1
|
Klinkaew N, Jhaiaun P, Nguyen GT, Ngasaman R, Keawnoi D, Rattanapob N, Arunvipas P, Kanjanaphan M, Manojai N, Panchakhan S, Jaiboon J, Numnual P, Tong-in P, Khanthong T, Srirarai P, Chantarakot C, Noenchat P, Napornram J, Yangsuk S, Cham-iam T, Nilsuwan P, Jindarut S, Boonyok K, Thammasonthijarern N, Chimnoi W, Inpankaew T, Nimsuphan B, Phasuk J, Kamyingkird K. Application of molecular approach in combination with providing treatment and control measures for combating Babesia bovis and Babesia bigemina infections in small scale livestock farms in Thailand. Parasite Epidemiol Control 2025; 28:e00403. [PMID: 39845061 PMCID: PMC11750565 DOI: 10.1016/j.parepi.2024.e00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/18/2024] [Accepted: 12/14/2024] [Indexed: 01/24/2025] Open
Abstract
Bovine babesiosis is a tick-borne disease that is caused by apicomplexan protozoan parasite in the genus of Babesia. Babesia infections affect cattle health, reduce milk and meat production and lead to economic losses in tropical and subtropical countries. Babesia parasites are difficult to diagnose in the early stage of infections during low parasitemia and asymptomatic conditions led to the lack of treatment and control at the early stage of infection. This study aimed to integrate a molecular tool for the detection and genetic characterization of Babesia (B.) bovis and B. bigemina in small-scale livestock farming in Thailand, and to study the risk factors association with Babesia infections in small scale livestock farms in Thailand. This study was conducted in four regions of Thailand between June 2023 and January 2024. Dairy and beef cattle blood samples were collected, genomic DNA were extracted and nested PCRs were performed. Data associated with Babesia infections were collected using a semi-structured questionnaire and interview. Nested PCR targeting B. bovis spherical binding protein 4 (SBP4) and B. bigemina rhoptries associating protein 1a (Rap1a) genes were performed and direct sequencing and phylogenetic analysis were conducted. Risk factors association with Babesia infections were analyzed. PCR results, chemotherapeutic treatment options, and vector control suggestions were also reported to local veterinarians and farmers within 14 days. A total of 964 livestock blood samples were collected from 126 small scale farms in four regions of Thailand. B. bovis infection was predominant in buffalo (31.25 %), followed by dairy cattle (11.44 %) and beef cattle (7.47 %). B. bigemina infection was predominant in goats (53.33 %), followed by beef cattle (25.33 %) and dairy cattle (8.88 %). Mixed infection was also detected in beef and dairy cattle at 2.09 % and 1.58 %, respectively. Molecular characterization of B. bovis SBP4 and B. bigemina RAP1a sequences showed that B. bigemina and B. bovis Thai isolates were closely related among geographical areas and shared genetic similarity among different hosts but were genetically distinct from B. bigemina and B. bovis from other countries. Risk factor analysis identified five factors associated with B. bovis infection and one factor associated with B. bigemina infection in small-scale livestock farming in Thailand. All the farmers were very satisfied with the integrative approach. This study implemented sensitive and specific nested PCR methods for the detection of Babesia in livestock. Applying an integrative approach by providing a sensitive diagnostic tool for identification of the infected animals and providing proper treatment and control measures to local farmers help combating babesiosis in small scale livestock farms.
Collapse
Affiliation(s)
- Nutsuda Klinkaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Pairpailin Jhaiaun
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Giang Thi Nguyen
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Ruttayaporn Ngasaman
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Domechai Keawnoi
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Niorn Rattanapob
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Meyanee Kanjanaphan
- Kasetsart University Veterinary Teaching Hospital Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Nuttapon Manojai
- Lampang, Provincial Livestock Office Mueang, Lampang 52100, Thailand
| | | | - Julaluk Jaiboon
- Phrae Provincial Livestock Office, Mueang Phrae District, Phrae 54000, Thailand
| | - Piyavadee Numnual
- Phrae Provincial Livestock Office, Mueang Phrae District, Phrae 54000, Thailand
| | - Prattana Tong-in
- Srisaket Provincial Livestock Office, Muang, Srisaket 33000, Thailand
| | | | - Paween Srirarai
- Sakon Nakhon Provincial Livestock Office, Muang, Sakon Nakhon 47000, Thailand
| | - Chutima Chantarakot
- Sakon Nakhon Provincial Livestock Office, Muang, Sakon Nakhon 47000, Thailand
| | | | | | - Somtat Yangsuk
- Surin Provincial Livestock Office, Muang, Surin 32180, Thailand
| | - Tanakrit Cham-iam
- Nong Khai Provincial Livestock Office, Muang, Nong Khai 43000, Thailand
| | | | - Supicha Jindarut
- Songkhla Provincial Livestock Office, Muang, Songkhla 90000, Thailand
| | - Kanokrat Boonyok
- Pattalung, Provincial Livestock Office, Muang, Pattalung 93000, Thailand
| | - Nipa Thammasonthijarern
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Wissanuwat Chimnoi
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Burin Nimsuphan
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Jumnongjit Phasuk
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Rodrigues L, Giglioti R, Katiki LM, Sarria ALF, Scholze G, Veríssimo CJ. Assessment of synergistic and antagonistic interactions between volatile compounds thymol, carvacrol, and eugenol diluted in solvents against Rhipicephalus microplus in in vitro tests. Exp Parasitol 2024; 268:108877. [PMID: 39674534 DOI: 10.1016/j.exppara.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
The cattle tick Rhipicephalus microplus is prevalent in tropical and subtropical regions, causing substantial economic losses due to its resistance to conventional acaricides. There is an urgent need to identify safe and effective new acaricidal agents. Essential oils and their volatile compounds are promising alternatives. Ensuring the use of optimal solvents or surfactants that do not compromise the acaricidal activity of these compounds during testing is crucial. This study aims to evaluate how compounds thymol, carvacrol and eugenol interact with xylol, methanol, ethanol, acetone, isopropyl alcohol, glycerol, dimethyl sulfoxide, castor oil, propylene glycol, vaseline, and Tween 80® to enhance (or to worse) their acaricidal efficacy against R. microplus. Larval mortality time were compared against one negative control (soybean oil) and two positive controls (commercial pour-on products). The experiments were conducted in 48-well polyethylene plates, with around 100 larvae immersed in 200 μl of each solvent at 100, 50, 25, 12.5, 6.25, 3.125 and 1.56% and diluted in soybean oil or water, according to solubility. Each volatile compound (Thymol, carvacrol and eugenol) was diluted in the tested solvents to assess larval mortality time. Xylol demonstrated the shortest larval mortality time, even at a minimum concentration (p < 0.05). In contrast, liquid vaseline exhibited the longest larval mortality time. When thymol, carvacrol, and eugenol were combined with xylol, they achieved the shortest larval mortality time. Conversely, when diluted in liquid vaseline they exhibited synergistic effects decreasing the mortality time. Tween 80® worsen the efficacy of thymol, carvacrol, and eugenol, resulting in prolonged larval mortality times. These findings emphasize the critical role of solvent selection, indicating the choice of solvent profoundly affects the formulation's effectiveness, directly influencing the activity of the active compounds.
Collapse
Affiliation(s)
- Leandro Rodrigues
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil.
| | - Rodrigo Giglioti
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| | - Luciana Morita Katiki
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| | | | - Germano Scholze
- GS®-Technology in Natural Products, P&D, Rodovia Alkindar Monteiro Junqueira, S/n, Km 34, Bairro Barreiro, CEP 12.918-150, Bragança Paulista, SP, Brazil
| | - Cecília José Veríssimo
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| |
Collapse
|
3
|
Yean S, Prasetyo DB, Marcombe S, Hadi UK, Kazim AR, Tiawsirisup S, Chinh VD, Matsuno K, Low VL, Bonnet S, Boulanger N, Lam TTY, Abdad MY, Herbreteau V, Chavatte JM, Sum S, Ren T, Sakuntabhai A, Maquart PO, Rakotonirina A, Boyer S. Challenges for ticks and tick-borne diseases research in Southeast Asia: Insight from the first international symposium in Cambodia. PLoS Negl Trop Dis 2024; 18:e0012269. [PMID: 38985826 PMCID: PMC11236135 DOI: 10.1371/journal.pntd.0012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Ticks, as critical vectors of a variety of pathogens, pose a significant public health challenge globally. In Southeast Asia (SEA), ticks are responsible for transmitting a diverse array of pathogens affecting humans and animals. The geographical and ecological diversity of SEA provides a unique environment that supports a wide range of tick species, which complicates the management and study of tick-borne diseases (TBDs). METHODOLOGY/PRINCIPAL FINDINGS This article synthesizes findings from the first international symposium on ticks and TBDs in Southeast Asia, held in Phnom Penh on June 22 and 23, 2023. It highlights regional efforts to understand tick ecology and pathogen transmission. This paper proposes to present a summary of the various presentations given during the symposium following 3 main parts. The first one is devoted to the state of knowledge regarding ticks and TBDs in SEA countries, with presentations from 6 different countries, namely Cambodia, Indonesia, Laos, Malaysia, Thailand, and Vietnam. The second part focuses on the development of new research approaches on tick-borne pathogens (TBPs) and TBDs. The last part is a summary of the round table discussion held on the final day, with the aim of defining the most important challenges and recommendations for researches on TBP and TBD in the SEA region. CONCLUSIONS/SIGNIFICANCE Key topics discussed include advancements in diagnostic tools, such as MALDI-TOF MS and proteomics, and the development of sustainable strategies for tick management and disease prevention. The symposium facilitated the exchange of knowledge and collaborative networks among experts from various disciplines, promoting a unified approach to tackling TBDs in the region. The symposium underscored the need for enhanced surveillance, diagnostics, and inter-regional cooperation to manage the threat of TBDs effectively. Recommendations include the establishment of a regional database for tick identification and the expansion of vector competence studies. These initiatives are crucial for developing targeted interventions and understanding the broader implications of climate change and urbanization on the prevalence of TBDs.
