1
|
Maldonado E, Canobra P, Oyarce M, Urbina F, Miralles VJ, Tapia JC, Castillo C, Solari A. In Vitro Identification of Phosphorylation Sites on TcPolβ by Protein Kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 and Effect of Phorbol Ester on Activation by TcPKC of TcPolβ in Trypanosoma cruzi Epimastigotes. Microorganisms 2024; 12:907. [PMID: 38792752 PMCID: PMC11124317 DOI: 10.3390/microorganisms12050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolβ) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolβ by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolβ. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolβ. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolβ phosphorylation and enzymatic activity in T. cruzi epimastigotes.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Paz Canobra
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Matías Oyarce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Vicente J. Miralles
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46110 Valencia, Spain;
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| |
Collapse
|
2
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Gonzáles-Córdova RA, Dos Santos TR, Gachet-Castro C, Andrade Vieira J, Trajano-Silva LAM, Sakamoto-Hojo ET, Baqui MMA. Trypanosoma cruzi infection induces DNA double-strand breaks and activates DNA damage response pathway in host epithelial cells. Sci Rep 2024; 14:5225. [PMID: 38433244 PMCID: PMC10909859 DOI: 10.1038/s41598-024-53589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, invades many cell types affecting numerous host-signalling pathways. During the T. cruzi infection, we demonstrated modulations in the host RNA polymerase II activity with the downregulation of ribonucleoproteins affecting host transcription and splicing machinery. These alterations could be a result of the initial damage to the host DNA caused by the presence of the parasite, however, the mechanisms are not well understood. Herein, we examined whether infection by T. cruzi coincided with enhanced DNA damage in the host cell. We studied the engagement of the DNA damage response (DDR) pathways at the different time points (0-24 h post-infection, hpi) by T. cruzi in LLC-MK2 cells. In response to double-strand breaks (DSB), maximum phosphorylation of the histone variant H2AX is observed at 2hpi and promotes recruitment of the DDR p53-binding protein (53BP1). During T. cruzi infection, Ataxia-telangiectasia mutated protein (ATM) and DNA-PK protein kinases remained active in a time-dependent manner and played roles in regulating the host response to DSB. The host DNA lesions caused by the infection are likely orchestrated by the non-homologous end joining (NHEJ) pathway to maintain the host genome integrity.
Collapse
Affiliation(s)
- Raul Alexander Gonzáles-Córdova
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Thamires Rossi Dos Santos
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Camila Gachet-Castro
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Johnathan Andrade Vieira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Lays Adrianne Mendonça Trajano-Silva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil
- Department of Biology, Faculty of Philosophy Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, 14040-901, Brazil
| | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirão Preto, 14049-900, Brazil.
| |
Collapse
|
4
|
Rios LE, Lokugamage N, Choudhuri S, Chowdhury IH, Garg NJ. Subunit nanovaccine elicited T cell functional activation controls Trypanosoma cruzi mediated maternal and placental tissue damage and improves pregnancy outcomes in mice. NPJ Vaccines 2023; 8:188. [PMID: 38104118 PMCID: PMC10725459 DOI: 10.1038/s41541-023-00782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
This study investigated a candidate vaccine effect against maternal Trypanosoma cruzi (Tc) infection and improved pregnancy outcomes. For this, TcG2 and TcG4 were cloned in a nanoplasmid optimized for delivery, antigen expression, and regulatory compliance (nano2/4 vaccine). Female C57BL/6 mice were immunized with nano2/4, infected (Tc SylvioX10), and mated 7-days post-infection to enable fetal development during the maternal acute parasitemia phase. Females were euthanized at E12-E17 (gestation) days. Splenic and placental T-cell responses were monitored by flow cytometry. Maternal and placental/fetal tissues were examined for parasites by qPCR and inflammatory infiltrate by histology. Controls included age/immunization-matched non-pregnant females. Nano2/4 exhibited no toxicity and elicited protective IgG2a/IgG1 response in mice. Nano2/4 signaled a splenic expansion of functionally active CD4+ effector/effector memory (Tem) and central memory (Tcm) cells in pregnant mice. Upon challenge infection, nano2/4 increased the splenic CD4+ and CD8+T cells in all mice and increased the proliferation of CD4+Tem, CD4+Tcm, and CD8+Tcm subsets producing IFNγ and cytolytic molecules (PRF1, GZB) in pregnant mice. A balanced serum cytokines/chemokines response and placental immune characteristics indicated that pregnancy prevented the overwhelming damaging immune response in mice. Importantly, pregnancy itself resulted in a significant reduction of parasites in maternal and fetal tissues. Nano2/4 was effective in arresting the Tc-induced tissue inflammatory infiltrate, necrosis, and fibrosis in maternal and placental tissues and improving maternal fertility, placental efficiency, and fetal survival. In conclusion, we show that maternal nano2/4 vaccination is beneficial in controlling the adverse effects of Tc infection on maternal health, fetal survival, and pregnancy outcomes.
