1
|
Keleş S, Alakbarli J, Akgül B, Baghirova M, Imamova N, Barati A, Shikhaliyeva I, Allahverdiyev A. Nanotechnology based drug delivery systems for malaria. Int J Pharm 2024; 666:124746. [PMID: 39321903 DOI: 10.1016/j.ijpharm.2024.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Malaria, caused by Plasmodium parasites transmitted through Anopheles mosquitoes, remains a global health burden, particularly in tropical regions. The most lethal species, Plasmodium falciparum and Plasmodium vivax, pose significant threats to human health. Despite various treatment strategies, malaria continues to claim lives, with Africa being disproportionately affected. This review explores the advancements in drug delivery systems for malaria treatment, focusing on polymeric and lipid-based nanoparticles. Traditional antimalarial drugs, while effective, face challenges such as toxicity and poor bio-distribution. To overcome these issues, nanocarrier systems have been developed, aiming to enhance drug efficacy, control release, and minimize side effects. Polymeric nanocapsules, dendrimers, micelles, liposomes, lipid nanoparticles, niosomes, and exosomes loaded with antimalarial drugs are examined, providing a comprehensive overview of recent developments in nanotechnology for malaria treatment. The current state of antimalarial treatment, including combination therapies and prophylactic drugs, is discussed, with a focus on the World Health Organization's recommendations. The importance of nanocarriers in malaria management is underscored, highlighting their role in targeted drug delivery, controlled release, and improved pharmacological properties. This review bridges the gap in the literature, consolidating the latest advancements in nanocarrier systems for malaria treatment and offering insights into potential future developments in the field.
Collapse
Affiliation(s)
- Sedanur Keleş
- Faculty of Engineering, Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Jahid Alakbarli
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan; Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Buşra Akgül
- Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Malahat Baghirova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Nergiz Imamova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Ana Barati
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Inji Shikhaliyeva
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Adil Allahverdiyev
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan.
| |
Collapse
|
2
|
Gupta H, Sharma S, Gilyazova I, Satyamoorthy K. Molecular tools are crucial for malaria elimination. Mol Biol Rep 2024; 51:555. [PMID: 38642192 DOI: 10.1007/s11033-024-09496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
The eradication of Plasmodium parasites, responsible for malaria, is a daunting global public health task. It requires a comprehensive approach that addresses symptomatic, asymptomatic, and submicroscopic cases. Overcoming this challenge relies on harnessing the power of molecular diagnostic tools, as traditional methods like microscopy and rapid diagnostic tests fall short in detecting low parasitaemia, contributing to the persistence of malaria transmission. By precisely identifying patients of all types and effectively characterizing malaria parasites, molecular tools may emerge as indispensable allies in the pursuit of malaria elimination. Furthermore, molecular tools can also provide valuable insights into parasite diversity, drug resistance patterns, and transmission dynamics, aiding in the implementation of targeted interventions and surveillance strategies. In this review, we explore the significance of molecular tools in the pursuit of malaria elimination, shedding light on their key contributions and potential impact on public health.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sonal Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, 450054, Russia
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| |
Collapse
|
3
|
Mac Donald JW, Frean JA, Ratabane JM, Moodley B, Mannaru K, Holz GE. A case of babesiosis in a returning traveller. S Afr J Infect Dis 2024; 39:588. [PMID: 38628426 PMCID: PMC11019078 DOI: 10.4102/sajid.v39i1.588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 04/19/2024] Open
Abstract
Human babesiosis data in Africa is scarce. The clinical presentation and parasite morphology mimics falciparum malaria infection. Diagnostic confirmation is informed by adequate history and communication with the laboratory to activate appropriate testing. This case report describes the course of a returning traveller with persisting symptoms that resolved on tailored antimicrobial therapy following prompt collaborative diagnosis. Contribution Case highlighting overlapping characteristics of Babesia and malaria infection, necessitating close clinical and laboratory correlation to confirm diagnosis.
Collapse
Affiliation(s)
- James W Mac Donald
- Department of Microbiology, Lancet Laboratories, Johannesburg, South Africa
| | - John A Frean
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John M Ratabane
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bhavani Moodley
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Karissa Mannaru
- Department of Haematology, Lancet Laboratories, Johannesburg, South Africa
| | - Guillaume E Holz
- Specialist Physician, Private Practice, Johannesburg, South Africa
| |
Collapse
|
4
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Bechtold P, Wagner P, Hosch S, Gregorini M, Stark WJ, Gody JC, Kodia-Lenguetama ER, Pagonendji MS, Donfack OT, Phiri WP, García GA, Nsanzanbana C, Daubenberger CA, Schindler T, Vickos U. Development and evaluation of PlasmoPod: A cartridge-based nucleic acid amplification test for rapid malaria diagnosis and surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001516. [PMID: 37756280 PMCID: PMC10529553 DOI: 10.1371/journal.pgph.0001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Malaria surveillance is hampered by the widespread use of diagnostic tests with low sensitivity. Adequate molecular malaria diagnostics are often only available in centralized laboratories. PlasmoPod is a novel cartridge-based nucleic acid amplification test for rapid, sensitive, and quantitative detection of malaria parasites. PlasmoPod is based on reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of the highly abundant Plasmodium spp. 18S ribosomal RNA/DNA biomarker and is run on a portable qPCR instrument which allows diagnosis in less than 30 minutes. Our analytical performance evaluation indicates that a limit-of-detection as low as 0.02 parasites/μL can be achieved and no cross-reactivity with other pathogens common in malaria endemic regions was observed. In a cohort of 102 asymptomatic individuals from Bioko Island with low malaria parasite densities, PlasmoPod accurately detected 83 cases, resulting in an overall detection rate of 81.4%. Notably, there was a strong correlation between the Cq values obtained from the reference RT-qPCR assay and those obtained from PlasmoPod. In an independent cohort, using dried blood spots from malaria symptomatic children living in the Central African Republic, we demonstrated that PlasmoPod outperforms malaria rapid diagnostic tests based on the PfHRP2 and panLDH antigens as well as thick blood smear microscopy. Our data suggest that this 30-minute sample-to-result RT-qPCR procedure is likely to achieve a diagnostic performance comparable to a standard laboratory-based RT-qPCR setup. We believe that the PlasmoPod rapid NAAT could enable widespread accessibility of high-quality and cost-effective molecular malaria surveillance data through decentralization of testing and surveillance activities, especially in elimination settings.
