosquito larvae suggested that a whole-cell suspension of X. griffiniae (bMSN3.3_TH) had the highest efficiency in eradicating A. aegypti and A. albopictus, with 90 ± 3.71% and 81 ± 2.13% mortality, respectively, after 96 h exposure. In contrast, 1% of ethyl acetate extracted from X. indica (bSNK8.5_TH) showed reduced mortality for A. aegypti of only 50 ± 3.66% after 96 h exposure. The results indicate that both X. griffiniae (bMSN3.3_TH) and X. indica (bSNK8.5_TH) could be used as biocontrol agents against Aedes larvae.
Collapse
|
14
|
Wang Y, Zhang F, Wang C, Guo P, Han Y, Zhang Y, Sun B, Shan S, Ruan W, Pan J. Antifungal Substances Produced by Xenorhabdus bovienii and Its Inhibition Mechanism against Fusarium solani. Int J Mol Sci 2022; 23:ijms23169040. [PMID: 36012310 PMCID: PMC9409070 DOI: 10.3390/ijms23169040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal colonization can severely damage artifacts. Nematode endosymbiotic bacteria exhibit good prospects in protecting artifacts from fungal damage. We previously found that supernatant from the fermentation of nematode endosymbiotic bacterium, Xenorhabdus bovienii, is effective in inhibiting the growth of Fusarium solani NK-NH1, the major disease fungus in the Nanhai No.1 Shipwreck. Further experiments proved that X. bovienii produces volatile organic compounds (VOCs) that inhibit NK-NH1. Here, using metabolomic analysis, GC–MS, and transcriptomic analysis, we explored the antifungal substances and VOCs produced by X. bovienii and investigated the mechanism underlying its inhibitory effect against NK-NH1. We show that X. bovienii produces several metabolites, mainly lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. The VOCs produced by X. bovienii showed two specific absorption peaks, and based on the library ratio results, these were predicted to be of 2-pentanone, 3-(phenylmethylene) and 1-hexen-3-one, 5-methyl-1-phenyl. The inhibition of F. solani by VOCs resulted in upregulation of genes related to ribosome, ribosome biogenesis, and the oxidative phosphorylation and downregulation of many genes associated with cell cycle, meiosis, DNA replication, and autophagy. These results are significant for understanding the inhibitory mechanisms employed by nematode endosymbiotic bacteria and should serve as reference in the protection of artifacts.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fengyu Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cen Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peifeng Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yeqing Han
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yingting Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bingjiao Sun
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaojie Shan
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence: (W.R.); (J.P.); Tel.: +86-139-2093-5913 (W.R.); +86-138-2006-8355 (J.P.)
| | - Jiao Pan
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Institute for Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing 100083, China
- Correspondence: (W.R.); (J.P.); Tel.: +86-139-2093-5913 (W.R.); +86-138-2006-8355 (J.P.)
| |
Collapse
|
15
|
Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Appl Microbiol Biotechnol 2022; 106:4387-4399. [PMID: 35723692 DOI: 10.1007/s00253-022-12023-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022]
Abstract
Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp., (Fam; Morganellaceae), enteric symbionts of Steinernema, and Heterorhabditis nematodes are naturally found in soil on all continents, except Antarctic, and on many islands throughout the world. These bacteria produce diverse secondary metabolites that have important biological and ecological functions. Secondary metabolites include non-ribosomal peptides, polyketides, and/or hybrid natural products that are synthesized using polyketide synthetase (PRS), non-ribosomal peptide synthetase (NRPS), or similar enzymes and are sources of new pesticide/drug compounds and/or can serve as lead molecules for the design and synthesize of new alternatives that could replace current ones. This review addresses the effects of these bacterial symbionts on insect pests, fungal phytopathogens, and animal pathogens and discusses the substances, mechanisms, and impacts on agriculture and public health. KEY POINTS: • Insects and fungi are a constant menace to agricultural and public health. • Chemical-based control results in resistance development. • Photorhabdus and Xenorhabdus are compelling sources of biopesticides.