Collapse
Affiliation(s)
- Sony Yean
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Didot Budi Prasetyo
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Upik Kesumawati Hadi
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Abdul Rahman Kazim
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Selangor, Malaysia
| | | | - Vu Duc Chinh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarah Bonnet
- Ecology and Emergence of Arthropod-borne pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Paris, France
| | - Nathalie Boulanger
- University of Strasbourg and French Reference Center Lyme, Strasbourg, France
| | | | | | | | - Jean-Marc Chavatte
- National Public Health Laboratory–National Centre for Infectious Diseases, Ministry of Health, Singapore
| | - Samuth Sum
- Faculty of Veterinary Medicine, Royal University of Agriculture, Phnom Penh, Cambodia
| | - Theary Ren
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Ecology and Emergence of Arthropod-borne pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Paris, France
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
4
|
Insyari’ati T, Hamid PH, Rahayu ET, Sugar DL, Rahma NN, Kusumarini S, Kurnianto H, Wardhana AH. Ectoparasites Infestation to Small Ruminants and Practical Attitudes among Farmers toward Acaricides Treatment in Central Region of Java, Indonesia. Vet Sci 2024; 11:162. [PMID: 38668429 PMCID: PMC11053668 DOI: 10.3390/vetsci11040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Ectoparasite infestations are one of the major problems affecting goat and sheep farming. Disease resulting from these infestations can cause changes in physical appearance, such as severe lesions on the skin, and economic consequences in the form of significantly reduced selling prices. This study aimed to determine the prevalence of ectoparasites in the Boyolali district, Central Java, Indonesia. A total of 651 sheep and goats were surveyed in this study. The parasites were collected via skin scraping, twister, or manually from clinically infected goats and sheep in traditional farms. All of the ectoparasites collected were successfully identified. The prevalence of ectoparasites in ruminants in Boyolali was 97.8% (637/651). The species make-up was as follows: Bovicola caprae 97.8% (637/651), Linognathus africanus 39% (254/651), Haemaphysalis bispinosa 3.5% (23/651), Ctenocephalides spp. 0.2% (1/651), and Sarcoptes scabiei 5.2% (34/651). The predilection sites were in the face, ear, and leg areas, and in the axillary, dorsal, abdomen, and scrotum regions of the surveyed animals. An evaluation of farmers' attitudes to ectoparasites was performed using a questionnaire. The findings of this study imply that animals in the investigated area are highly exposed to ectoparasite infestations. Given the importance of ectoparasites in both livestock and human communities, specifically in the health domain, more research into appropriate control strategies is necessary.
Collapse
Affiliation(s)
- Titis Insyari’ati
- Department of Animal Science, Sebelas Maret University, Kota Surakarta 57126, Indonesia; (T.I.); (E.T.R.); (D.L.S.); (N.N.R.)
| | - Penny Humaidah Hamid
- Department of Animal Science, Sebelas Maret University, Kota Surakarta 57126, Indonesia; (T.I.); (E.T.R.); (D.L.S.); (N.N.R.)
| | - Endang Tri Rahayu
- Department of Animal Science, Sebelas Maret University, Kota Surakarta 57126, Indonesia; (T.I.); (E.T.R.); (D.L.S.); (N.N.R.)
| | - Diah Lutfiah Sugar
- Department of Animal Science, Sebelas Maret University, Kota Surakarta 57126, Indonesia; (T.I.); (E.T.R.); (D.L.S.); (N.N.R.)
| | - Nadya Nurvita Rahma
- Department of Animal Science, Sebelas Maret University, Kota Surakarta 57126, Indonesia; (T.I.); (E.T.R.); (D.L.S.); (N.N.R.)
| | - Shelly Kusumarini
- Department of Parasitology, Faculty of Veterinary Medicine, Brawijaya University, Kota Malang 65151, Indonesia;
| | - Heri Kurnianto
- National Research and Innovation Agency, Bogor 16122, Indonesia; (H.K.); (A.H.W.)
| | - April Hari Wardhana
- National Research and Innovation Agency, Bogor 16122, Indonesia; (H.K.); (A.H.W.)
| |
Collapse
|
5
|
Gano AI, Ramanoon SZ, Abdul Aziz NA, Mazlan M, Shaari MR, Aliyu A, Bello MB, Imam MU, Hamzah H. Genetic Characterization of the RAP-1A and SBP-4 Genes of Babesia Species Infecting Cattle from Selangor, Malaysia, and Ribah, Nigeria. Pathogens 2024; 13:247. [PMID: 38535590 PMCID: PMC10976254 DOI: 10.3390/pathogens13030247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 02/11/2025] Open
Abstract
Bovine babesiosis has substantial economic implications in the cattle industry, emphasizing the need for a thorough understanding of the genetic diversity of the causative apicomplexan pathogen. Although babesiosis has been extensively studied globally, the genetic diversity of Babesia species in Malaysian and Nigerian cattle remains unreported. This study aims to bridge this gap by detecting and characterizing Babesia species in selected cattle herds. Our investigation explores the genetic diversity of Babesia species in cattle from Selangor, Malaysia, and Ribah, Nigeria. Blood samples revealed a 32.9% infection rate via PCR analysis. Further genetic analysis detected variations in Malaysian Babesia bigemina isolates but genetic similarity among Nigerian isolates. Conversely, all Babesia bovis isolates displayed genetic homogeneity. In summary, this research identifies genetic diversity in Babesia species affecting Malaysian and Nigerian cattle, highlighting regional disparities.
Collapse
Affiliation(s)
- Adamu Isah Gano
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.G.); (N.-A.A.A.)
- Nigeria Agricultural Quarantine Service, Plot 84, Ralph Sodeinde Street, Central Business District, Abuja 900211, Nigeria
| | - Siti Zubaidah Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor-Azlina Abdul Aziz
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.G.); (N.-A.A.A.)
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.G.); (N.-A.A.A.)
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Headquarters, Serdang 43400, Selangor, Malaysia
| | - Abdullahi Aliyu
- Department of Veterinary Medicine, College of Applied and Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto 840212, Sokoto State, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advance Medical Research and Training, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840212, Sokoto State, Nigeria
- Infectious Disease Research Department King Abdullah International Medical Research Center, Riyadh P.O. Box 3660, Saudi Arabia
| | - Mustapha Umar Imam
- Centre for Advance Medical Research and Training, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840212, Sokoto State, Nigeria
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.G.); (N.-A.A.A.)
| |
Collapse
|
6
|
Ansah-Owusu J, Addo SO, Tawiah-Mensah CNL, Obuam PK, Malm ROT, Yartey KN, Yanney JN, Torto FA, Accorlor SK, Dadzie SK. Tick-borne pathogens of zoonotic and veterinary importance in cattle ticks in Ghana. Parasitol Res 2023; 123:44. [PMID: 38095712 DOI: 10.1007/s00436-023-08071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
Ticks are important vectors involved in the transmission of pathogens of zoonotic and veterinary importance. In this study, ticks were collected from cattle in Navrongo, Kintampo, and Kumasi and screened for pathogen DNA using PCR and Sanger sequencing. A total of 454 ticks were collected, morphologically identified and confirmed using primers that target the 660-bp segment of the mitochondrial COI gene. The predominant tick species was Amblyomma variegatum (70.26%). DNA was extracted from 85 tick pools and screened for the presence of Rickettsia DNA based on the 639 bp of the outer membrane protein A (ompA) gene, Ehrlichia/Anaplasma DNA based on the 345 bp fragment of the 16SrRNA gene and Babesia/ Theileria DNA based on the 560 bp fragment of the ssrRNA gene. From the 85 tick pools, the DNA of pathogens detected were Rickettsia africae (36.47%), Rickettsia aeschlimannii (16.47%), Ehrlichia canis (2.35%), Babesia occultans (1.18%), Theileria velifera (1.18%) and a symbiont Candidatus Midichloria mitochondrii (8.24%). This study reports the first molecular detection of Candidatus Cryptoplasma californiense (1.18%) in Ghana. Coinfections were recorded in 8.24% of the tick pools. The findings of this study highlight the importance of tick species in Ghana and the need to adopt effective control measures to prevent pathogen spread.