Collapse
Affiliation(s)
- Philippe Bechtold
- Institute for Chemical and Bioengineering, ETH Zurich, Zuerich, Switzerland
- Diaxxo AG, Zuerich, Switzerland
| | - Philipp Wagner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Salome Hosch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Michele Gregorini
- Institute for Chemical and Bioengineering, ETH Zurich, Zuerich, Switzerland
- Diaxxo AG, Zuerich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zuerich, Switzerland
- Diaxxo AG, Zuerich, Switzerland
| | - Jean Chrysostome Gody
- Paediatric Hospital and University Complex of Bangui, Bangui, Central African Republic
| | | | | | | | | | | | - Christian Nsanzanbana
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Claudia A. Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ulrich Vickos
- Infectious and Tropical Diseases Unit, Department of Medicine, Amitié Hospital, Bangui, Central African Republic
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Huang L, Jasim I, Alkorjia O, Agca C, Oksman A, Agca Y, Goldberg DE, Benson JD, Almasri M. An impedance based microfluidic sensor for evaluation of individual red blood cell solute permeability. Anal Chim Acta 2023; 1267:341226. [PMID: 37257960 DOI: 10.1016/j.aca.2023.341226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
-In this paper, we investigate a microfluidic based sensing device for cell membrane permeability measurements in real time with applications in rapid assessment of red blood cell (RBC) quality at the individual cell level. The microfluidic chip was designed with unique abilities to line up the RBCs in the centerline of the microchannel using positive dielectrophoresis (p-DEP) forces, rapid mixing of RBCs with various media (e.g. containing permeating or nonpermeating solutes) injected from different inlets to achieve high mixing efficiency. The chip detects the impedance values of the RBCs within 0.19 s from the start of mixing with other media, at ten electrodes along the length of the channel and enables time series measurements of volume change of individual cell caused by cell osmosis in anisosmotic fluids over a 0.8 s postmixing timespan. This technique enables estimating water permeability of individual cell accurately. Here we first present confirmation of a linear voltage-diameter relationship in polystyrene bead standards. Next, we show that under equilibrium conditions, the voltage-volume relationship in rat red blood cells (RBCs) is linear, corresponding to previously published Boyle van 't Hoff plots. Using rat cells as a model for human, we present the first measurement of water permeability in individual red blood cells and confirm that these data align with previously published population level values for human RBC. Finally, we present preliminary evidence for possible application of our device to identify individual RBCs infected with Plasmodium falciparum malaria parasites. Future developments using this device will address the use of whole blood with non-homogenous cell populations, a task currently performed by clinical Coulter counters.
Collapse
Affiliation(s)
- Lining Huang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, MO, USA
| | - Ibrahim Jasim
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, MO, USA
| | - Omar Alkorjia
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, MO, USA
| | - Cansu Agca
- Department of Veterinary Pathology, University of Missouri-Columbia, MO, USA
| | - Anna Oksman
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63130, USA
| | - Yuksel Agca
- Department of Veterinary Pathology, University of Missouri-Columbia, MO, USA
| | - Daniel E Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63130, USA
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Mahmoud Almasri
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, MO, USA.
| |
Collapse
|
7
|
Natama HM, Traoré TE, Rouamba T, Somé MA, Zango SH, Rovira-Vallbona E, Sorgho H, Guetens P, Coulibaly-Traoré M, Valéa I, Tinto H, Rosanas-Urgell A. Performance of PfHRP2-RDT for malaria diagnosis during the first year of life in a high malaria transmission area in Burkina Faso. J Parasit Dis 2023; 47:280-289. [PMID: 37193494 PMCID: PMC10182193 DOI: 10.1007/s12639-023-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
In this study, we evaluated the performance of a P. falciparum Histidine Rich Protein 2 (PfHRP2)-based rapid diagnostic test (RDT) used for malaria case detection (SD-Bioline malaria RDT P.f®) along with light microscopy (LM) against qPCR among children during the first year of life in a high and seasonal malaria transmission area in Burkina Faso. A total of 723 suspected malaria cases (including multiple episodes) that occurred among 414 children participating in a birth-cohort study were included in the present analysis. Factors including age at the time of malaria screening, transmission season and parasite densities were investigated for their potential influence in the performance of the RDT. Clinical malaria cases as detected by RDT, LM and qPCR were 63.8%, 41.5% and 49.8%, respectively. Compared with qPCR, RDT had a false-positive results rate of 26.7%, resulting in an overall accuracy of 79.9% with a sensitivity of 93%, a specificity of 66.1%, a Positive Predictive Value of 73.3% and a Negative Predictive Value of 91.6%. Its specificity differed significantly between high and low transmission seasons (53.7% vs 79.8%; P < 0.001) and decreased with increasing age (80.6-62%; P for trend = 0.024). The overall accuracy of LM was 91.1% and its performance was not significantly influenced by transmission season or age. These findings highlight the need to adapt malaria diagnostic tools recommendations to face the challenge of adequate malaria detection in this population group living in high burden and seasonal malaria transmission settings.
Collapse
Affiliation(s)
- Hamtandi Magloire Natama
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Tiampan Edwig Traoré
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - M. Athanase Somé
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Serge Henri Zango
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Eduard Rovira-Vallbona
- Universitat de Barcelona, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Hermann Sorgho
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maminata Coulibaly-Traoré
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Innocent Valéa
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Halidou Tinto
- Institut de Recherche en Sciences de La Santé (IRSS), Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
8
|
Baptista V, Silva M, Ferreira GM, Calçada C, Minas G, Veiga MI, Catarino SO. Optical Spectrophotometry as a Promising Method for Quantification and Stage Differentiation of Plasmodium falciparum Parasites. ACS Infect Dis 2023; 9:140-149. [PMID: 36490289 DOI: 10.1021/acsinfecdis.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide, claiming half a million lives yearly. Prompt and accurate diagnosis is crucial for disease control and elimination. Currently used diagnostic methods require blood sampling and fail to detect low-level infections. At the symptomatic stage of infection, the parasites feed on red blood cells' (RBCs) hemoglobin, forming inert crystals, the hemozoin, in the process. Thus, along with parasite maturation inside the RBCs, the hemoglobin and hemozoin proportion is inversely related, and they generate specific optical spectra, according to their concentration. Herein, to address the issues of finger prick sampling and the lack of sensitivity of the parasitological test, we explored the optical features of Plasmodium falciparum-infected RBCs through absorbance and reflectance spectrophotometric characterization, aiming for their detection. This is the first work fully characterizing the spectrophotometric properties of P. falciparum-infected RBCs by using only 16 specific wavelengths within the visible optical spectra and two different post-processing algorithms. With such an innovative methodology, low-level infections can be detected and quantified, and early- and late-stage development can be clearly distinguished, not only improving the current detection limits but also proving the successful applicability of spectrophotometry for competitive and accurate malaria diagnosis.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Miguel Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Gabriel M Ferreira
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Susana O Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Singh A, Singh MP, Bhandari S, Rajvanshi H, Nisar S, Telasey V, Jayswar H, Mishra AK, Das A, Kaur H, Lal AA, Bharti PK. Significance of nested PCR testing for the detection of low-density malaria infection amongst febrile patients from the Malaria Elimination Demonstration Project in Mandla, Madhya Pradesh, India. Malar J 2022; 21:341. [PMCID: PMC9669540 DOI: 10.1186/s12936-022-04355-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Low-density malaria infections (LDMI) are defined as infections that are missed by the rapid diagnostic test (RDT) and/or microscopy which can lead to continued transmission and poses a challenge in malaria elimination efforts. This study was conducted to investigate the prevalence of LDMI in febrile cases using species-specific nested Polymerase Chain Reaction (PCR) tests in the Malaria Elimination Demonstration Project, where routine diagnosis was conducted using RDT.
Methods
Every 10th fever case from a cross-sectional community based fever surveillance was tested with RDT, microscopy and nested PCR. Parasite DNA was isolated from the filter paper using Chelex based method. Molecular diagnosis by nested PCR was performed targeting 18SrRNA gene for Plasmodium species.
Results
The prevalence of malaria was 2.50% (436/17405) diagnosed by PCR, 1.13% (196/17405) by RDT, and 0.68% (118/ 17,405) by microscopy. Amongst 17,405 febrile samples, the prevalence of LDMI was 1.51% (263/17405) (95% CI 1.33–1.70), which were missed by conventional methods. Logistic regression analysis revealed that illness during summer season [OR = 1.90 (p < 0.05)] and cases screened within three days of febrile illness [OR = 5.27 (p < 0.001)] were the statistically significant predictors of LDMI.
Conclusion
The prevalence of malaria among febrile cases using PCR was 2.50% (436/17405) as compared to 1.13% (196/17405) by RDT. Higher number of the LDMI cases were found in subjects with ≤ 3 days mean duration of reported fever, which was statistically significant (p < 0.001). This observation suggests that an early detection of malaria with a more sensitive diagnostic method or repeat testing of the all negative cases may be useful for curtailing malaria transmission. Therefore, malaria elimination programme would benefit from using more sensitive and specific diagnostic methods, such as PCR.