Collapse
|
16
|
Abstract
With the overmining of actinomycetes for compounds acting against Gram-negative pathogens, recent efforts to discover novel antibiotics have been focused on other groups of bacteria. Teixobactin, the first antibiotic without detectable resistance that binds lipid II, comes from an uncultured Eleftheria terra, a betaproteobacterium; odilorhabdins, from Xenorhabdus, are broad-spectrum inhibitors of protein synthesis, and darobactins from Photorhabdus target BamA, the essential chaperone of the outer membrane of Gram-negative bacteria. Xenorhabdus and Photorhabdus are symbionts of the nematode gut microbiome and attractive producers of secondary metabolites. Only small portions of their biosynthetic gene clusters (BGC) are expressed in vitro. To access their silent operons, we first separated extracts from a small library of isolates into fractions, resulting in 200-fold concentrated material, and then screened them for antimicrobial activity. This resulted in a hit with selective activity against Escherichia coli, which we identified as a novel natural product antibiotic, 3′-amino 3′-deoxyguanosine (ADG). Mutants resistant to ADG mapped to gsk and gmk, kinases of guanosine. Biochemical analysis shows that ADG is a prodrug that is converted into an active ADG triphosphate (ADG-TP), a mimic of GTP. ADG incorporates into a growing RNA chain, interrupting transcription, and inhibits cell division, apparently by interfering with the GTPase activity of FtsZ. Gsk of the purine salvage pathway, which is the first kinase in the sequential phosphorylation of ADG, is restricted to E. coli and closely related species, explaining the selectivity of the compound. There are probably numerous targets of ADG-TP among GTP-dependent proteins. The discovery of ADG expands our knowledge of prodrugs, which are rare among natural compounds.
Collapse
|
17
|
Subkrasae C, Ardpairin J, Dumidae A, Janthu P, Meesil W, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Molecular identification and phylogeny of Steinernema and Heterorhabditis nematodes and their efficacy in controlling the larvae of Aedes aegypti, a major vector of the dengue virus. Acta Trop 2022; 228:106318. [PMID: 35063414 DOI: 10.1016/j.actatropica.2022.106318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
Abstract
Aedes aegypti is the mosquito vector of several arboviruses, especially the dengue virus. Aedes aegypti strain resistant to chemical insecticides have been reported worldwide. To tackle this, an entomopathogenic nematode (EPN) may be an alternative bio-control agent. To this end, this study aims to isolate, identify, and analyze the phylogeny of EPNs in Thailand and evaluate their efficacy for controlling the Ae. aegypti larvae. From 12 provinces in Thailand, soil samples were randomly collected, with 118 out of 1,100 them being positive for EPNs (10.73% prevalence) in genera Steinernema (4.46%) and Heterorhabditis (6.27%). Then, molecular discrimination of these two genus was performed based on the sequencing and phylogenetic analysis of the 28S rDNA and internal transcribed spacer regions. The most abundant species of EPN were Heterorhabditis indica, with minor species of Heterorhabditis sp. SGmg3, H. baujardi, S. surkhetense, S. kushidai, S. siamkayai, Steinernema sp. YNd80, Steinernema sp. YNc215, S. guangdongense, and S. huense. The larvicidal activity of five selected EPN isolates were tested against Ae. aegypti. Ten larvae of Ae. aegypti were incubated with different concentration (80, 160, 320, and 640 IJs/larva) of the infective juveniles of EPN in a 24-well and 6-well plates for 4 days. The mortality rates of the larvae were observed daily. Steinernema surkhetense (ePYO8.5_TH) showed the potential to kill mosquito larvae, with the highest mortality rate of 92 ± 9.37% and 89 ± 9.91% after it was treated with 640 IJs/larva in a 24-well plate and 1600 IJs/larva in a 6-well plate, respectively. There is an abundant distribution of EPNs across the country, and S. surkhetense ePYO8.5_TH may be used as a biocontrol agent against Ae. aegypti larvae.
Collapse
Affiliation(s)
- Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichamon Janthu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
18
|
Possible impacts of the predominant Bacillus bacteria on the Ophiocordyceps unilateralis s. l. in its infected ant cadavers. Sci Rep 2021; 11:22695. [PMID: 34811424 PMCID: PMC8609033 DOI: 10.1038/s41598-021-02094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Animal hosts infected and killed by parasitoid fungi become nutrient-rich cadavers for saprophytes. Bacteria adapted to colonization of parasitoid fungi can be selected and can predominate in the cadavers, actions that consequently impact the fitness of the parasitoid fungi. In Taiwan, the zombie fungus, Ophiocordyceps unilateralis sensu lato (Clavicipitaceae: Hypocreales), was found to parasitize eight ant species, with preference for a principal host, Polyrhachis moesta. In this study, ant cadavers grew a fungal stroma that was predominated by Bacillus cereus/thuringiensis. The bacterial diversity in the principal ant host was found to be lower than the bacterial diversity in alternative hosts, a situation that might enhance the impact of B. cereus/thuringiensis on the sympatric fungus. The B. cereus/thuringiensis isolates from fungal stroma displayed higher resistance to a specific naphthoquinone (plumbagin) than sympatric bacteria from the environment. Naphthoquinones are known to be produced by O. unilateralis s. l., and hence the resistance displayed by B. cereus/thuringiensis isolates to these compounds suggests an advantage to B. cereus/thuringiensis to grow in the ant cadaver. Bacteria proliferating in the ant cadaver inevitably compete for resources with the fungus. However, the B. cereus/thuringiensis isolates displayed in vitro capabilities of hemolysis, production of hydrolytic enzymes, and antagonistic effects to co-cultured nematodes and entomopathogenic fungi. Thus, co-infection with B. cereus/thuringiensis offers potential benefits to the zombie fungus in killing the host under favorable conditions for reproduction, digesting the host tissue, and protecting the cadaver from being taken over by other consumers. With these potential benefits, the synergistic effect of B. cereus/thuringiensis on O. unilateralis infection is noteworthy given the competitive relationship of these two organisms sharing the same resource.