Collapse
Affiliation(s)
- Jane Ansah-Owusu
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Seth Offei Addo
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| | | | - Patrick Kwasi Obuam
- Kwame Nkrumah University of Science and Technology, School of Public Health, Kumasi, Ghana
| | - Richard Odoi-Teye Malm
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Kevin Nii Yartey
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Jennifer Nyamekye Yanney
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Francisca Adai Torto
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Stephen Kwabena Accorlor
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
7
|
Addo SO, Bentil RE, Baako BOA, Addae CA, Behene E, Asoala V, Mate S, Oduro D, Dunford JC, Larbi JA, Baidoo PK, Wilson MD, Diclaro JW, Dadzie SK. First record of Babesia and Theileria parasites in ticks from Kassena-Nankana, Ghana. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:878-882. [PMID: 37589253 DOI: 10.1111/mve.12688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Ticks are efficient vectors for transmitting pathogens that negatively affect livestock production and pose a risk to public health. In this study, Babesia and Theileria species were identified in ticks collected from cattle, sheep and goats from the Kassena-Nankana Districts of Ghana between February and December 2020. A total of 1550 ticks were collected, morphologically identified, pooled and screened for pathogens using primers that amplify a 560 bp fragment of the ssrRNA gene and Sanger sequencing. Amblyomma variegatum (62.98%) was the predominant tick species. From the 491 tick pools screened, 12/15 (2.44%) positive pools were successfully sequenced. The pathogen DNA identified were Theileria ovis in eight (15.38%) pools of Rhipicephalus evertsi evertsi, Theileria velifera in two (0.78%) pools of A. variegatum and Babesia occultans and Babesia sp. Xinjiang in one (1.72%) pool each of Hyalomma truncatum. It was further observed that T. ovis occurred in ticks collected from only sheep (p < 0.001) which were females (p = 0.023) and < =1 year old (p = 0.040). This study reports the first identification of these pathogens in ticks within Kassena-Nankana. With the constant trade of livestock, there is a need for effective tick control measures to prevent infection spread.
Collapse
Affiliation(s)
- Seth Offei Addo
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Theoretical and Applied Biology, College of Science, KNUST, Kumasi, Ghana
| | - Ronald Essah Bentil
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Charlotte Adwoa Addae
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Behene
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Suzanne Mate
- U.S. Army Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Daniel Oduro
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - James C Dunford
- Navy Entomology Center of Excellence, Jacksonville, Florida, USA
- Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - John Asiedu Larbi
- Department of Theoretical and Applied Biology, College of Science, KNUST, Kumasi, Ghana
| | - Philip Kweku Baidoo
- Department of Theoretical and Applied Biology, College of Science, KNUST, Kumasi, Ghana
| | - Michael David Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Joseph W Diclaro
- Navy Entomology Center of Excellence, Centers for Disease Control and Prevention Detachment, Atlanta, Georgia, USA
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
8
|
de la Fuente J, Estrada-Peña A, Rafael M, Almazán C, Bermúdez S, Abdelbaset AE, Kasaija PD, Kabi F, Akande FA, Ajagbe DO, Bamgbose T, Ghosh S, Palavesam A, Hamid PH, Oskam CL, Egan SL, Duarte-Barbosa A, Hekimoğlu O, Szabó MPJ, Labruna MB, Dahal A. Perception of Ticks and Tick-Borne Diseases Worldwide. Pathogens 2023; 12:1258. [PMID: 37887774 PMCID: PMC10610181 DOI: 10.3390/pathogens12101258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
In this comprehensive review study, we addressed the challenge posed by ticks and tick-borne diseases (TBDs) with growing incidence affecting human and animal health worldwide. Data and perspectives were collected from different countries and regions worldwide, including America, Europe, Africa, Asia, and Oceania. The results updated the current situation with ticks and TBD and how it is perceived by society with information bias and gaps. The study reinforces the importance of multidisciplinary and international collaborations to advance in the surveillance, communication and proposed future directions to address these challenges.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
- Research Group in Emerging Zoonoses, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Marta Rafael
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain;
| | - Consuelo Almazán
- Facultad de Ciencias Naturales, Universidad Autonóma de Querétaro, Avenida de las Ciencias S/N Juriquilla, Querétaro 76230, Mexico;
| | - Sergio Bermúdez
- Medical Entomology Research Department, Gorgas Memorial Institute for Health Research, Panama City 0816-02593, Panama;
| | - Abdelbaset E. Abdelbaset
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo 060-0818, Hokkaido, Japan;
| | - Paul D. Kasaija
- National Livestock Resources Research Institute (NaLIRRI/NARO), Kampala P.O. Box 5704, Uganda; (P.D.K.); (F.K.)
| | - Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI/NARO), Kampala P.O. Box 5704, Uganda; (P.D.K.); (F.K.)
| | - Foluke Adedayo Akande
- Department of Veterinary Parasitology and Entomology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 111101, Ogun State, Nigeria;
| | - Dorcas Oluwakemi Ajagbe
- Department of Pure and Applied Zoology, College of Biological Sciences, Federal University of Agriculture, Abeokuta 111101, Ogun State, Nigeria;
| | - Timothy Bamgbose
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Kings University, Ode-Omu City 221102, Osun State, Nigeria;
| | - Srikant Ghosh
- Entomology Laboratory, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
- IVRI-Eastern Regional Station, 37, Belgachia Road, Kolkata 700037, West Bengal, India
| | - Azhahianambi Palavesam
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, Tamil Nadu, India;
| | - Penny H. Hamid
- Department of Animal Science, Universitas Sebelas Maret, Surakarta 57126, Indonesia;
| | - Charlotte L. Oskam
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia; (C.L.O.); (S.L.E.)
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Siobhon L. Egan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia; (C.L.O.); (S.L.E.)
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Amanda Duarte-Barbosa
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Olcay Hekimoğlu
- Division of Ecology, Faculty of Science, Hacettepe University, Beytepe, Ankara 06800, Turkey;
| | - Matias P. J. Szabó
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, 1720/Campus Umuarama-Bloco 2T, Uberlândia 38400-902, Brazil;
| | - Marcelo B. Labruna
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Sao Paulo 05508-220, Brazil;
| | - Ananta Dahal
- Department of Microbiology and Parasitology, Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Chitwan 44200, Nepal;
| |
Collapse
|
9
|
Attia MM, Khalifa MM. Virulence of Babesia bigemina in infected cattle (Bos taurus): Molecular and immunological studies. Res Vet Sci 2023; 156:7-13. [PMID: 36731184 DOI: 10.1016/j.rvsc.2023.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
This study examined 400 tick-infested cattle from the following four governorates in Egypt: Faiyum, Beni Suef, Giza, and Minya. These cattle were examined for blood parasites between January 2021 and April 2022. The infected cattle were classified into four groups based on tick infestations and clinical signs. Blood was drawn for assessing oxidative stress markers as well as for parasitological examination and molecular analysis of the 18S rRNA gene of Babesia bigemina (B. bigemina). We performed a comparison of the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) between B. bigemina-infected blood samples and non-infected blood samples used as negative controls. Babesia spp. infection increases hemolysis, which in turn increases oxidative stress marker levels and cell-mediated immune response.