Collapse
|
10
|
Turnbull LB, Ayodo G, Knight V, John CC, McHenry MS, Tran TM. Evaluation of an ultrasensitive HRP2-based rapid diagnostic test for detection of asymptomatic Plasmodium falciparum parasitaemia among children in western Kenya. Malar J 2022; 21:337. [PMID: 36380379 PMCID: PMC9667565 DOI: 10.1186/s12936-022-04351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Accurate detection of asymptomatic malaria parasitaemia in children living in high transmission areas is important for malaria control and reduction programmes that employ screen-and-treat surveillance strategies. Relative to microscopy and conventional rapid diagnostic tests (RDTs), ultrasensitive RDTs (us-RDTs) have demonstrated reduced limits of detection with increased sensitivity to detect parasitaemia in symptomatic individuals. In this study, the performance of the NxTek™ Eliminate Malaria P.f test was compared with traditional microscopy and quantitative polymerase chain reaction (qPCR) testing methods of detection for P. falciparum parasitaemia among asymptomatic children aged 7-14 years living in an area of high malaria transmission intensity in western Kenya. METHODS In October 2020, 240 healthy children without any reported malaria symptoms were screened for the presence of P. falciparum parasitaemia; 120 children were randomly selected to participate in a follow-up visit at 6-10 weeks. Malaria parasitaemia was assessed by blood-smear microscopy, us-RDT, and qPCR of a conserved var gene sequence from genomic DNA extracted from dried blood spots. Sensitivity, specificity, and predictive values were calculated for field diagnostic methods using qPCR as the gold standard. Comparison of detectable parasite density distributions and area under the curve were also calculated to determine the effectiveness of the us-RDT in detecting asymptomatic infections with low parasite densities. RESULTS The us-RDT detected significantly more asymptomatic P. falciparum infections than microscopy (42.5% vs. 32.2%, P = 0.002). The positive predictive value was higher for microscopy (92.2%) than for us-RDT (82.4%). However, false negative rates were high for microscopy and us-RDT, with negative predictive values of 53.7% and 54.6%, respectively. While us-RDT detected significantly more infections than microscopy overall, the density distribution of detectable infections did not differ (P = 0.21), and qPCR detected significantly more low-density infections than both field methods (P < 0.001, for both comparisons). CONCLUSIONS Us-RDT is more sensitive than microscopy for detecting asymptomatic malaria parasitaemia in children. Though the detectable parasite density distributions by us-RDT in our specific study did not significantly differ from microscopy, the additional sensitivity of the us-RDT resulted in more identified asymptomatic infections in this important group of the population and makes the use of the us-RDT advisable compared to other currently available malaria field detection methods.
Collapse
Affiliation(s)
- Lindsey B Turnbull
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - George Ayodo
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Veronicah Knight
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan S McHenry
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Tuan M Tran
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Picot S, Perpoint T, Chidiac C, Sigal A, Javouhey E, Gillet Y, Jacquin L, Douplat M, Tazarourte K, Argaud L, Wallon M, Miossec C, Bonnot G, Bienvenu AL. Diagnostic accuracy of fluorescence flow-cytometry technology using Sysmex XN-31 for imported malaria in a non-endemic setting. Parasite 2022; 29:31. [PMID: 35638753 PMCID: PMC9153516 DOI: 10.1051/parasite/2022031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria diagnosis based on microscopy is impaired by the gradual disappearance of experienced microscopists in non-endemic areas. Aside from the conventional diagnostic methods, fluorescence flow cytometry technology using Sysmex XN-31, an automated haematology analyser, has been registered to support malaria diagnosis. The aim of this prospective, monocentric, non-interventional study was to evaluate the diagnostic accuracy of the XN-31 for the initial diagnosis or follow-up of imported malaria cases compared to the reference malaria tests including microscopy, loop mediated isothermal amplification, and rapid diagnostic tests. Over a one-year period, 357 blood samples were analysed, including 248 negative and 109 positive malaria samples. Compared to microscopy, XN-31 showed sensitivity of 100% (95% CI: 97.13–100) and specificity of 98.39% (95% CI: 95.56–100) for the initial diagnosis of imported malaria cases. Moreover, it provided accurate species identification asfalciparumor non-falciparumand parasitaemia determination in a very short time compared to other methods. We also demonstrated that XN-31 was a reliable method for patient follow-up on days 3, 7, and 28. Malaria diagnosis can be improved in non-endemic areas by the use of dedicated haematology analysers coupled with standard microscopy or other methods in development, such as artificial intelligence for blood slide reading. Given that XN-31 provided an accurate diagnosis in 1 min, it may reduce the time interval before treatment and thus improve the outcome of patient who have malaria.
Collapse
Affiliation(s)
- Stéphane Picot
- Service de Parasitologie et Mycologie Médicale, Groupement Hospitalier Nord, Hospices Civils de Lyon,69004 Lyon,France - Université de Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246,69100 Villeurbanne,France
| | - Thomas Perpoint
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon,69004 Lyon,France
| | - Christian Chidiac
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon,69004 Lyon,France - CIRI Équipe PH3ID - INSERM - U1111- UCBL Lyon 1 - CNRS - UMR5308 - ENS de Lyon,69007 Lyon,France
| | - Alain Sigal
- Service d'accueil des urgences, Hôpital de la Croix-Rousse, Hospices Civils de Lyon,69004 Lyon,France
| | - Etienne Javouhey
- Service de Réanimation et Urgences Pédiatriques, Hôpital Femme-Mere-Enfant, Hospices Civils de Lyon,69500 Lyon,France
| | - Yves Gillet
- Service de Réanimation et Urgences Pédiatriques, Hôpital Femme-Mere-Enfant, Hospices Civils de Lyon,69500 Lyon,France
| | - Laurent Jacquin
- Service d'accueil des urgences, Hôpital Edouard Herriot, Hospices Civils de Lyon,69008 Lyon,France
| | - Marion Douplat
- Service d'accueil des urgences, Hôpital Lyon Sud, Hospices Civils de Lyon,69310 Lyon,France - Université de Lyon, Université Claude Bernard Lyon 1, HESPER EA 7425,69008 Lyon,France
| | - Karim Tazarourte
- Service d'accueil des urgences, Hôpital Edouard Herriot, Hospices Civils de Lyon,69008 Lyon,France - Université de Lyon, Université Claude Bernard Lyon 1, HESPER EA 7425,69008 Lyon,France
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation,69008 Lyon,France
| | - Martine Wallon
- Service de Parasitologie et Mycologie Médicale, Groupement Hospitalier Nord, Hospices Civils de Lyon,69004 Lyon,France
| | - Charline Miossec
- Service de Parasitologie et Mycologie Médicale, Groupement Hospitalier Nord, Hospices Civils de Lyon,69004 Lyon,France
| | - Guillaume Bonnot
- Université de Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246,69100 Villeurbanne,France
| | - Anne-Lise Bienvenu