Collapse
|
19
|
Can Symbiotic Bacteria ( Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae? BIOLOGY 2021; 10:biology10100999. [PMID: 34681098 PMCID: PMC8533234 DOI: 10.3390/biology10100999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Food security is the people’s main concern, and agricultural crops play a significant role in ensuring it. Agricultural pests, on the other hand, are regarded one of the most serious threats to cause a significant problem for food security. Entomopathogenic nematodes of the genera Herterorhabditids and Sterinernematids fulfil the fundamental requirements of perfect bio-control agents; however, their efficacy mostly dependent on their symbiotic bacteria. As a result, this study aimed to investigate the ability of the isolated symbiotic bacteria (Photorhabdus and Xenorhabdus) to control Pieris rapae and Pentodon algerinus larvae in comparison with their own nematodes, Heterorhabditis bacteriophora and Steinernema riobravis, respectively. The results showed that both nematode species and their symbiotic bacteria were able to suppress both insect species. However, both bacterial genera were more efficient than the investigated nematode species against P. rapae, although nematodes were superior against P. algerinus. Gas chromatography–mass spectrophotometry of Xenorhabdus sp. and Photorhabdus sp. identified the key components with the insecticidal properties. The two bacteria genera were proven to be safe and had no significant effect on normal WI-38 human cells. In conclusion, the symbiotic bacteria can be employed safely and effectively against the tested insects independently on their own entomopathogenic nematodes. Abstract Pieris rapae and Pentodon algerinus are considered a global threat to agricultural crops and food security; hence, their control is a critical issue. Heterorhabditid and Steinernematid nematodes, along with their symbiotic bacteria, can achieve the optimal biocontrol agent criterion. Therefore, this study aimed to evaluate the efficacy of Heterorhabditis bacteriophora, Steinernema riobravis, and their symbiotic bacteria (Xenorhabdus and Photorhabdus) against P. rapae and P. algerinus larvae. The virulence of entomopathogenic nematodes (EPNs) was determined at different infective juvenile concentrations and exposure times, while the symbiotic bacteria were applied at the concentration of 3 × 107 colony-forming units (CFU)/mL at different exposure times. Gas chromatography–mass spectrophotometry (GC-MS) analysis and the cytotoxic effect of Photorhabdus sp. and Xenorhabdus sp. were determined. The results indicated that H. bacteriophora, S. riobravis, and their symbiotic bacteria significantly (p ≤ 0.001) induced mortality in both insect species. However, H. bacteriophora and its symbiont, Photorhabdus sp., were more virulent. Moreover, the data clarified that both symbiotic bacteria outperformed EPNs against P. rapae but the opposite was true for P. algerinus. GC-MS analysis revealed the main active compounds that have insecticidal activity. However, the results revealed that there was no significant cytotoxic effect. In conclusion, H. bacteriophora, S. riobravis, and their symbiotic bacteria can be an optimal option for bio-controlling both insect species. Furthermore, both symbiotic bacteria can be utilized independently on EPNs for the management of both pests, and, hence, they can be safely incorporated into biocontrol programs and tested against other insect pests.
Collapse
|
20
|
Yimthin T, Fukruksa C, Muangpat P, Dumidae A, Wattanachaiyingcharoen W, Vitta A, Thanwisai A. A study on Xenorhabdus and Photorhabdus isolates from Northeastern Thailand: Identification, antibacterial activity, and association with entomopathogenic nematode hosts. PLoS One 2021; 16:e0255943. [PMID: 34383819 PMCID: PMC8360611 DOI: 10.1371/journal.pone.0255943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Xenorhabdus and Photorhabdus are gram negative bacteria that can produce several secondary metabolites, including antimicrobial compounds. They have a symbiotic association with entomopathogenic nematodes (EPNs). The aim of this study was to isolate and identify Xenorhabdus and Photorhabdus species and their associated nematode symbionts from Northeastern region of Thailand. We also evaluated the antibacterial activity of these symbiotic bacteria. The recovery rate of EPNs was 7.82% (113/1445). A total of 62 Xenorhabdus and 51 Photorhabdus strains were isolated from the EPNs. Based on recA sequencing and phylogeny, Xenorhabdus isolates were identified as X. stockiae (n = 60), X. indica (n = 1) and X. eapokensis (n = 1). Photorhabdus isolates were identified as P. luminescens subsp. akhurstii (n = 29), P. luminescens subsp. hainanensis (n = 18), P. luminescens subsp. laumondii (n = 2), and P. asymbiotica subsp. australis (n = 2). The EPNs based on 28S rDNA and internal transcribed spacer (ITS) analysis were identified as Steinernema surkhetense (n = 35), S. sangi (n = 1), unidentified Steinernema (n = 1), Heterorhabditis indica (n = 39), H. baujardi (n = 1), and Heterorhabditis sp. SGmg3 (n = 3). Antibacterial activity showed that X. stockiae (bMSK7.5_TH) extract inhibited several antibiotic-resistant bacterial strains. To the best of our knowledge, this is the first report on mutualistic association between P. luminescens subsp. laumondii and Heterorhabditis sp. SGmg3. This study could act as a platform for future studies focusing on the discovery of novel antimicrobial compounds from these bacterial isolates.