Collapse
Affiliation(s)
- Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| | - Marwa M Khalifa
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| |
Collapse
|
10
|
Hamid PH, Cahyadi M, Wardhana AH, Sawitri DH, Setya NNR, Insyariati T, Kurnianto H, Hermosilla CR. First Autochthonous Report on Cattle Babesia naoakii in Central Java, Indonesia, and Identification of Haemaphysalis bispinosa Ticks in the Investigated Area. Pathogens 2022; 12:pathogens12010059. [PMID: 36678407 PMCID: PMC9864747 DOI: 10.3390/pathogens12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
In tropical countries, clinical bovine babesiosis is a tick-borne disease primarily caused by Babesia bovis and Babesia bigemina. Here, we investigated 11 cattle with presumptive diagnosis of clinical babesiosis in Boyolali district, Central Java, Indonesia. The majority of the animals were anemic, as evidenced by lower hematocrit, hemoglobin concentration, and red blood cell counts than the normal ranges. Blood DNA was analyzed by a PCR assay targeting the 18S rRNA-ITS region of babesial origin, and the results confirmed that the cattle were infected with Babesia species. The sequencing and phylogenetic analyses demonstrated that the animals were infected with Babesia naoakii. This is the first report of B. naoakii in Indonesia and of B. naoakii-induced clinical bovine babesiosis outside of Sri Lanka. B. naoakii causes a persistent infection, as indicated by positive PCR results for serial blood samples of the circulatory system taken two weeks after treatment. Consequently, subclinical or newly recovered cattle may serve as potential intermediate hosts and infect ticks as definitive hosts to complete the life cycle. To identify potential tick vectors, we collected ticks from cattle, including 11 animals with clinical babesiosis. Based on the morphology and the mitochondrial cytochrome c oxidase subunit 1 (COX1) of collected ticks, we found that all of the collected ticks were Haemaphysalis bispinosa, identifying this tick species as a potential vector of B. naoakii in Indonesia. In this study, the evaluation of local farmers' awareness and practices regarding tick-borne diseases is presented, as disease prevention is also reliant on the implementation of strategies for vector control. Since livestock activities in Java represent the country's busiest animal trade, thereby the spread of disease to other regions is possible through anthropogenic factors. In conclusion, B. naoakii is a causative pathogen of clinical bovine babesiosis autochthonously occurred in this report and further research on B. naoakii-infection is required in other regions of the country. The prompt treatment of the disease seemed crucial for animal survival, which implies the necessity of early diagnosis and a sensitive detection method.
Collapse
Affiliation(s)
- Penny Humaidah Hamid
- Department of Animal Science, Universitas Sebelas Maret, Surakarta 57126, Indonesia
- Correspondence:
| | - Muhammad Cahyadi
- Department of Animal Science, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - April Hari Wardhana
- Research Center for Veterinary Science, National Research and Innovation Agency, Bogor 16114, Indonesia
| | | | | | - Titis Insyariati
- Department of Animal Science, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Heri Kurnianto
- Research Center for Veterinary Science, National Research and Innovation Agency, Bogor 16114, Indonesia
| | - Carlos R. Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35390 Giessen, Germany
| |
Collapse
|
11
|
Zeng Z, Zhou S, Xu G, Liu W, Han T, Liu J, Wang J, Deng Y, Xiao F. Prevalence and phylogenetic analysis of Babesia parasites in reservoir host species in Fujian province, Southeast China. Zoonoses Public Health 2022; 69:915-924. [PMID: 35819239 DOI: 10.1111/zph.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
Babesiosis is a tick-borne disease that mainly affects small mammals and has been reported in at least five provinces in China. However, the host range and geographical distribution of the parasite in Fujian province are unclear. Therefore, we investigated the prevalence and genetic characteristics of Babesia in Fujian province, Southeast China, between 2015 and 2020. Rodent blood samples were collected from 26 different surveillance sites across Fujian province. Genomic DNA was extracted to screen for Babesia infection using polymerase chain reaction based on 18S rRNA. DNA samples from 316 domestic goats, 85 water buffalo, 56 domestic dogs and 18 domestic pigs were examined. The prevalence of Babesia was statistically analysed using the Chi-square test or Fisher's exact test. Babesia infections were detected in 3.96% (43/1,087; 95%CI: 2.80%, 5.12%) of rodents and 1.26% (6/475; 95%CI: 0.26%, 2.26%) of other mammals. Multivariate logistic regression analysis revealed that irrigated cropland, shrubs and forests were risk factors for Babesia microti infections. The infection rates among domestic pigs, dogs and goats were 5.56%, 1.79% and 1.27%, respectively, with no infection found in water buffalo. The 18S rRNA gene sequencing revealed that rodents were infected with Babesia (sensu lato), whereas other mammals were infected with Babesia (sensu stricto). The geographical distribution and phylogenetic relationship of Babesia was determined in Southeast China. Mammals, particularly wild rodents, maybe the main natural hosts of Babesia in Fujian. Our findings provide a foundation for public health officials to develop prevention and control measures for Babesia.
Collapse
Affiliation(s)
- Zhiwei Zeng
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Shuheng Zhou
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Guoying Xu
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Weijun Liu
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Tengwei Han
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Jing Liu
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Jiaxiong Wang
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Yanqin Deng
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Fangzhen Xiao
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| |
Collapse
|
12
|
Molecular Identification of Babesia spp. and Anaplasma marginale in Water Buffaloes in Veracruz and Tabasco, Mexico: A Retrospective Study. Microorganisms 2022; 10:microorganisms10091702. [PMID: 36144303 PMCID: PMC9500797 DOI: 10.3390/microorganisms10091702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Two hundred and thirty-three blood samples of water buffalo were collected on four farms in Veracruz state and Tabasco state, Mexico, to detect and confirm the identities of Babesia and Anaplasma spp. sequences. Nested PCR assays were used for the amplification of specific genes encoding B. bovis rhoptry-associated protein (RAP-1), B. bigemina SpeI-AvaI restriction fragment, and Anaplasma marginale major surface protein 5 (MSP5). Using DNA sequencing and BLASTn analysis for DNA homology hemoparasite identification, the identities of the hemoparasites were established by comparing the nucleotide sequences obtained in this study with those available in the GenBank database at the National Center for Biotechnology Information (NCBI). Water buffalo infection with at least one of the hemoparasites under study was detected in 45% (105/233) of the blood samples, while a mixed infection with B. bovis and B. bigemina was detected in 6.4% (15/233) of samples. For this cross-sectional study, mixed infections with the three hemoparasites were not detected. BLASTn analysis revealed that the nucleotide sequences of the water buffalo isolates shared sequence identity values ranging from 88 to 100% with previously published gene sequences of B. bovis, B. bigemina, and A. marginale. The current results confirm that water buffalo, as cattle, are also carriers of hemoparasite infections that are tick-transmitted, and suggest that they probably have an important role in the epidemiology of bovine babesiosis in Mexico.
Collapse
|
13
|
Molecular Reports of Ruminant Babesia in Southeast Asia. Pathogens 2022; 11:pathogens11080915. [PMID: 36015035 PMCID: PMC9415187 DOI: 10.3390/pathogens11080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The protozoon Babesia is a blood parasite transmitted by hard ticks and commonly parasitizes ruminants such as cattle, buffaloes, goats, and sheep. Babesiosis, the disease caused by Babesia infection, has been considered a potential threat to ruminant production due to the grave and enormous impact it brings. About 125 million ruminants are at risk of babesiosis in Southeast Asia (SEA), a region composed of 11 countries. In recent decades, molecular-based diagnostic platforms, such as polymerase chain reaction (PCR) assays, have been a reliable and broadly employed tool in Babesia detection. In this article, the authors compiled and summarized the molecular studies conducted on ruminant babesiosis and mapped the species, including B. bovis, B. bigemina, B. ovata, Babesia sp. Mymensingh, Babesia sp. Hue, and B. ovis, and determined the host diversity of ruminant Babesia in SEA.
Collapse
|
14
|
Githaka NW, Bishop RP, Šlapeta J, Emery D, Nguu EK, Kanduma EG. Molecular survey of Babesia parasites in Kenya: first detailed report on occurrence of Babesia bovis in cattle. Parasit Vectors 2022; 15:161. [PMID: 35526030 PMCID: PMC9077973 DOI: 10.1186/s13071-022-05279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among protozoan parasites in the genus Babesia, Babesia bigemina is endemic and widespread in the East African region while the status of the more pathogenic Babesia bovis remains unclear despite the presence of the tick vector, Rhipicephalus microplus, which transmits both species. Recent studies have confirmed the occurrence of R. microplus in coastal Kenya, and although B. bovis DNA has previously been detected in cattle blood in Kenya, no surveillance has been done to establish its prevalence. This study therefore investigated the occurrence of B. bovis in cattle in Kwale County, Kenya, where R. microplus is present in large numbers. METHODS A species-specific multiplex TaqMan real-time PCR assay targeting two Babesia bovis genes, 18S ribosomal RNA and mitochondrially-encoded cytochrome b and B. bigemina cytochrome b gene was used to screen 506 cattle blood DNA samples collected from Kwale County for presence of Babesia parasite DNA. A sub-set of 29 B. bovis real-time PCR-positive samples were further amplified using a B. bovis-specific spherical body protein-4 (SBP-4) nested PCR and the resulting products sequenced to confirm the presence of B. bovis. RESULTS A total of 131 animals (25.8%) were found to have bovine babesiosis based on real-time PCR. Twenty-four SBP4 nucleotide sequences obtained matched to B. bovis with a similarity of 97-100%. Of 131 infected animals, 87 (17.2%) were positive for B. bovis while 70 (13.8%) had B. bigemina and 26 (5.1%) were observed to be co-infected with both Babesia species. A total of 61 animals (12.1%) were found to be infected with B. bovis parasites only, while 44 animals (8.7%) had B. bigemina only. Babesia bovis and B. bigemina infections were detected in the three Kwale sub-counties. CONCLUSION These findings reveal high prevalence of pathogenic B. bovis in a Kenyan area cutting across a busy transboundary livestock trade route with neighbouring Tanzania. The Babesia multiplex real-time PCR assay used in this study is specific and can detect and differentiate the two Babesia species and should be used for routine B. bovis surveillance to monitor the spread and establishment of the pathogen in other African countries where B. bigemina is endemic. Moreover, these findings highlight the threat of fatal babesiosis caused by B. bovis, whose endemic status is yet to be established. GRAPHICAL ABTRACT.