- Université de Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246,69100 Villeurbanne,France - Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon,69004 Lyon,France
| |
Collapse
|
12
|
Otambo WO, Olumeh JO, Ochwedo KO, Magomere EO, Debrah I, Ouma C, Onyango P, Atieli H, Mukabana WR, Wang C, Lee MC, Githeko AK, Zhou G, Githure J, Kazura J, Yan G. Health care provider practices in diagnosis and treatment of malaria in rural communities in Kisumu County, Kenya. Malar J 2022; 21:129. [PMID: 35459178 PMCID: PMC9034626 DOI: 10.1186/s12936-022-04156-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Accurate malaria diagnosis and appropriate treatment at local health facilities are critical to reducing morbidity and human reservoir of infectious gametocytes. The current study assessed the accuracy of malaria diagnosis and treatment practices in three health care facilities in rural western Kenya. METHODS The accuracy of malaria detection and treatment recommended compliance was monitored in two public and one private hospital from November 2019 through March 2020. Blood smears from febrile patients were examined by hospital laboratory technicians and re-examined by an expert microscopists thereafter subjected to real-time polymerase chain reaction (RT-PCR) for quality assurance. In addition, blood smears from patients diagnosed with malaria rapid diagnostic tests (RDT) and presumptively treated with anti-malarial were re-examined by an expert microscopist. RESULTS A total of 1131 febrile outpatients were assessed for slide positivity (936), RDT (126) and presumptive diagnosis (69). The overall positivity rate for Plasmodium falciparum was 28% (257/936). The odds of slide positivity was higher in public hospitals, 30% (186/624, OR:1.44, 95% CI = 1.05-1.98, p < 0.05) than the private hospital 23% (71/312, OR:0.69, 95% CI = 0.51-0.95, p < 0.05). Anti-malarial treatment was dispensed more at public hospitals (95.2%, 177/186) than the private hospital (78.9%, 56/71, p < 0.0001). Inappropriate anti-malarial treatment, i.e. artemether-lumefantrine given to blood smear negative patients was higher at public hospitals (14.6%, 64/438) than the private hospital (7.1%, 17/241) (p = 0.004). RDT was the most sensitive (73.8%, 95% CI = 39.5-57.4) and specific (89.2%, 95% CI = 78.5-95.2) followed by hospital microscopy (sensitivity 47.6%, 95% CI = 38.2-57.1) and specificity (86.7%, 95% CI = 80.8-91.0). Presumptive diagnosis had the lowest sensitivity (25.7%, 95% CI = 13.1-43.6) and specificity (75.0%, 95% CI = 50.6-90.4). RDT had the highest non-treatment of negatives [98.3% (57/58)] while hospital microscopy had the lowest [77.3% (116/150)]. Health facilities misdiagnosis was at 27.9% (77/276). PCR confirmed 5.2% (4/23) of the 77 misdiagnosed cases as false positive and 68.5% (37/54) as false negative. CONCLUSIONS The disparity in malaria diagnosis at health facilities with many slide positives reported as negatives and high presumptive treatment of slide negative cases, necessitates augmenting microscopic with RDTs and calls for Ministry of Health strengthening supportive infrastructure to be in compliance with treatment guidelines of Test, Treat, and Track to improve malaria case management.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Kisumu, Kenya ,International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Julius O. Olumeh
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya ,grid.10604.330000 0001 2019 0495Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Kevin O. Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya ,grid.10604.330000 0001 2019 0495Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Edwin O. Magomere
- grid.8301.a0000 0001 0431 4443Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Isaiah Debrah
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya ,grid.8652.90000 0004 1937 1485West Africa Centre for Cell Biology of Infectious Pathogen, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Collins Ouma
- grid.442486.80000 0001 0744 8172Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Patrick Onyango
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Kisumu, Kenya
| | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Wolfgang R. Mukabana
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya ,grid.10604.330000 0001 2019 0495Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Chloe Wang
- grid.266093.80000 0001 0668 7243Depatment of Population Health and Disease Prevention, University of California, Irvine, CA USA
| | - Ming-Chieh Lee
- grid.266093.80000 0001 0668 7243Depatment of Population Health and Disease Prevention, University of California, Irvine, CA USA
| | - Andrew K. Githeko
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guofa Zhou
- grid.266093.80000 0001 0668 7243Depatment of Population Health and Disease Prevention, University of California, Irvine, CA USA
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - James Kazura
- grid.67105.350000 0001 2164 3847Centre for Global Health and Diseases, Case Western University Reserve, Cleveland, OH USA
| | - Guiyun Yan
- grid.266093.80000 0001 0668 7243Depatment of Population Health and Disease Prevention, University of California, Irvine, CA USA
| |
Collapse
|
13
|
Amoah LE, Asare KK, Dickson D, Anang SF, Busayo A, Bredu D, Asumah G, Peprah N, Asamoah A, Abuaku B, Malm KL. Nationwide molecular surveillance of three Plasmodium species harboured by symptomatic malaria patients living in Ghana. Parasit Vectors 2022; 15:40. [PMID: 35090545 PMCID: PMC8796507 DOI: 10.1186/s13071-022-05153-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical presentations of malaria in Ghana are primarily caused by infections containing microscopic densities of Plasmodium falciparum, with a minor contribution from Plasmodium malariae and Plasmodium ovale. However, infections containing submicroscopic parasite densities can result in clinical disease. In this study, we used PCR to determine the prevalence of three human malaria parasite species harboured by suspected malaria patients attending healthcare facilities across the country. METHODS Archived dried blood spots on filter paper that had been prepared from whole blood collected from 5260 patients with suspected malaria attending healthcare facilities across the country in 2018 were used as experimental material. Plasmodium species-specific PCR was performed on DNA extracted from the dried blood spots. Demographic data and microscopy data for the subset of samples tested were available from the original study on these specimens. RESULTS The overall frequency of P. falciparum, P. malariae and P. ovale detected by PCR was 74.9, 1.4 and 0.9%, respectively. Of the suspected symptomatic P. falciparum malaria cases, 33.5% contained submicroscopic densities of parasites. For all regions, molecular diagnosis of P. falciparum, P. malariae and P. ovale was significantly higher than diagnosis using microscopy: up to 98.7% (75/76) of P. malariae and 97.8% (45/46) of P. ovale infections detected by PCR were missed by microscopy. CONCLUSION Plasmodium malariae and P. ovale contributed to clinical malaria infections, with children aged between 5 and 15 years harbouring a higher frequency of P. falciparum and P. ovale, whilst P. malariae was more predominant in individuals aged between 10 and 20 years. More sensitive point-of-care tools are needed to detect the presence of low-density (submicroscopic) Plasmodium infections, which may be responsible for symptomatic infections.