Collapse
Affiliation(s)
- Thatcha Yimthin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chamaiporn Fukruksa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wandee Wattanachaiyingcharoen
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.,Center of Excellence for Biodiversity, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Center of Excellence for Biodiversity, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Center of Excellence for Biodiversity, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
21
|
Mastore M, Caramella S, Quadroni S, Brivio MF. Drosophila suzukii Susceptibility to the Oral Administration of Bacillus thuringiensis, Xenorhabdus nematophila and Its Secondary Metabolites. INSECTS 2021; 12:insects12070635. [PMID: 34357295 PMCID: PMC8305655 DOI: 10.3390/insects12070635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary In recent decades, climate change and the international fruit trade have favored the movement of allochthonous species such as harmful insects into new geographic areas. The settlement of phytophagous insects and vectors in new areas, where potential predators are often lacking, has increased the use of chemical insecticides for their control. The intensive use of these substances represents a serious problem for ecosystems and human health; a possible alternative to chemical control is biological control, i.e., the use of biological insecticides that are compatible with the environment. The aim of our work was to further improve biological control methods for the management of the dipteran Spotted Wing Drosophila, an insect recently introduced in America and Europe, which can damage thin-skinned fruit crops. The methodologies applied are based on the combined use of different entomopathogens, i.e., bacteria, fungi, nematodes, etc., harmful for insects, with the purpose of increasing their effectiveness. The results obtained show that the combined use of two entomopathogenic bacteria increases both the lethality and rapidity of action. From an application viewpoint, studies like this are essential to identify new methods and bioinsecticides and, once transferred to the field, can be crucial to eliminate or, at least, reduce the use of chemicals. Abstract Drosophila suzukii, Spotted Wing Drosophila (SWD), is a serious economic issue for thin-skinned fruit farmers. The invasion of this dipteran is mainly counteracted by chemical control methods; however, it would be desirable to replace them with biological control. All assays were performed with Bacillus thuringiensis (Bt), Xenorhabdus nematophila (Xn), and Xn secretions, administered orally in single or combination, then larval lethality was assessed at different times. Gut damage caused by Bt and the influence on Xn into the hemocoelic cavity was also evaluated. In addition, the hemolymph cell population was analyzed after treatments. The data obtained show that the combined use of Bt plus Xn secretions on larvae, compared to single administration of bacteria, significantly improved the efficacy and reduced the time of treatments. The results confirm the destructive action of Bt on the gut of SWD larvae, and that Bt-induced alteration promotes the passage of Xn to the hemocoel cavity. Furthermore, hemocytes decrease after bioinsecticides treatments. Our study demonstrates that combining bioinsecticides can improve the efficacy of biocontrol and such combinations should be tested in greenhouse and in field in the near future.
Collapse
Affiliation(s)
- Maristella Mastore
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
| | - Sara Caramella
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
| | - Silvia Quadroni
- Laboratory of Ecology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
- Correspondence: ; Tel.: +39-0332-421404
| |
Collapse
|
22
|
Bacterial profiling of Haemonchus contortus gut microbiome infecting Dohne Merino sheep in South Africa. Sci Rep 2021; 11:5905. [PMID: 33723324 PMCID: PMC7961046 DOI: 10.1038/s41598-021-85282-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 11/09/2022] Open
Abstract
A metagenomic approach was used to study the gut microbiome of Haemonchus contortus field strains and that of its predilection site, the abomasum of Dohne Merino sheep. The abomasum contents and H. contortus were collected from 10 naturally infected Dohne Merino sheep. The H. contortus specimens were classified and sexually differentiated using morphometric characters and was further confirmed through molecular identification. We investigated differences and similarities between the bacterial composition of the adult male and female H. contortus gut microbiomes, which were both dominated by bacteria from the Escherichia, Shigella, Vibrio and Halomonas genera. Major abundance variations were identified between the shared adult male and female H. contortus microbiomes. The results also revealed that Succiniclasticum, Rikenellaceae RC9 gut group and Candidatus Saccharimonas were the predominant genera in the Dohne Merino abomasum. This study provides insight into the highly diverse bacterial composition of the H. contortus gut microbiome and the Dohne Merino abomasum which needs to be studied further to explore the complex interactions of different gastrointestinal nematode microbiomes with the host.