Collapse
Affiliation(s)
| | | | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David Emery
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Edward K Nguu
- Department of Biochemistry, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Esther G Kanduma
- Department of Biochemistry, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya.
| |
Collapse
|
15
|
Prado ICB, Capuno LXB, Collera PDLP, Cabralda APD, De Ramos KAS, Bernardo JMG, Divina BP, Masatani T, Tanaka T, Galay RL. Molecular Detection and Characterization of Babesia and Theileria in Cattle and Water Buffaloes from Southern Luzon, Philippines. Microorganisms 2022; 10:microorganisms10040678. [PMID: 35456730 PMCID: PMC9025510 DOI: 10.3390/microorganisms10040678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/21/2022] Open
Abstract
Babesia and Theileria are tick-borne protozoan parasites that can cause significant economic losses in the cattle industry. This study aimed to contribute to the limited epidemiological data on Theileria orientalis as well as Babesia bigemina and B. bovis in large ruminants in the Philippines. Blood samples of 412 cattle and 108 water buffalo collected from four provinces in Southern Luzon, Philippines, were initially tested for the 18S rRNA gene of piroplasms through nested PCR. Positive samples were further subjected to species-specific PCR. The 18s rRNA of piroplasms was detected in 123 (29.9%) cattle and three (2.8%) water buffaloes. Theileria orientalis was found to be the most common piroplasm in cattle with a detection rate of 17.5%, followed by Babesia bovis and B. bigemina. Co-infections were also observed. Two water buffaloes were found infected with B. bovis, while one was positive for B. bigemina. The phylogenetic tree for B. bovis showed clustering of the isolates in two clades together with isolates from other countries, and a third separate clade. Meanwhile, the T. orientalis isolates in this study were distributed in three clades together with reported isolates from other countries. This study confirms the presence of T. orientalis in the Philippines and reports the genetic diversity of B. bovis and T. orientalis.
Collapse
Affiliation(s)
- Ian Cary B. Prado
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines;
| | - Larry Xerxes B. Capuno
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines; (L.X.B.C.J.); (P.D.C.); (A.P.D.C.); (K.A.S.D.R.); (J.M.G.B.); (B.P.D.)
| | - Princess DLP. Collera
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines; (L.X.B.C.J.); (P.D.C.); (A.P.D.C.); (K.A.S.D.R.); (J.M.G.B.); (B.P.D.)
| | - Aaron Paul D. Cabralda
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines; (L.X.B.C.J.); (P.D.C.); (A.P.D.C.); (K.A.S.D.R.); (J.M.G.B.); (B.P.D.)
| | - Kristina Andrea S. De Ramos
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines; (L.X.B.C.J.); (P.D.C.); (A.P.D.C.); (K.A.S.D.R.); (J.M.G.B.); (B.P.D.)
| | - John Michael G. Bernardo
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines; (L.X.B.C.J.); (P.D.C.); (A.P.D.C.); (K.A.S.D.R.); (J.M.G.B.); (B.P.D.)
| | - Billy P. Divina
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines; (L.X.B.C.J.); (P.D.C.); (A.P.D.C.); (K.A.S.D.R.); (J.M.G.B.); (B.P.D.)
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
- Correspondence: (T.T.); (R.L.G.); Tel.: +81-99-285-3570 (T.T.); +63-049-536-2728 (R.L.G.)
| | - Remil L. Galay
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines; (L.X.B.C.J.); (P.D.C.); (A.P.D.C.); (K.A.S.D.R.); (J.M.G.B.); (B.P.D.)
- Correspondence: (T.T.); (R.L.G.); Tel.: +81-99-285-3570 (T.T.); +63-049-536-2728 (R.L.G.)
| |
Collapse
|
16
|
Serological Survey of Babesia bigemina and Babesia bovis in Cattle and Water Buffaloes from Menoufia Province, Egypt. Acta Parasitol 2021; 66:1458-1465. [PMID: 34043120 DOI: 10.1007/s11686-021-00338-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Bovine babesiosis causes morbidity in tropical and subtropical countries worldwide. The present study aimed to determine the seroprevalence of Babesia bigemina and B. bovis in cattle and water buffaloes in Menoufia province, where the second-highest population of bovines in Lower Egypt are raised. MATERIALS AND METHODS A total of 506 blood samples were collected from cattle (N = 262) and water buffaloes (N = 244) in Menoufia province, Egypt. Seroprevalences of B. bigemina and B. bovis in the samples were determined using recombinant Babesia antigen-specific enzyme-linked immunosorbent assays (ELISA). RESULTS In cattle, the seroprevalences of B. bigemina and B. bovis were 41.60 and 38.17% (37.40 and 35.88% for IgM and 9.54 and 6.11% for IgG), respectively, whereas those of water buffaloes were 35.66 and 31.97% (27.87 and 21.72% for IgM and 15.16 and 15.16% for IgG), respectively. Statistically significant changes in the seroprevalences of the two infective agents were recorded on the basis of region and season of sample collection. CONCLUSION In conclusion, babesiosis is frequent and presents a threat of an epidemic among bovines in Menoufia province. In turn, control of bovine babesiosis is required because of its potential to detrimentally affect milk and meat production in Menoufia province.
Collapse
|
17
|
Lira-Amaya JJ, Martínez-García G, Santamaria-Espinosa RM, Castañeda-Arriola RO, Ojeda-Carrasco JJ, Ávila-Ramírez G, Figueroa-Millán JV. Comparative Study of Indirect Fluorescent Antibody, ELISA, and Immunochromatography Tests for Serological Diagnosis of Bovine Babesiosis Caused by Babesia bovis. Animals (Basel) 2021; 11:ani11123358. [PMID: 34944137 PMCID: PMC8698033 DOI: 10.3390/ani11123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Currently serological diagnosis of bovine babesiosis is based on the detection of Babesia-specific antibodies (immunoglobulin-G). Antibody detection is commonly used in seroepidemiological studies or in the assessment of antibabesial antibody titers after cattle vaccination. The indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA) are the most widely used diagnostic tests, although there their implementation has some drawbacks, principally due to the requirements for trained personnel, specific materials, and special laboratory equipment. This study compared a newly designed rapid immunochromatography test (ICT), which has been reported recently and used for Babesia bovis-specific antibody detection with promising results, with an in-house ELISA for the serological diagnosis of cattle exposed to B. bovis (Babesia bovis) in Mexico. Higher sensitivity and specificity values were found by ICT, proving its effectiveness over ELISA. ICT also had better concordance than ELISA when IFAT was used as the “gold standard”. The rapid ICT was shown to have diagnostic utility for the detection of antibodies against B. bovis and could be used as a field test in Mexico due to its practicality, as it does not need laboratory equipment for implementation and interpretation of results. Abstract The indirect fluorescent antibody test (IFAT) is the most frequently used test to conduct seroepidemiological studies so far, and it is regarded as the "gold standard" test for the serological diagnosis of bovine babesiosis. The aim of the present study was to compare the enzyme-linked immunosorbent assay (ELISA) and the rapid immunochromatography test (ICT) for use in the serological diagnosis of cattle exposed to B. bovis in Mexico. The evaluation of test performance was carried out with 30 positive and 30 negative reference sera. A total of 72 bovine sera samples collected from cattle in a region with endemic bovine babesiosis were analyzed by ELISA and ICT, and the results were compared with those of IFAT. Kappa value (k) was also calculated to determine the agreement between tests. The sensitivity and specificity of ELISA for detecting antibodies against B. bovis were 87% (26/30) and 80% (24/30), respectively. The sensitivity and specificity of ICT for detecting antibodies against B. bovis were 90% (27/30) and 83.3% (25/30), respectively. The overall concordance determined for ELISA and ICT was 94.4% (68/72) and 98.6% (71/72), respectively, when the results were compared with those of IFAT. ICT was more sensitive and specific in this comparative study, showing good strength of agreement (k = 0.79) with respect to IFAT. ICT combines a strip-based assay system that is fast, practical, and sensitive for detection of antibodies to B. bovis, which suggests that it could be applied in the field without requiring any laboratory equipment for its use and interpretation of test results.