Collapse
Affiliation(s)
- Linda E Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Kwame K Asare
- Department of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Donu Dickson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sherik-Fa Anang
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Abena Busayo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Bredu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Nana Peprah
- National Malaria Control Program, Accra, Ghana
| | | | - Benjamin Abuaku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Nutrition, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | |
Collapse
|
14
|
Baptista V, Costa MS, Calçada C, Silva M, Gil JP, Veiga MI, Catarino SO. The Future in Sensing Technologies for Malaria Surveillance: A Review of Hemozoin-Based Diagnosis. ACS Sens 2021; 6:3898-3911. [PMID: 34735120 DOI: 10.1021/acssensors.1c01750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early and effective malaria diagnosis is vital to control the disease spread and to prevent the emergence of severe cases and death. Currently, malaria diagnosis relies on optical microscopy and immuno-rapid tests; however, these require a drop of blood, are time-consuming, or are not specific and sensitive enough for reliable detection of low-level parasitaemia. Thus, there is an urge for simpler, prompt, and accurate alternative diagnostic methods. Particularly, hemozoin has been increasingly recognized as an attractive biomarker for malaria detection. As the disease proliferates, parasites digest host hemoglobin, in the process releasing toxic haem that is detoxified into an insoluble crystal, the hemozoin, which accumulates along with infection progression. Given its magnetic, optical, and acoustic unique features, hemozoin has been explored for new label-free diagnostic methods. Thereby, herein, we review the hemozoin-based malaria detection methods and critically discuss their challenges and potential for the development of an ideal diagnostic device.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Mariana S. Costa
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Miguel Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - José Pedro Gil
- Stockholm Malaria Center, Department of Microbiology and Tumour Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
15
|
Adesina-Adewole B, Olusola F, Adedapo A, Falade C. PARASITE-BASED DIAGNOSIS OF MALARIA IN PREGNANT WOMEN IN A TERTIARY HOSPITAL IN SOUTHWEST NIGERIA. Ann Ib Postgrad Med 2021; 19:22-30. [PMID: 35330888 PMCID: PMC8935670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Malaria in pregnancy has significant adverse consequences for the mother, foetus and baby. Presumptive diagnosis continues despite recommendation for parasite-based diagnosis. We performed Paracheck-PfTM, an HRP-II based malaria Rapid diagnostic test (Paracheck-Pf RDT) and microscopy among pregnant women in a prospective, cross sectional study, at the University College Hospital in Ibadan, Nigeria. Methods The study was conducted between 2009-2011. Consecutive pregnant women presumptively diagnosed as having malaria >18 years were enrolled after obtaining written informed consent. Demographic information, symptoms and clinical measurements were obtained. Capillary blood was obtained by finger prick for thick blood smear and RDT evaluation. Summary statistics included mean (standard deviation) for quantitative variables and percentages for categorical variables. Chi-square, analysis of variance (ANOVA), the odds ratio (OR) and 95% confidence intervals (CI) were computed with p-value less than 0.05 considered statistically significant. Results Of the 746 pregnant women aged 30.9 ± 4.6 years enrolled, 243 (32.7%) were primigravida. The mean gestational age was 23.3 ± 9.2 weeks with about 81% in the second and third trimester. The prevalence of malaria parasitaemia by microscopy and Paracheck-PfTM were 22.8% and 24.5% respectively. The geometric mean parasite density was 2,091/µL (range 40-156,975/µL). HIV positivity rate was 8.1 % and 16.1% of patients were anaemic (PCV <30%). Women with axillary temperature >37.4°C were significantly more likely to have malaria parasitaemia [p<0.0001] by microscopy. Sensitivity and specificity of Paracheck overall were 69.9% and 88.2% respectively while those at of parasite densities ≥200/µL were 84.8% and 88.7% respectively. Positive and negative predictive values were 66.9% and over 90% respectively. Conclusion RDTs are a reasonable alternative in view of the need for parasite-based diagnosis of malaria.
Collapse
Affiliation(s)
- B. Adesina-Adewole
- Department of Obstetrics and Gynaecology, College of Medicine, University of Ibadan, Ibadan
| | - F.I. Olusola
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan
| | - A.D.A. Adedapo
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - C.O. Falade
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan., Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Ivan I, Ivan I, Stella MM, Stella MM, Tandarto K, Tandarto K, Budiman F, Budiman F, Joprang FS, Joprang FS. Plasmodium falciparum Breath Metabolomics (Breathomics) Analysis as a Non-Invasive Practical Method to Diagnose Malaria in Pediatric. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2021. [DOI: 10.20473/ijtid.v9i1.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Children under 5 years of age are particularly vulnerable to malaria. Malaria has caused 445,000 deaths worldwide. Currently, rapid diagnostic tests (RDTs) are the fastest method to diagnose malaria. However, there are limitations that exist such as low sensitivity in detecting infections with low parasitemia. Practical, non-invasive and high ability tests to detect parasite are needed to find specific biomarkers for P. falciparum infection to determine the potential of P. falciparum 4 thioether in breathomics analysis by GC-MS as a practical non-invasive method in diagnosing malaria in pediatrics. Literature reviews from Google Scholar and ProQuest were published no later than the last 5 years. The concept of breathomics is that the breath’s volatile organic compounds (VOCs) profile is altered when the health condition changes. Breath samples from individuals infected with P. falciparum malaria were taken by exhalation. Through GC-MS analysis, it was found that 4 thioether compounds (allyl methyl sulfide (AMS), 1-methylthio-propane, (Z) -1-methylthio-1-propene and (E) -1-methylthio-1-propene) underwent a significant change in concentration during the infection. Based on experiments conducted on mice and humans, the breathomics method is known to be able to detect parasitemia levels up to <100 parasites/µL, has a sensitivity level of about 71% to 91% and a specificity of about 75% to 94%. The discovery of 4 thioether compounds by GC-MS is a strong indication of malaria, because it has the potential for high sensitivity and specificity, and the detection power exceeds the ability of RDTs.
Collapse
|
17
|
Yoon J, Jang WS, Nam J, Mihn DC, Lim CS. An Automated Microscopic Malaria Parasite Detection System Using Digital Image Analysis. Diagnostics (Basel) 2021; 11:diagnostics11030527. [PMID: 33809642 PMCID: PMC8002244 DOI: 10.3390/diagnostics11030527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 10/26/2022] Open
Abstract
Rapid diagnosis and parasitemia measurement is crucial for management of malaria. Microscopic examination of peripheral blood (PB) smears is the gold standard for malaria detection. However, this method is labor-intensive. Here, we aimed to develop a completely automated microscopic system for malaria detection and parasitemia measurement. The automated system comprises a microscope, plastic chip, fluorescent dye, and an image analysis program. Analytical performance was evaluated regarding linearity, precision, and limit of detection and was compared with that of conventional microscopic PB smear examination and flow cytometry. The automated microscopic malaria parasite detection system showed a high degree of linearity for Plasmodium falciparum culture (R2 = 0.958, p = 0.005) and Plasmodium vivax infected samples (R2 = 0.931, p = 0.008). Precision was defined as the %CV of the assay results at each level of parasitemia and the %CV value for our system was lower than that for microscopic examination for all densities of parasitemia. The limit of detection analysis showed 95% probability for parasite detection was 0.00066112%, and a high correlation was observed among all three methods. The sensitivity and specificity of the system was both 100% (n = 21/21) and 100% (n = 50/50), respectively, and the system correctly identified all P. vivax and P. falciparum samples. The automated microscopic malaria parasite detection system offers several advantages over conventional microscopy for rapid diagnosis and parasite density monitoring of malaria.
Collapse
Affiliation(s)
- Jung Yoon
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 08308, Korea; (J.Y.); (W.S.J.)
| | - Woong Sik Jang
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 08308, Korea; (J.Y.); (W.S.J.)
| | - Jeonghun Nam
- Department of Song-Do Bio-Environmental Engineering, Incheon Jaeneung University, Incheon 21987, Korea;
| | - Do-CiC Mihn
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul 04805, Korea;
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 08308, Korea; (J.Y.); (W.S.J.)