Collapse
|
23
|
A survey of entomopathogenic nematodes and their symbiotic bacteria in agricultural areas of northern Thailand. J Helminthol 2020; 94:e192. [PMID: 32924906 DOI: 10.1017/s0022149x20000735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entomopathogenic nematodes (EPNs) Steinernema and Heterorhabditis and their symbiotic bacteria, Xenorhabdus and Photorhabdus, have been successfully used for the control of insect pests. The objectives of this study were to survey the EPNs and symbiotic bacteria in the agricultural areas of the Phitsanulok province, Thailand, and to study the association between the soil parameters and presence of EPNs. We collected 200 soil samples from 40 soil sites in agricultural areas (field crops, horticulture crops and forest). The prevalence of EPNs was 8.0% (16/200). Fifteen of the EPN isolates were molecularly identified (based on 28S ribosomal DNA and internal transcribed spacer regions) as Steinernema siamkayai. Seven isolates of Xenorhabdus stockiae were identified using recombinase A sequencing. Phylogenetic analysis revealed that all the Steinernema and Xenorhabdus isolates were closely related to S. siamkayai (Indian strain) and X. stockiae (Thai strain), respectively. Significantly more EPNs were recovered from loam than from clay. Although the association between soil parameters (pH, temperature and moisture) and the presence of EPNs was not statistically significant, the elevation levels of the soil sites with and without EPNs were found to be different. Moreover, statistical comparisons between the agricultural areas revealed no significant differences. Therefore, we concluded that S. siamkayai is associated with X. stockiae in agricultural areas and that there is no association between the soil parameters of agricultural areas and presence of EPNs, except for soil texture and the elevation. Steinernema siamkayai may be applied as a biocontrol agent in agricultural areas.
Collapse
|
24
|
da Silva WJ, Pilz-Júnior HL, Heermann R, da Silva OS. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review. Parasit Vectors 2020; 13:376. [PMID: 32727530 PMCID: PMC7391577 DOI: 10.1186/s13071-020-04236-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
The control of insects of medical importance, such as Aedes aegypti and Aedes albopictus are still the only effective way to prevent the transmission of diseases, such as dengue, chikungunya and Zika. Their control is performed mainly using chemical products; however, they often have low specificity to non-target organisms, including humans. Also, studies have reported resistance to the most commonly used insecticides, such as the organophosphate and pyrethroids. Biological control is an ecological and sustainable method since it has a slow rate of insect resistance development. Bacterial species of the genera Xenorhabdus and Photorhabdus have been the target of several research groups worldwide, aiming at their use in agricultural, pharmaceutical and industrial products. This review highlights articles referring to the use of Xenorhabdus and Photorhabdus for insects and especially for mosquito control proposing future ways for their biotechnological applicability. Approximately 24 species of Xenorhabdus and five species of Photorhabdus have been described to have insecticidal properties. These studies have shown genes that are capable of encoding low molecular weight proteins, secondary toxin complexes and metabolites with insecticide activities, as well as antibiotic, fungicidal and antiparasitic molecules. In addition, several species of Xenorhabdus and Photorhabdus showed insecticidal properties against mosquitoes. Therefore, these biological agents can be used in new control methods, and must be, urgently considered in short term, in studies and applications, especially in mosquito control.![]()
Collapse
Affiliation(s)
- Wellington Junior da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Harry Luiz Pilz-Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
25
|
Heryanto C, Eleftherianos I. Nematode endosymbiont competition: Fortune favors the fittest. Mol Biochem Parasitol 2020; 238:111298. [PMID: 32621939 DOI: 10.1016/j.molbiopara.2020.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Endosymbiotic bacteria that obligately associate with entomopathogenic nematodes as a complex are a unique model system to study competition. These nematodes seek an insect host and provide entry for their endosymbionts. Through their natural products, the endosymbionts nurture their nematodes by eliminating secondary infection, providing nutrients through bioconversion of the insect cadaver, and facilitating reproduction. On one hand, they cooperatively colonize the insect host and neutralize other opportunistic biotic threats. On the other hand, inside the insect cadaver as a fighting pit, they fiercely compete for the fittest partnership that will grant them the reproductive dominance. Here, we review the protective and nurturing nature of endosymbiotic bacteria for their nematodes and how their selective preference shapes the superior nematode-endosymbiont pairs as we know today.