Collapse
Affiliation(s)
- José Juan Lira-Amaya
- Babesia Laboratory Unit, CENID-Salud Animal e Inocuidad, INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec 62550, Mexico; (J.J.L.-A.); (G.M.-G.); (R.M.S.-E.)
| | - Grecia Martínez-García
- Babesia Laboratory Unit, CENID-Salud Animal e Inocuidad, INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec 62550, Mexico; (J.J.L.-A.); (G.M.-G.); (R.M.S.-E.)
| | - R. Montserrat Santamaria-Espinosa
- Babesia Laboratory Unit, CENID-Salud Animal e Inocuidad, INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec 62550, Mexico; (J.J.L.-A.); (G.M.-G.); (R.M.S.-E.)
| | - Roberto O. Castañeda-Arriola
- La Posta Experimental Field, INIFAP, Carr. Fed. Veracruz-Cordoba Km. 22.5, Paso del Toro, Medellin 94277, Mexico;
| | - Juan J. Ojeda-Carrasco
- UAEM University Center Amecameca, Autonomous University Mexico State, Carr. Amecameca-Ayapango Km. 2.5, Amecameca 56900, Mexico;
| | - Guillermina Ávila-Ramírez
- Faculty of Medicine, National Autonomous University of Mexico, Circuito Escolar 411A, Copilco Universidad, Ciudad de México 04510, Mexico;
| | - Julio V. Figueroa-Millán
- Babesia Laboratory Unit, CENID-Salud Animal e Inocuidad, INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso, Jiutepec 62550, Mexico; (J.J.L.-A.); (G.M.-G.); (R.M.S.-E.)
- Correspondence: ; Tel.: +52-777-320-5544
| |
Collapse
|
18
|
He L, Bastos RG, Sun Y, Hua G, Guan G, Zhao J, Suarez CE. Babesiosis as a potential threat for bovine production in China. Parasit Vectors 2021; 14:460. [PMID: 34493328 PMCID: PMC8425137 DOI: 10.1186/s13071-021-04948-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022] Open
Abstract
Babesiosis is a tick-borne disease with global impact caused by parasites of the phylum Apicomplexa, genus Babesia. Typically, acute bovine babesiosis (BB) is characterized by fever, anemia, hemoglobinuria, and high mortality. Surviving animals remain persistently infected and become reservoirs for parasite transmission. Bovids in China can be infected by one or more Babesia species endemic to the country, including B. bovis, B. bigemina, B. orientalis, B. ovata, B. major, B. motasi, B. U sp. Kashi and B. venatorum. The latter may pose a zoonotic risk. Occurrence of this wide diversity of Babesia species in China may be due to a combination of favorable ecological factors, such as the presence of multiple tick vectors, including Rhipicephalus and Hyalomma, the coexistence of susceptible bovid species, such as domestic cattle, yaks, and water buffalo, and the lack of efficient measures of tick control. BB is currently widespread in several regions of the country and a limiting factor for cattle production. While some areas appear to have enzootic stability, others have considerable cattle mortality. Research is needed to devise solutions to the challenges posed by uncontrolled BB. Critical research gaps include risk assessment for cattle residing in endemic areas, understanding factors involved in endemic stability, evaluation of parasite diversity and pathogenicity of regional Babesia species, and estimation of whether and how BB should be controlled in China. Research should allow the design of comprehensive interventions to improve cattle production, diminish the risk of human infections, and increase the availability of affordable animal protein for human consumption in China and worldwide. In this review, we describe the current state of BB with reference to the diversity of hosts, vectors, and parasite species in China. We also discuss the unique risks and knowledge gaps that should be taken into consideration for future Babesia research and control strategies.
Collapse
Affiliation(s)
- Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
| | - Yali Sun
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 People’s Republic of China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, International Joint Research Centre for Animal Genetics, Breeding and Reproduction, College of Animal Science & Technology, Huazhong Agriculture University, Wuhan, Hubei China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, 730046 China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA 99164 USA
| |
Collapse
|
19
|
Tan LP, Hamdan RH, Hassan BNH, Reduan MFH, Okene IAA, Loong SK, Khoo JJ, Samsuddin AS, Lee SH. Rhipicephalus Tick: A Contextual Review for Southeast Asia. Pathogens 2021; 10:821. [PMID: 34208961 PMCID: PMC8308476 DOI: 10.3390/pathogens10070821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Rhipicephalus species are distributed globally with a notifiable presence in Southeast Asia (SEA) within animal and human populations. The Rhipicephalus species are highly adaptive and have established successful coexistence within human dwellings and are known to be active all year round, predominantly in tropical and subtropical climates existing in SEA. In this review, the morphological characteristics, epidemiology, and epizootiology of Rhipicephalus tick species found in SEA are reviewed. There are six commonly reported Rhipicephalus ticks in the SEA region. Their interactions with their host species that range from cattle, sheep, and goats, through cats and dogs, to rodents and man are discussed in this article. Rhipicephalus-borne pathogens, including Anaplasma species, Ehrlichia species, Babesia species, and Theileria species, have been highlighted as are relevant to the region in review. Pathogens transmitted from Rhipicepahalus ticks to host animals are usually presented clinically with signs of anemia, jaundice, and other signs of hemolytic changes. Rhipicephalus ticks infestation also account for ectoparasitic nuisance in man and animals. These issues are discussed with specific interest to the SEA countries highlighting peculiarities of the region in the epidemiology of Rhipicephalus species and attendant pathogens therein. This paper also discusses the current general control strategies for ticks in SEA proffering measures required for increased documentation. The potential risks associated with rampant and improper acaricide use are highlighted. Furthermore, such practices lead to acaricide resistance among Rhipicephalus species are highlighted.
Collapse
Affiliation(s)
- Li Peng Tan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Basripuzi Nurul Hayyan Hassan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Mohd Farhan Hanif Reduan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Ibrahim Abdul-Azeez Okene
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa 16100, Kelantan, Malaysia; (R.H.H.); (B.N.H.H.); (M.F.H.R.); (I.A.-A.O.)
| | - Shih Keng Loong
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia; (S.K.L.); (J.J.K.)
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia; (S.K.L.); (J.J.K.)
| | - Ahmad Syazwan Samsuddin
- Forest Biotechnology Laboratory, Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Mycology and Pathology Branch, Forest Biodiversity Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia
| | - Seng Hua Lee
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
20
|
Foughali AA, Ziam H, Aiza A, Boulkrout H, Berber A, Bitam I, Gharbi M. Cross-sectional survey of cattle haemopathogens in Constantine, Northeast Algeria. Vet Med Sci 2021; 7:1237-1244. [PMID: 33683831 PMCID: PMC8294368 DOI: 10.1002/vms3.459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/05/2022] Open
Abstract
This aim of the present study was to estimate the prevalence of haemopathogens in cattle in Beni Hamidene locality, district of Constantine (Νortheastern Algeria). Between June and October 2014, 169 bovines from 25 farms were included in this survey, 32 (18.9%) among them were suspected of piroplasmosis and/or anaplasmosis. Infection prevalences were estimated by microscopic examination of Giemsa‐stained blood smears and blood samples from all included cattle (n = 169). Animals were infected by Theileria annulata (65/169; 38.46%), Anaplasma marginale (22/169; 13%) and Babesia bovis (5/169; 3%). Two co‐infection patterns were found: Theileria annulata/Anaplasma marginale (7.69%) and Theileria annulata/Babesia bovis (1.18%). Only one farm had no cattle infected by any of the haemopathogens. There was a signification difference of T. annulata infection prevalence according to age category (p =.04). These results emphasised mainly the presence of bovine tropical theileriosis in northeastern, Beni Hamidene locality, province of Constantine, Algeria.