- Correspondence: ; Tel.: +82-2-2626-3245
| |
Collapse
|
18
|
Acquah FK, Donu D, Obboh EK, Bredu D, Mawuli B, Amponsah JA, Quartey J, Amoah LE. Diagnostic performance of an ultrasensitive HRP2-based malaria rapid diagnostic test kit used in surveys of afebrile people living in Southern Ghana. Malar J 2021; 20:125. [PMID: 33653356 PMCID: PMC7927401 DOI: 10.1186/s12936-021-03665-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background The Alere™ Malaria Ag P.f Ultra-sensitive RDT (UsmRDT) kit is an HRP2-based malaria rapid diagnostic test (RDT) with enhanced sensitivity relative to the SD Bioline Malaria Ag P.f RDT (mRDT) kit. However, the diagnostic performance of the UsmRDT kit has not been evaluated in Ghana. Methods A total of 740 afebrile participants aged between 3 and 88 years old were recruited from the Central and Greater Accra Regions of Ghana during the off-peak malaria season. Axillary body temperature was measured, and a volume of 1 ml venous blood was drawn from each participant. Prior to separating the blood into plasma and packed cell pellets via centrifugation, the blood was spotted onto one UsmRDT and one mRDT kit and also used to prepare thick and thin blood smears as well as filter paper blood spots. Plasmodium falciparum specific polymerase chain reaction (PCR) was performed on gDNA extracted from 100 µl of the whole blood. Results The overall positivity rate for microscopy, PCR, UsmRDT and mRDT kit were 20.4%, 40.8%, 31.3% and 30.8%, respectively. Overall, the UsmRDT identified 9.3% (28/302) more PCR positive samples than the mRDT kits. All samples that were negative by the UsmRDT kit were also negative by the mRDT kit. Overall, the sensitivity and specificity of the UsmRDT was 73% (221/302) and 89% (388/436), respectively, while that for the mRDT kit was 58% and 90%, respectively. Conclusion Although the UsmRDT kit was not as sensitive as PCR at detecting asymptomatic P. falciparum carriage, it correctly identified P. falciparum in 9.3% of the study participants that were not captured by the mRDT kit. In malaria endemic settings, the UsmRDT would provide an added advantage by identifying more asymptomatic P. falciparum carriers than the mRDT kit for targeted treatment interventions.
Collapse
Affiliation(s)
- Festus K Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Dickson Donu
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Evans K Obboh
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dorcas Bredu
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Bernice Mawuli
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Jones A Amponsah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Joseph Quartey
- Parasitology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana. .,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
| |
Collapse
|
19
|
Buery JC, de Alencar FEC, Duarte AMRDC, Loss AC, Vicente CR, Ferreira LM, Fux B, Medeiros MM, Cravo P, Arez AP, Cerutti Junior C. Atlantic Forest Malaria: A Review of More than 20 Years of Epidemiological Investigation. Microorganisms 2021; 9:132. [PMID: 33430150 PMCID: PMC7826787 DOI: 10.3390/microorganisms9010132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
In the south and southeast regions of Brazil, cases of malaria occur outside the endemic Amazon region near the Atlantic Forest in some coastal states, where Plasmodium vivax is the recognized parasite. Characteristics of cases and vectors, especially Anopheles (Kerteszia) cruzii, raise the hypothesis of a zoonosis with simians as reservoirs. The present review aims to report on investigations of the disease over a 23-year period. Two main sources have provided epidemiological data: the behavior of Anopheles vectors and the genetic and immunological aspects of Plasmodium spp. obtained from humans, Alouatta simians, and Anopheles spp. mosquitoes. Anopheles (K.) cruzii is the most captured species in the forest canopy and is the recognized vector. The similarity between P. vivax and Plasmodium simium and that between Plasmodium malariae and Plasmodium brasilianum shared between simian and human hosts and the involvement of the same vector in the transmission to both hosts suggest interspecies transfer of the parasites. Finally, recent evidence points to the presence of Plasmodium falciparum in a silent cycle, detected only by molecular methods in asymptomatic individuals and An. (K.) cruzii. In the context of malaria elimination, it is paramount to assemble data about transmission in such non-endemic low-incidence areas.
Collapse
Affiliation(s)
- Julyana Cerqueira Buery
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | | | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, Brazil;
- Superintendência de Controle de Endemias do Estado de São Paulo, São Paulo 01027-000, Brazil
| | - Ana Carolina Loss
- Instituto Nacional da Mata Atlântica, Santa Teresa 29650-000, Brazil;
| | - Creuza Rachel Vicente
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Lucas Mendes Ferreira
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Blima Fux
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Márcia Melo Medeiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Pedro Cravo
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Ana Paula Arez
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Crispim Cerutti Junior
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| |
Collapse
|
20
|
Synthesis and characterization of WO3-doped polyaniline to sense biomarker VOCs of Malaria. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01551-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Rahim MAFA, Munajat MB, Idris ZM. Malaria distribution and performance of malaria diagnostic methods in Malaysia (1980-2019): a systematic review. Malar J 2020; 19:395. [PMID: 33160393 PMCID: PMC7649001 DOI: 10.1186/s12936-020-03470-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/29/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Malaysia has already achieved remarkable accomplishments in reaching zero indigenous human malaria cases in 2018. Prompt malaria diagnosis, surveillance and treatment played a key role in the country's elimination success. Looking at the dynamics of malaria distribution during the last decades might provide important information regarding the potential challenges of such an elimination strategy. This study was performed to gather all data available in term of prevalence or incidence on Plasmodium infections in Malaysia over the last four decades. METHODS A systematic review of the published English literature was conducted to identify malaria distribution from 1980 to June 2019 in Malaysia. Two investigators independently extracted data from PubMed, Scopus, Web of Science and Elsevier databases for original papers. RESULTS The review identified 46 epidemiological studies in Malaysia over the 39-year study period, on which sufficient information was available. The majority of studies were conducted in Malaysia Borneo (31/46; 67.4%), followed by Peninsular Malaysia (13/46; 28.3%) and in both areas (2/46; 4.3%). More than half of all studies (28/46; 60.9%) were assessed by both microscopy and PCR. Furthermore, there was a clear trend of decreases of all human malaria species with increasing Plasmodium knowlesi incidence rate throughout the year of sampling period. The summary estimates of sensitivity were higher for P. knowlesi than other Plasmodium species for both microscopy and PCR. Nevertheless, the specificities of summary estimates were similar for microscopy (40-43%), but varied for PCR (2-34%). CONCLUSIONS This study outlined the epidemiological changes in Plasmodium species distribution in Malaysia. Malaria cases shifted from predominantly caused by human malaria parasites to simian malaria parasites, which accounted for the majority of indigenous cases particularly in Malaysia Borneo. Therefore, malaria case notification and prompt malaria diagnosis in regions where health services are limited in Malaysia should be strengthened and reinforced to achieving the final goal of malaria elimination in the country.