Collapse
Affiliation(s)
- Christa Heryanto
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| |
Collapse
|
26
|
Sanda NB, Hou B, Muhammad A, Ali H, Hou Y. Exploring the Role of Relish on Antimicrobial Peptide Expressions (AMPs) Upon Nematode-Bacteria Complex Challenge in the Nipa Palm Hispid Beetle, Octodonta nipae Maulik (Coleoptera: Chrysomelidae). Front Microbiol 2019; 10:2466. [PMID: 31736908 PMCID: PMC6834688 DOI: 10.3389/fmicb.2019.02466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
The humoral immune responses of the nipa palm hispid beetle Octodonta nipae involves the inducible expression of the genes coding for antimicrobial peptides (AMPs) which are mediated by immune deficiency signaling pathways. In insects, the nuclear factor-κB (NF-κB) transcription factor, Relish, has been shown to regulate AMP gene expressions upon microbial infections. Here, we dissect the expression patterns of some AMPs in O. nipae during infections by entomopathogenic nematodes (EPNs) and their symbionts, before and after Relish knock down. Our results indicate that, prior to gene silencing, the AMPs attacin C1, attacin C2, and defensin 2B were especially expressed to great extents in the insects challenged with the nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora as well as with their respective symbionts Xenorhabdus nematophila and Photorhabdus luminescens. The study also established the partial sequence of OnRelish/NF-κB p110 subunit in O. nipae, with an open reading frame coding for a protein with 102 amino acid residues. A typical Death domain-containing protein was detected (as seen in Drosophila) at the C-terminus of the protein. Phylogenetic analysis revealed that in O. nipae, Relish is clustered with registered Relish/NF-κB p110 proteins from other species of insect especially Leptinotarsa decemlineata from the same order Coleoptera. Injection of OnRelish dsRNA remarkably brought down the expression of OnRelish and also reduced the magnitude of transcription of attacin C1 and defensin 2B upon S. carpocapsae and H. bacteriophora and their symbionts infections. Altogether, our data unveil the expression pattern of OnRelish as well as that of some AMP genes it influences during immune responses of O. nipae against EPNs and their symbionts.
Collapse
Affiliation(s)
- Nafiu Bala Sanda
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Crop Protection, Faculty of Agriculture, Bayero University Kano, Kano, Nigeria
| | - Bofeng Hou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Habib Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Entomology, University of Agriculture Faisalabad, Okara, Pakistan
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Damascena AP, Ferreira JCA, Costa MGS, de Araujo Junior LM, Wilcken SRS. Hatching and Mortality of Meloidogyne enterolobii Under the Interference of Entomopathogenic Nematodes In vitro. J Nematol 2019; 51:e2019-58. [PMID: 34179792 PMCID: PMC6909014 DOI: 10.21307/jofnem-2019-058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant parasitic nematodes have become one of the main problems in the tomato cultivation. Among these, Meloidogyne enterolobii presents great challenges to the farmer, since it is a polyphagous species and difficult to control. The entomopathogenic nematodes (EPNs) present as potential for biological control of this pathogen. The objective of the study was to evaluate the interference of EPNs S. brazilense, S. feltiae, S. rarum, H. amazonensis and H. bacteriophora on hatching and mortality of M. enterolobii. 500 eggs of this nematode and 1.000 infective juveniles of each EPN species were placed in a plastic pot totaling 25 mL of suspension and kept in an incubator at 25°C. The number of juveniles hatched in the suspension was counted every 2 days, until 10 days. After 10 days of evaluations, the remaining suspension (15 mL) containing M. enterolobii and EPNs was inoculated into Rutgers tomato seedlings. The suspension contained approximately in 300 eggs of M. enterolobii occasional juveniles and 600 IJ of each nematode species. Sixty days after inoculation were evaluated gall indexes, egg mass indexes, total number of eggs and juveniles of M. enterolobii and reproductive factor was calculated. In the mortality experiment, 500 infective juveniles of M. enterolobii and 1.000 juveniles of each EPN species were placed in a plastic pot totaling 25 mL of suspension. The evaluation of juvenile mortality was performed by counting of the mobile and immotile nematodes, by adding two drops of NaOH to the nematode suspension. It was verified that on the 10th day all ENPs provided reduction in the hatching of M. enterolobii. In the pot experiment it was found thato gall index, egg mass indexm, nematodes total number and reproduction factor were significantly reduced in treatments with all species of EPNs tested. However, in the mortality test, only EPNs S. brazilense and S. rarum provided mortality on the second day and H. bacteriophora affected mortality on the 4th day. In the other evaluations, there was no statistical difference. The results highlight the potential of the use of EPNs in programs of integrated management of M. enterolobii in tomato.