Collapse
Affiliation(s)
- Asma Amina Foughali
- Laboratoire de Biodiversité et Environnement : Interactions et Génomes. Université des Sciences et de la Technologie Houari Boumédiène, Algiers, Algeria.,Institut des Sciences Vétérinaires, Université Saad Dahlab, Ouled Yaich, Blida, Algeria
| | - Hocine Ziam
- Institut des Sciences Vétérinaires, Université Saad Dahlab, Ouled Yaich, Blida, Algeria.,Laboratoire de Biotechnologie, Environnement et Santé, Université Saad Dahlab, Blida, Algeria
| | - Asma Aiza
- Laboratoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Université Blida 1, Blida, Algeria
| | | | - Ali Berber
- Laboratoire des Biotechnologies Liées à la Reproduction Animale (LBRA), Université Blida 1, Blida, Algeria
| | - Idir Bitam
- Laboratoire de Biodiversité et Environnement : Interactions et Génomes. Université des Sciences et de la Technologie Houari Boumédiène, Algiers, Algeria.,École Supérieure en Sciences de l'Aliment et des Industries Agroalimentaires (ESSAIA), El Harrach, Alger, Algeria
| | - Mohamed Gharbi
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Univ. Manouba, Sidi Thabet, 2020, Tunisia
| |
Collapse
|
21
|
Knowledge, attitude and perception of bovine piroplasmosis by cattle owners in Constantine, North-East of Algeria, using participatory epidemiology. Trop Anim Health Prod 2021; 53:167. [PMID: 33594496 DOI: 10.1007/s11250-021-02608-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Cattle piroplasmoses are tick-borne diseases, spread worldwide that cause significant economic losses. A participatory epidemiological study was conducted individually or in focus groups with 73 cattle owners in Beni Hamidene locality (district of Constantine, Algeria). The aim of this study was to study cattle owners' knowledge, attitude and perception on cattle piroplasmosis. Proportional piling technique was used to determinate most common cattle diseases, and to evaluate economic impact of diseases according to the interwieved farmers. Theileriosis (49/73; 67.1%) and babesiosis (44/73; 60.3%) were considered the most important bovine diseases. No zoonotic disease was cited by the interviewed cattle owners. According to the majority of cattle owners, theileriosis and babesiosis are deadly diseases (87.3 and 78.1%, respectively). All cattle owners (73/73) cited fever as the most common symptom of tropical theileriosis. Some of them (14/73; 19.2%) do not make distinction between theileriosis and babesiosis. According to cattle owners (65/73; 89.0%), the use of acaricide is the most appropriate tick control method. This study provides information about knowledge on bovine piroplasmoses in Algeria. These information could be considered when performing control programmes by both animal decision-makers and field veterinarians.
Collapse
|
22
|
Ola-Fadunsin SD, Sharma RSK, Abdullah DA, Gimba FI, Abdullah FFJ, Sani RA. The molecular prevalence, distribution and risk factors associated with Babesia bigemina infection in Peninsular Malaysia. Ticks Tick Borne Dis 2021; 12:101653. [PMID: 33465661 DOI: 10.1016/j.ttbdis.2021.101653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Babesia bigemina is a tick-borne protozoan that affects cattle in almost all regions of the world. Despite its importance, there is no report of its prevalence in cattle using molecular detection methods in Peninsular Malaysia. This study describes the prevalence, distribution, and risk factors associated with B. bigemina infection using molecular diagnostic methods. Also, the species of ticks infesting cattle and the attitude of cattle farmers towards tick control in Peninsular Malaysia were studied. Blood samples were collected from 1045 cattle from 43 herds throughout the country, and were subjected to molecular studies to detect B. bigemina. Tick samples for entomological studies were also collected and identified. Epidemiological information of each cattle and farm were obtained using a well-structured questionnaire containing open-ended and closed-ended questions. Data were statistically analyzed using Univariate and Multivariate models. The 211-base pair of AMA-1 gene of B. bigemina was amplified and confirmed in 30.5 % (319/1045; 95 % CI = 27.8-33.4) of the sampled population, with the haemoprotozoan detected in all the sampled herds. Breed, age, physiological status, management type, rate of de-ticking, and closeness to human settlement were the risk factors significantly (p < 0.05) associated with the prevalence of B. bigemina in cattle. Rhipicephalus (Boophilus) microplus and Haemaphysalis bispinosa were the species of ticks collected from cattle, with the former been more prevalent. A large number of cattle farmers (12/43; 28 %) do not control ticks in their herds. The findings of this study will create baseline data on the epidemiology of the haemoprotozoan and control patterns of its tick vectors that will guide the government in enacting policies that will improve food security and the economy of the nation.
Collapse
Affiliation(s)
- Shola David Ola-Fadunsin
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ilorin, PMB, 1515 Ilorin, Kwara State, Nigeria.
| | | | - Donea Abdurazak Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Department of Animal Production, Northern Technical University Mosul, Iraq
| | - Fufa Ido Gimba
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Maiduguri, PMB 1069, Maiduguri, Bornu State, Nigeria
| | | | - Rehana Abdullah Sani
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
Esteve-Gasent MD, Rodríguez-Vivas RI, Medina RF, Ellis D, Schwartz A, Cortés Garcia B, Hunt C, Tietjen M, Bonilla D, Thomas D, Logan LL, Hasel H, Alvarez Martínez JA, Hernández-Escareño JJ, Mosqueda Gualito J, Alonso Díaz MA, Rosario-Cruz R, Soberanes Céspedes N, Merino Charrez O, Howard T, Chávez Niño VM, Pérez de León AA. Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens 2020; 9:pathogens9110871. [PMID: 33114005 PMCID: PMC7690670 DOI: 10.3390/pathogens9110871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
Bovine babesiosis is a reportable transboundary animal disease caused by Babesia bovis and Babesiabigemina in the Americas where these apicomplexan protozoa are transmitted by the invasive cattle fever ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus(Boophilus) annulatus. In countries like Mexico where cattle fever ticks remain endemic, bovine babesiosis is detrimental to cattle health and results in a significant economic cost to the livestock industry. These cattle disease vectors continue to threaten the U.S. cattle industry despite their elimination through efforts of the Cattle Fever Tick Eradication Program. Mexico and the U.S. share a common interest in managing cattle fever ticks through their economically important binational cattle trade. Here, we report the outcomes of a meeting where stakeholders from Mexico and the U.S. representing the livestock and pharmaceutical industry, regulatory agencies, and research institutions gathered to discuss research and knowledge gaps requiring attention to advance progressive management strategies for bovine babesiosis and cattle fever ticks. Research recommendations and other actionable activities reflect commitment among meeting participants to seize opportunities for collaborative efforts. Addressing these research gaps is expected to yield scientific knowledge benefitting the interdependent livestock industries of Mexico and the U.S. through its translation into enhanced biosecurity against the economic and animal health impacts of bovine babesiosis and cattle fever ticks.
Collapse
Affiliation(s)
- Maria D. Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Roger I. Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán 97000, Mexico
- Correspondence:
| | - Raúl F. Medina
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Dee Ellis
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, College Station, TX 77843, USA; (D.E.); (C.H.)
| | - Andy Schwartz
- Texas Animal Health Commission, Austin, TX 78758, USA;
| | - Baltazar Cortés Garcia
- Departamento de Rabia Paralítica y Garrapata, Dirección de Campañas Zoosanitarias, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Avenida Insurgentes Sur N° 489 Piso 9, Colonia Hipódromo, Alcaldía Cuauhtémoc, Ciudad de Mexico 06100, Mexico;
| | - Carrie Hunt
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, College Station, TX 77843, USA; (D.E.); (C.H.)
| | - Mackenzie Tietjen
- United States Department of Agriculture, Agricultural Research Service (USDA–ARS), Knipling–Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, USA; (M.T.); (A.A.P.d.L.)
| | - Denise Bonilla
- Veterinary Services, Animal and Plant Health Inspection Service International Services, United States Department of Agriculture (USDA-APHIS), Fort Collins, CO 80526, USA;
| | - Don Thomas
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Cattel Fever Tick Research Laboratory, Moore Air Base, Edinburg, TX 78541, USA;
| | - Linda L. Logan
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Hallie Hasel
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, (USDA-APHIS-VS), Austin, TX 78701, USA;
| | - Jesús A. Alvarez Martínez
- CENID-SAI, Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso. Jiutepec, Morelos 62390, Mexico;
| | - Jesús J. Hernández-Escareño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Francisco Villa S/N, Hacienda del Canada, Ciudad General Escobedo, Nuevo León 66054, Mexico;
| | - Juan Mosqueda Gualito
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, Queretaro Queretaro 76140, Mexico;
| | - Miguel A. Alonso Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de la Torre, Martínez de la Torre, Veracruz 93600, Mexico;
| | - Rodrigo Rosario-Cruz
- BioSA Research Lab., Natural Sciences College, Campus el ‘Shalako’ Las Petaquillas, Autonomous Guerrero State University, Chilpancingo, Guerrero 62105, Mexico;
| | - Noé Soberanes Céspedes
- Lapisa S.A. de C.V. Carretera La Piedad-Guadalajara Km 5.5, Col. Camelinas, La Piedad, Michoacán 59375, Mexico;
| | - Octavio Merino Charrez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 Carretera Victoria-Mante, Ciudad Victoria, Tamaulipas 87000, Mexico;
| | - Tami Howard
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, (USDA-APHIS-VS), Field Operations, Southern Border Ports, Albuquerque, NM 87109, USA;
| | - Victoria M. Chávez Niño
- United States Department of Agriculture, Animal and Plant Health Inspection Service, International Services, (USDA-APHIS-IS), Mexico, Sierra Nevada 115, Col. Lomas de Chapultepec, Mexico City 11000, Mexico;
| | - Adalberto A. Pérez de León
- United States Department of Agriculture, Agricultural Research Service (USDA–ARS), Knipling–Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, USA; (M.T.); (A.A.P.d.L.)