Collapse
Affiliation(s)
- Mohd Amirul Fitri A Rahim
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohd Bakhtiar Munajat
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Zulkarnain Md Idris
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Varo R, Balanza N, Mayor A, Bassat Q. Diagnosis of clinical malaria in endemic settings. Expert Rev Anti Infect Ther 2020; 19:79-92. [PMID: 32772759 DOI: 10.1080/14787210.2020.1807940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Malaria continues to be a major global health problem, with over 228 million cases and 405,000 deaths estimated to occur annually. Rapid and accurate diagnosis of malaria is essential to decrease the burden and impact of this disease, particularly in children. We aimed to review the main available techniques for the diagnosis of clinical malaria in endemic settings and explore possible future options to improve its rapid recognition. AREAS COVERED literature relevant to malaria diagnosis was identified through electronic searches in Pubmed, with no language or date restrictions and limited to humans. EXPERT OPINION Light microscopy is still considered the gold standard method for malaria diagnosis and continues to be at the frontline of malaria diagnosis. However, technologies as rapid diagnostic tests, mainly those who detect histidine-rich protein-2, offer an accurate, rapid and affordable alternative for malaria diagnosis in endemic areas. They are now the technique most extended in endemic areas for parasitological confirmation. In these settings, PCR-based assays are usually restricted to research and they are not currently helpful in the management of clinical malaria. Other technologies, such as isothermal methods could be an interesting and alternative approach to PCR in the future.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat De Barcelona , Barcelona, Spain.,Centro De Investigação Em Saúde De Manhiça (CISM) , Maputo, Mozambique.,ICREA, Pg. Lluís Companys 23 , Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan De Deu (University of Barcelona) , Barcelona, Spain.,Consorcio De Investigación Biomédica En Red De Epidemiología Y Salud Publica (CIBERESP) , Madrid, Spain
| |
Collapse
|
23
|
Manescu P, Shaw MJ, Elmi M, Neary‐Zajiczek L, Claveau R, Pawar V, Kokkinos I, Oyinloye G, Bendkowski C, Oladejo OA, Oladejo BF, Clark T, Timm D, Shawe‐Taylor J, Srinivasan MA, Lagunju I, Sodeinde O, Brown BJ, Fernandez‐Reyes D. Expert-level automated malaria diagnosis on routine blood films with deep neural networks. Am J Hematol 2020; 95:883-891. [PMID: 32282969 DOI: 10.1002/ajh.25827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/09/2022]
Abstract
Over 200 million malaria cases globally lead to half a million deaths annually. Accurate malaria diagnosis remains a challenge. Automated imaging processing approaches to analyze Thick Blood Films (TBF) could provide scalable solutions, for urban healthcare providers in the holoendemic malaria sub-Saharan region. Although several approaches have been attempted to identify malaria parasites in TBF, none have achieved negative and positive predictive performance suitable for clinical use in the west sub-Saharan region. While malaria parasite object detection remains an intermediary step in achieving automatic patient diagnosis, training state-of-the-art deep-learning object detectors requires the human-expert labor-intensive process of labeling a large dataset of digitized TBF. To overcome these challenges and to achieve a clinically usable system, we show a novel approach. It leverages routine clinical-microscopy labels from our quality-controlled malaria clinics, to train a Deep Malaria Convolutional Neural Network classifier (DeepMCNN) for automated malaria diagnosis. Our system also provides total Malaria Parasite (MP) and White Blood Cell (WBC) counts allowing parasitemia estimation in MP/μL, as recommended by the WHO. Prospective validation of the DeepMCNN achieves sensitivity/specificity of 0.92/0.90 against expert-level malaria diagnosis. Our approach PPV/NPV performance is of 0.92/0.90, which is clinically usable in our holoendemic settings in the densely populated metropolis of Ibadan. It is located within the most populous African country (Nigeria) and with one of the largest burdens of Plasmodium falciparum malaria. Our openly available method is of importance for strategies aimed to scale malaria diagnosis in urban regions where daily assessment of thousands of specimens is required.
Collapse
Affiliation(s)
- Petru Manescu
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Michael J. Shaw
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Muna Elmi
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Lydia Neary‐Zajiczek
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Remy Claveau
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Vijay Pawar
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Iasonas Kokkinos
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Gbeminiyi Oyinloye
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
| | - Christopher Bendkowski
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Olajide A. Oladejo
- Department of Computer ScienceUniversity of Ibadan Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| | - Bolanle F. Oladejo
- Department of Computer ScienceUniversity of Ibadan Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| | - Tristan Clark
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Denis Timm
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - John Shawe‐Taylor
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Mandayam A. Srinivasan
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
| | - Ikeoluwa Lagunju
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| | - Olugbemiro Sodeinde
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
| | - Biobele J. Brown
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| | - Delmiro Fernandez‐Reyes
- Department of Computer Science, Faculty of Engineering SciencesUniversity College London London UK
- Department of Paediatrics, College of Medicine University of IbadanUniversity College Hospital Ibadan Nigeria
- Childhood Malaria Research GroupCollege of Medicine University of Ibadan, University College Hospital Ibadan Nigeria
- African Computational Sciences Centre for Health and DevelopmentUniversity of Ibadan Ibadan Nigeria
| |
Collapse
|
24
|
Picot S, Cucherat M, Bienvenu AL. Systematic review and meta-analysis of diagnostic accuracy of loop-mediated isothermal amplification (LAMP) methods compared with microscopy, polymerase chain reaction and rapid diagnostic tests for malaria diagnosis. Int J Infect Dis 2020; 98:408-419. [PMID: 32659450 DOI: 10.1016/j.ijid.2020.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diagnosis is a challenging issue for eliminating malaria. Loop-mediated isothermal amplification (LAMP) could be an alternative to conventional methods. This study aimed to evaluate the diagnostic accuracy of LAMP for malaria compared with microscopy, polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). METHODS AND DESIGN MEDLINE, Web of Science and Scopus were searched from inception to 1 July 2019. Prospective and retrospective, randomised and non-randomised, mono-center and multi-center studies, including symptomatic or asymptomatic patients, that reported one LAMP method and one comparator (microscopy, RDT or PCR) were included. PROSPERO registration number: CRD42017075186. RESULTS Sixty-six studies published between 2006 and 2019 were included, leading to the analysis of 30,641 LAMP tests. The pooled sensitivity of LAMP remained between 96% and 98%, whichever the comparator. The pooled specificity of LAMP was around 95%, but was a little higher if the best PCR studies were considered. The AUC was found to be >0.98, whichever the subgroup of studies was considered. Diagnostic odds ratio (DOR) was found to be around 1000 for all subgroups, except for Plasmodium vivax. CONCLUSION This meta-analysis confirmed that the LAMP method is robust for diagnosing malaria, both in symptomatic and asymptomatic people. Thus, the impact of LAMP for controlling malaria is expected to be important.
Collapse
Affiliation(s)
- Stephane Picot
- Malaria Research Unit, SMITh, ICBMS UMR 5246 CNRS-INSA-CPE-Université de Lyon, Campus Lyon-Tech La Doua, 69622 Villeurbanne Cedex, France; Institut de Parasitologie et Mycologie Médicale, Hôpital de La Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Michel Cucherat
- Service de Pharmacotoxicologie, Hospices Civils de Lyon, Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR5558, Université Lyon 1, Lyon, France
| | - Anne-Lise Bienvenu
- Malaria Research Unit, SMITh, ICBMS UMR 5246 CNRS-INSA-CPE-Université de Lyon, Campus Lyon-Tech La Doua, 69622 Villeurbanne Cedex, France; Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, France; Service d'Hématologie, Groupement Hospitalier Nord, Hospices Civils de Lyon, France.
| |
Collapse
|
25
|
Mbanefo A, Kumar N. Evaluation of Malaria Diagnostic Methods as a Key for Successful Control and Elimination Programs. Trop Med Infect Dis 2020; 5:E102. [PMID: 32575405 PMCID: PMC7344938 DOI: 10.3390/tropicalmed5020102] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Malaria is one of the leading causes of death worldwide. According to the World Health Organization's (WHO's) world malaria report for 2018, there were 228 million cases and 405,000 deaths worldwide. This paper reviews and highlights the importance of accurate, sensitive and affordable diagnostic methods in the fight against malaria. The PubMed online database was used to search for publications that examined the different diagnostic tests for malaria. Currently used diagnostic methods include microscopy, rapid diagnostic tests (RDT), and polymerase chain reaction (PCR). Upcoming methods were identified as loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), isothermal thermophilic helicase-dependent amplification (tHDA), saliva-based test for nucleic-acid amplification, saliva-based test for Plasmodium protein detection, urine malaria test (UMT), and transdermal hemozoin detection. RDT, despite its increasing false negative, is still the most feasible diagnostic test because it is easy to use, fast, and does not need expensive equipment. Noninvasive tests that do not require a blood sample, but use saliva or urine, are some of the recent tests under development that have the potential to aid malaria control and elimination. Emerging resistance to anti-malaria drugs and to insecticides used against vectors continues to thwart progress in controlling malaria. Therefore, future innovation will be required to enable the application of more sensitive and affordable methods in resource-limited settings.