Collapse
Affiliation(s)
- Alixelhe Pacheco Damascena
- Universidade Estadual Paulista (UNESP), Faculty of Agronomic Sciences, Department of Plant Protection, 18610-034, Botucatu, São Paulo, Brazil
| | - Júlio César Antunes Ferreira
- Universidade Estadual Paulista (UNESP), Faculty of Agronomic Sciences, Department of Plant Protection, 18610-034, Botucatu, São Paulo, Brazil
| | - Marylia Gabriella Silva Costa
- Universidade Estadual Paulista (UNESP), Faculty of Agronomic Sciences, Department of Plant Protection, 18610-034, Botucatu, São Paulo, Brazil
| | - Luis Moreira de Araujo Junior
- University Federal of Espírito Santo - UFES, Department of Agronomy, Laboratory of Entomology/NUDEMAFI, Alegre, ES, Brazil
| | - Silvia Renata Siciliano Wilcken
- Universidade Estadual Paulista (UNESP), Faculty of Agronomic Sciences, Department of Plant Protection, 18610-034, Botucatu, São Paulo, Brazil
| |
Collapse
|
28
|
Kajla MK. Symbiotic Bacteria as Potential Agents for Mosquito Control. Trends Parasitol 2019; 36:4-7. [PMID: 31375436 DOI: 10.1016/j.pt.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Xenorhabdus and Photorhabdus species are symbiotic bacteria of the insect-pathogenic soil nematodes that produce insecticidal compounds lethal to prey insects. Recently, there has been much interest in adapting these insecticidals for mosquito control. Here, I advocate the potential of Xenorhabdus/Photorhabdus as natural sources of mosquitocides (larvicides, adulticides) and feeding-deterrents.
Collapse
Affiliation(s)
- Mayur K Kajla
- ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi -110077, India.
| |
Collapse
|
29
|
Ma J, Ugya YA, Isiyaku A, Hua X, Imam TS. Evaluation of Pistia stratiotes fractions as effective larvicide against Anopheles mosquitoes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:945-950. [PMID: 30855191 DOI: 10.1080/21691401.2019.1582538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mosquito are well-known vectors that cause diseases particularly malaria and filariasis which are detrimental to human health. These vectors occur mainly in tropical countries where more than 2 billion people live in endemic regions with about one million deaths been claimed yearly from malaria and filariasis. The study is aimed at evaluating the larvicidal activity of Pistia stratiotes fractions on Anopheles mosquitoes (Diptera: Culicidae). The ethyl acetate extract of P. stratiotes was obtained through percolation process and was chromatographed to yield nine fractions. The larvicidal activity of each of the nine fractions was tested in triplicates by exposing the larvae to 500, 250, 125, 62.5 and 31.3 µg/ml, respectively. Phytochemical screening of the nine fractions revealed the presence of alkaloids, flavonoids, glycosides and phlobatannins in varying quantities. The result obtained shows that fraction E has the highest lethal effect on the Anopheles larvae at LC50 =14.81 µg/ml and was weakly effective at 602.03 µg/ml on brine shrimp larvae. The gas chromatography mass spectrometry analysis of fraction E revealed the presence of 35 pre-cursor compounds. Hence, ethyl acetate fractions of P. stratiotes could be an effective larvicide against Anopheles mosquito larvae as it has been found to be harmless to other aquatic organisms. Further work should be done on other aquatic weeds that have larvicidal potential to isolate the bioactive compounds.
Collapse
Affiliation(s)
- Jincai Ma
- a College of New Energy and Environment , Jilin University , Changchun , China
| | - Yunusa Adamu Ugya
- a College of New Energy and Environment , Jilin University , Changchun , China.,b Department of Environmental Management , Kaduna State University , Kaduna , Nigeria
| | - Asma'u Isiyaku
- c Department of Biological Sciences , Bayero University , Kano , Nigeria
| | - Xiuyi Hua
- a College of New Energy and Environment , Jilin University , Changchun , China
| | - Tijjani Sabiu Imam
- c Department of Biological Sciences , Bayero University , Kano , Nigeria
| |
Collapse
|
30
|
Mosquitocidal efficacy of lecithinase derived from entomopathogenic bacteria Xenorhabdus sp. strain PBU1755 against filarial vector Culex quinquefasciatus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Ganesan P, Stalin A, Gabriel Paulraj M, Balakrishna K, Ignacimuthu S, Abdullah Al-Dhabi N. Biocontrol and non-target effect of fractions and compound isolated from Streptomyces rimosus on the immature stages of filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) and the compound interaction with Acetylcholinesterase (AChE1). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:120-128. [PMID: 29879572 DOI: 10.1016/j.ecoenv.2018.05.