| |
Collapse
|
24
|
Stuart Tayebwa D, Magdy Beshbishy A, Batiha GES, Komugisha M, Joseph B, Vudriko P, Yahia R, Alkazmi L, Hetta HF, Yokoyama N, Igarashi I. Assessing the Immunochromatographic Test Strip for Serological Detection of Bovine Babesiosis in Uganda. Microorganisms 2020; 8:microorganisms8081110. [PMID: 32722070 PMCID: PMC7464521 DOI: 10.3390/microorganisms8081110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
In Uganda, bovine babesiosis continues to cause losses to the livestock industry because of shortages of cheap, quick, and reliable diagnostic tools to guide prescription measures. In this study, the presence of antibodies to Babesia bigemina and Babesia bovis in 401 bovine blood samples obtained from eastern and central areas of Uganda were detected using enzyme-linked immunosorbent assays (ELISAs) and immunochromatographic test strips (ICTs). The ELISA and ICT test used targeted the B. bigemina C-terminal rhoptry-associated protein (RAP-1/CT17) and B. bovis spherical body protein-4 (SPB-4). Using ELISA, single-ICT and dual-ICT, positive samples for B. bovis were detected in 25 (6.2%), 17 (4.3%), and 14 (3.7%) samples respectively, and positive samples for B. bigemina were detected in 34 (8.4%), 27 (6.7%), and 25 (6.2%), respectively. Additionally, a total of 13 animals (3.2%) had a mixed infection. The correlation between ELISA and single-ICT strips results revealed slight agreement with kappa values ranging from 0.088 to 0.191 between both methods, while the comparison between dual-ICT and single-ICT results showed very good agreement with kappa values >0.80. This study documented the seroprevalence of bovine babesiosis in central and eastern Uganda, and showed that ICT could, after further optimization, be a useful rapid diagnostic test for the diagnosis of bovine babesiosis in field settings.
Collapse
Affiliation(s)
- Dickson Stuart Tayebwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 -13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; (D.S.T.); (A.M.B.); (P.V.); (N.Y.)
- RTC Laboratory, College of Veterinary Medicine, Animals’ Resources and Biosecurity, Makerere University, Kampala 7062, Uganda;
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 -13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; (D.S.T.); (A.M.B.); (P.V.); (N.Y.)
| | - Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 -13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; (D.S.T.); (A.M.B.); (P.V.); (N.Y.)
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, El-Beheira, Egypt
- Correspondence: (G.E.-S.B.); (I.I.); Tel.: +20-45-271-6024 (G.E.-S.B. & I.I.); Fax: +20-45-271-6024 (G.E.-S.B. & I.I.)
| | - Mariam Komugisha
- Department of Animal Health, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 513, Uganda;
| | - Byaruhanga Joseph
- RTC Laboratory, College of Veterinary Medicine, Animals’ Resources and Biosecurity, Makerere University, Kampala 7062, Uganda;
| | - Patrick Vudriko
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 -13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; (D.S.T.); (A.M.B.); (P.V.); (N.Y.)
- RTC Laboratory, College of Veterinary Medicine, Animals’ Resources and Biosecurity, Makerere University, Kampala 7062, Uganda;
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of pharmacy, Deraya University, Minia 11566, Egypt;
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 -13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; (D.S.T.); (A.M.B.); (P.V.); (N.Y.)
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 -13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; (D.S.T.); (A.M.B.); (P.V.); (N.Y.)
- Correspondence: (G.E.-S.B.); (I.I.); Tel.: +20-45-271-6024 (G.E.-S.B. & I.I.); Fax: +20-45-271-6024 (G.E.-S.B. & I.I.)
| |
Collapse
|
25
|
Ganzinelli S, Benitez D, Gantuya S, Guswanto A, Florin-Christensen M, Schnittger L, Igarashi I. Highly sensitive nested PCR and rapid immunochromatographic detection of Babesia bovis and Babesia bigemina infection in a cattle herd with acute clinical and fatal cases in Argentina. Transbound Emerg Dis 2019; 67 Suppl 2:159-164. [PMID: 31880063 DOI: 10.1111/tbed.13435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 10/01/2019] [Accepted: 11/04/2019] [Indexed: 01/19/2023]
Abstract
Bovine babesiosis is a tick-transmitted haemoparasitic disease caused by Babesia bovis and B. bigemina affecting cattle of tropical and subtropical regions around the world. Pathogens are transmitted by the tick vector Rhipicephalus microplus displaying a widespread distribution in northeastern Argentina. The disease is characterized by significant animal morbidity and mortality resulting in considerable economic loss. In this study, B. bovis and B. bigemina infection was investigated in a cattle herd of 150 adult bovines of pure Braford breed raised in a tick-hyperendemic field using molecular and serum antibody tests. A highly sensitive nested polymerase chain reaction (nPCR) assay targeting a species-specific region of the apocytochrome b gene resulted in direct B. bovis and B. bigemina detection in 27.3% and 54.7% of bovines, respectively. A recently developed immunochromatographic strip test (ICT) based on recombinant forms of spherical body protein 4 and the C-terminal region of rhoptry-associated protein 1 showed that 71.3% and 89.3% of bovines were seropositive for B. bovis and B. bigemina, respectively. The mixed infection rate as observed by direct (19.3%) and indirect detection (65.3%) coincided with those expected, respectively. Importantly, four months after sampling, nine bovines of the studied herd showed clinical signs of bovine babesiosis of which six animals eventually died. Microscopic detection of infected erythrocytes in Giemsa-stained blood smears confirmed B. bovis infection. Our study demonstrates that although animals showed a relatively high and very high rate of immunity against infection with B. bovis (71.3%) and B. bigemina (89.3%) parasites, respectively, clinical cases and fatalities due to the infection with B. bovis were observed. It is proposed that the most adequate control measure in the studied epidemiological situation is to vaccinate animals to prevent losses and/or an outbreak of bovine babesiosis.
Collapse
Affiliation(s)
- Sabrina Ganzinelli
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Benitez
- Estación Experimental Agropecuaria (EEA), INTA-Mercedes, Mercedes, Argentina
| | - Sambuu Gantuya
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Azirwan Guswanto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Monica Florin-Christensen
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, CICVyA, INTA-Castelar, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
26
|
Sahara A, Nugraheni YR, Patra G, Prastowo J, Priyowidodo D. Ticks ( Acari: Ixodidae) infestation on cattle in various regions in Indonesia. Vet World 2019; 12:1755-1759. [PMID: 32009753 PMCID: PMC6925042 DOI: 10.14202/vetworld.2019.1755-1759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/04/2019] [Indexed: 01/24/2023] Open
Abstract
Background and Aim: Ticks (Ixodidae) not only cause blood loss in cattle but also serve as vectors for various diseases, thus causing direct and indirect losses. Moreover, tick infestation can cause significant economic losses. This study aimed to identify the diverse species of ticks infesting cattle in five different regions in Indonesia. Materials and Methods: Tick specimens were obtained from local cattle in five different areas in Indonesia. The morphology of the specimens was macroscopically and microscopically evaluated, and the resulting data were descriptively and qualitatively analyzed. Results: In total, 1575 ticks were successfully collected from 26 animals. In total, two genera and three species, namely, Rhipicephalus microplus, Haemaphysalis bispinosa, and Rhipicephalus pilans, were identified. The cattle in Yogyakarta and Riau were infested by H. bispinosa, while the cattle in Sukabumi, Bali, and Lombok were infested by R. microplus and R. pilans. The level of infestation varied among regions, with R. microplus being the most commonly found species. Conclusion: The results of this study revealed that cattle in different regions of Indonesia were infested by variable numbers of tick species. In particular, the cattle in Yogyakarta and Riau were solely infested by H. bispinosa; this is a new finding in terms of the distribution of tick species in the country. Increased tick infestation in cattle decreases productivity and causes health problems; therefore, it deserves serious attention. Our findings can help in the formulation of an effective strategy for controlling and preventing cattle tick infestation in the country.
Collapse
Affiliation(s)
- Ana Sahara
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yudhi Ratna Nugraheni
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Gautam Patra
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Aizawl, Mizoram, India
| | - Joko Prastowo
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Priyowidodo
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|