Collapse
Affiliation(s)
- Afoma Mbanefo
- Department of Global Health, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
26
|
Haanshuus CG, Mørch K, Blomberg B, Strøm GEA, Langeland N, Hanevik K, Mohn SC. Assessment of malaria real-time PCR methods and application with focus on low-level parasitaemia. PLoS One 2019; 14:e0218982. [PMID: 31276473 PMCID: PMC6611585 DOI: 10.1371/journal.pone.0218982] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/04/2019] [Indexed: 01/04/2023] Open
Abstract
In epidemiological surveys and surveillance the application of molecular tools is essential in detecting submicroscopic malaria. A genus-specific conventional cytochrome b (cytb) PCR has shown high sensitivity in field studies, detecting 70% submicroscopic malaria. The main objective of this study was to assess the conversion from conventional to real-time PCR testing both SYBR and probe protocols, and including quantitative (q) PCR. The protocols were assessed applying well-defined clinical patient material consisting of 33 positive and 80 negative samples. Sequencing of positive PCR products was performed. In addition, a sensitivity comparison of real-time PCR methods was done by including five relevant assays investigating the effect of amplification target and platform. Sensitivity was further examined using field material consisting of 111 P.falciparum positive samples from Tanzanian children (< 5 years), as well as using related patient data to assess the application of q-PCR with focus on low-level parasitaemia. Both the cytb SYBR and probe PCR protocols showed as high sensitivity and specificity as their conventional counterpart, except missing one P. malariae sample. The SYBR protocol was more sensitive and specific than using probe. Overall, choice of amplification target applied is relevant for achieving ultra-sensitivity, and using intercalating fluorescence dye rather than labelled hydrolysis probes is favourable. Application of q-PCR analysis in field projects is important for the awareness and understanding of low-level parasitaemia. For use in clinical diagnosis and epidemiological studies the highly sensitive and user-friendly cytb SYBR q-PCR method is a relevant tool. The genus-specific method has the advantage that species identification by sequencing can be performed as an alternative to species-specific PCR.
Collapse
Affiliation(s)
- Christel Gill Haanshuus
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| | - Kristine Mørch
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørn Blomberg
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Nina Langeland
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Kurt Hanevik
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stein Christian Mohn
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
27
|
Maurizio PL, Fuseini H, Tegha G, Hosseinipour M, De Paris K. Signatures of divergent anti-malarial treatment responses in peripheral blood from adults and young children in Malawi. Malar J 2019; 18:205. [PMID: 31234875 PMCID: PMC6591936 DOI: 10.1186/s12936-019-2842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/17/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Heterogeneity in the immune response to parasite infection is mediated in part by differences in host genetics, gender, and age group. In infants and young children, ongoing immunological maturation often results in increased susceptibility to infection and variable responses to drug treatment, increasing the risk of complications. Even though significant age-associated effects on host cytokine responses to Plasmodium falciparum infection have been identified, age-associated effects on uncomplicated malaria infection and anti-malarial treatment remain poorly understood. METHODS In samples of whole blood from a cohort of naturally infected malaria-positive individuals with non-severe falciparum malaria in Malawi (n = 63 total; 34 infants and young children < 2 years old, 29 adults > 18 years old), blood cytokine levels and monocyte and dendritic cell frequencies were assessed at two timepoints: acute infection, and 4 weeks post anti-malarial treatment. The effects of age group, gender, and timepoint were modeled, and the role of these factors on infection and treatment outcomes was evaluated. RESULTS Regardless of treatment timepoint, in this population age was significantly associated with overall blood haemoglobin, which was higher in adults, and plasma nitric oxide metabolites, IL-10, and TNF levels, which were higher in young children. There was a significant effect of age on the haemoglobin treatment response, whereby after treatment, levels increased in young children and decreased in adults. Furthermore, there were significant age-associated effects on treatment response for overall parasite load, IFN-γ, and IL-12(p40), and these effects were gender-dependent. Significant age effects on the overall levels and treatment response of myeloid dendritic cell frequencies were observed. In addition, within each age group, results showed continuous age effects on gametocyte levels (Pfs16), TNF, and nitric oxide metabolites. CONCLUSIONS In a clinical study of young children and adults experiencing natural falciparum malaria infection and receiving anti-malarial treatment, age-associated signatures of infection and treatment responses in peripheral blood were identified. This study describes host markers that may indicate, and potentially contribute to, differential post-treatment outcomes for malaria in young children versus adults.
Collapse
Affiliation(s)
- Paul L Maurizio
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Hubaida Fuseini
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, USA
| | - Gerald Tegha
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, 130 Mason Farm Rd, Bioinformatics Bldg, Chapel Hill, NC, 27599, USA
| | - Mina Hosseinipour
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, 130 Mason Farm Rd, Bioinformatics Bldg, Chapel Hill, NC, 27599, USA
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
28
|
Abstract
The abnormal breakdown of circulating red blood cells (RBCs), also known as hemolysis, is a significant clinical issue that can present as a primary disorder or arise secondary to another disease process. The evaluation for pathologic hemolysis (and the establishment of a hemolytic disorder) is heavily dependent on assays performed and overseen by the divisions of Hematology, Blood Bank/Transfusion Medicine, Clinical Chemistry, and Immunology in the clinical laboratory. Because of the wide variety of assays used across the spectrum of clinical pathology and potential pitfalls/limitations associated with this testing, the decision of which assay to choose and, perhaps more importantly, how to interpret results, can both be quite challenging. Thus, the aim of this manuscript is to provide a comprehensive review on the laboratory investigation of pathologic forms of hemolysis and hemolytic disorders. This chapter will: (1) introduce basic concepts on the pathophysiology of hemolysis and (2) examine assays available for hemolysis on a laboratory-by-laboratory basis, with a particular emphasis on the strengths, limitations, and clinical interpretations of each of these assays.
Collapse
Affiliation(s)
- Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, United States; Pathology & Laboratory Medicine Service, VA Connecticut Healthcare System, West Haven, CT, United States; Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, United States; Pathology & Laboratory Medicine Service, VA Connecticut Healthcare System, West Haven, CT, United States.
| |
Collapse
|
29
|
Orish VN, De-Gaulle VF, Sanyaolu AO. Interpreting rapid diagnostic test (RDT) for Plasmodium falciparum. BMC Res Notes 2018; 11:850. [PMID: 30509313 PMCID: PMC6278119 DOI: 10.1186/s13104-018-3967-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Objective Rapid diagnostic tests have been of tremendous help in malaria control in endemic areas, helping in diagnosis and treatment of malaria cases. It is heavily relied upon in many endemic areas where microscopy cannot be obtained. However, caution should be taken in the interpretation of its result in clinical setting due to its limitations and inherent weakness. This paper seeks to present the varying malaria RDT test results, the possible interpretations and explanation of these results common in endemic regions. Published works on malaria RDT studies were identified using the following search terms “malaria RDT in endemic areas”, “Plasmodium falciparum and bacterial coinfection” “Plasmodium falciparum RDT test results in children in endemic areas” in Google Scholar and PubMed. Results The review results show that RDT positive results in febrile patients can either be true or false positive. True positive, representing either a possible single infection of Plasmodium or a co-infection of bacteria and P. falciparum. False RDT negative results can be seen in febrile patient with P. falciparum infection in prozone effect, Histidine rich protein 2 (HRP2) gene deletion and faulty RDT kits. Hence, a scale up of laboratory facilities especially expert microscopy and other diagnostic tools is imperative.
Collapse
Affiliation(s)
- Verner N Orish
- Department of Microbiology and Immunology, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Virtue F De-Gaulle
- Department of Social and Behavioural Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, P. O. Box LG 13, Legon, Ghana.
| | - Adekunle O Sanyaolu
- Department of Medical Microbiology and Parasitology, College of Medicine of the University of Lagos, Idi-araba, Lagos, Nigeria
| |
Collapse
|