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The present study was aimed to check the mosquitocidal activity of intracellular methanol extract fractions and the compound di (2-ethylhexyl) phthalate isolated from Streptomyces rimosus. The isolated compound was also analyzed for its interaction with Acetylcholinesterase (AChE1). The larvae and eggs of Culex quinquefasciatus were exposed to four different concentrations such as 2.5, 5.0, 7.5 and 10 ppm for fractions and 0.5, 1.0, 1.5 and 2.0 ppm for compound. After 24 and 120 h post treatment, the larval mortality and ovicidal activity were recorded. Fractions collected from the intracellular methanol extract were tested for larvicidal activity; among them Fraction 4 was found to be the active fraction. Fraction 4 showed 74% larvicidal activity with LC50 and LC90 values of 6.9 and 17.2 ppm, respectively, in 24 h against the larvae of Cx. quinquefasciatus. Fraction 4 showed 95% ovicidal activity at 10 ppm concentration after 120 h post treatment. The eluted compound di(2-ethylhexyl) phthalate was highly toxic and exhibited promising activity against the eggs of Cx. quinquefasciatus. The compound presented 94% ovicidal activity at 2.0 ppm concentration after 120 h post treatment. The larvae of Cx. quinquefasciatus were exposed to di(2-ethylhexyl) phthalate which showed good activity in a concentration-dependent manner. The compound showed 76% larvicidal activity against the larvae of Cx. quinquefasciatus with LC50 and LC90 values of 1.22 and 3.28 ppm, respectively, at 2 ppm concentration in 24 h. Fraction 4 and the compound were subjected to toxicity study against non-target organism and were found to be nontoxic. The present studies revealed that the treated larvae showed serious damage in the midgut cells. Growth disruption and larval deformities were observed in compound-treated larvae. The compound was highly active and inhibited AChE in a concentration-dependent manner. Computational analysis of the compound had strong interaction with AChE1 of Cx. quinquefasciatus. These results clearly showed that Fraction 4 and the compound isolated from S. rimosus can be used to control the life stages of Cx. quinquefasciatus; it will be a good alternative to synthetic insecticides.
Collapse
Affiliation(s)
- Pathalam Ganesan
- Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Antony Stalin
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600034, India; Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
| | - Micheal Gabriel Paulraj
- Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Kedike Balakrishna
- Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Savarimuthu Ignacimuthu
- Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600034, India; International Scientific Partnership Program, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies College of Science, King Saud University, P.O. BOX 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
32
|
Yooyangket T, Muangpat P, Polseela R, Tandhavanant S, Thanwisai A, Vitta A. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. PLoS One 2018; 13:e0195681. [PMID: 29641570 PMCID: PMC5895068 DOI: 10.1371/journal.pone.0195681] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/27/2018] [Indexed: 11/30/2022] Open
Abstract
Entomopathogenic nematodes (EPNs) that are symbiotically associated with Xenorhabdus and Photorhabdus bacteria can kill target insects via direct infection and toxin action. There are limited reports identifying such organisms in the National Park of Thailand. Therefore, the objectives of this study were to identify EPNs and symbiotic bacteria from Nam Nao National Park, Phetchabun Province, Thailand and to evaluate the larvicidal activity of bacteria against Aedes aegypti and Ae. albopictus. A total of 12 EPN isolates belonging to Steinernema and Heterorhabditis were obtained form 940 soil samples between February 2014 and July 2016. EPNs were molecularly identified as S. websteri (10 isolates) and H. baujardi (2 isolates). Symbiotic bacteria were isolated from EPNs and molecularly identified as P. luminescens subsp. akhurstii (13 isolates), X. stockiae (11 isolates), X. vietnamensis (2 isolates) and X. japonica (1 isolate). For the bioassay, bacterial suspensions were evaluated for toxicity against third to early fourth instar larvae of Aedes spp. The larvae of both Aedes species were orally susceptible to symbiotic bacteria. The highest larval mortality of Ae. aegypti was 99% after exposure to X. stockiae (bNN112.3_TH) at 96 h, and the highest mortality of Ae. albopictus was 98% after exposure to P. luminescens subsp. akhurstii (bNN121.4_TH) at 96 h. In contrast to the control groups (Escherichia coli and distilled water), the mortality rate of both mosquito larvae ranged between 0 and 7% at 72 h. Here, we report the first observation of X. vietnamensis in Thailand. Additionally, we report the first observation of P. luminescens subsp. akhurstii associated with H. baujardi in Thailand. X. stockiae has potential to be a biocontrol agent for mosquitoes. This investigation provides a survey of the basic diversity of EPNs and symbiotic bacteria in the National Park of Thailand, and it is a bacterial resource for further studies of bioactive compounds.
Collapse
Affiliation(s)
- Temsiri Yooyangket
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Raxsina Polseela
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
33
|
Godjo A, Afouda L, Baimey H, Decraemer W, Willems A. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin. Arch Microbiol 2017; 200:589-601. [DOI: 10.1007/s00203-017-1470-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 02/02/2023]
|