Collapse
Affiliation(s)
- Lizette Elaine Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, UTMB, Galveston, TX, USA
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Institute for Human Infections and Immunity (IHII), UTMB, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences (SIVS), UTMB, Galveston, TX, USA.
| |
Collapse
|
5
|
Silberstein E, Chung CC, Debrabant A. The transcriptome landscape of 3D-cultured placental trophoblasts reveals activation of TLR2 and TLR3/7 in response to low Trypanosoma cruzi parasite exposure. Front Microbiol 2023; 14:1256385. [PMID: 37799608 PMCID: PMC10548471 DOI: 10.3389/fmicb.2023.1256385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Vertical transmission of Trypanosoma cruzi (T. cruzi) become a globalized health problem accounting for 22% of new cases of Chagas disease (CD). Congenital infection is now considered the main route of CD spread in non-endemic countries where no routine disease testing of pregnant women is implemented. The main mechanisms that lead to fetal infection by T. cruzi remain poorly understood. Mother-to-child transmission may occur when bloodstream trypomastigotes interact with the syncytiotrophoblasts (SYNs) that cover the placenta chorionic villi. These highly specialized cells function as a physical barrier and modulate immune responses against pathogen infections. To model the human placenta environment, we have previously used a three-dimensional (3D) cell culture system of SYNs that exhibits differentiation characteristics comparable to placental trophoblasts. Further, we have shown that 3D-grown SYNs are highly resistant to T. cruzi infection. In this work, we used RNA sequencing and whole transcriptome analysis to explore the immunological signatures that drive SYNs' infection control. We found that the largest category of differentially expressed genes (DEGs) are associated with inflammation and innate immunity functions. Quantitative RT-PCR evaluation of selected DEGs, together with detection of cytokines and chemokines in SYNs culture supernatants, confirmed the transcriptome data. Several genes implicated in the Toll-like receptors signaling pathways were upregulated in 3D-grown SYNs. In fact, TLR2 blockade and TLR3/7 knockdown stimulated T. cruzi growth, suggesting that these molecules play a significant role in the host cell response to infection. Ingenuity Pathway Analysis of DEGs predicted the activation of canonical pathways such as S100 protein family, pathogen induced cytokine storm, wound healing, HIF1α signaling and phagosome formation after T. cruzi exposure. Our findings indicate that SYNs resist infection by eliciting a constitutive pro-inflammatory response and modulating multiple defense mechanisms that interfere with the parasite's intracellular life cycle, contributing to parasite killing and infection control.
Collapse
Affiliation(s)
- Erica Silberstein
- Laboratory of Emerging Pathogens, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Charles C. Chung
- High-performance Integrated Virtual Environment Team, Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Alain Debrabant
- Laboratory of Emerging Pathogens, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
6
|
Faral-Tello P, Greif G, Romero S, Cabrera A, Oviedo C, González T, Libisch G, Arévalo AP, Varela B, Verdes JM, Crispo M, Basmadjián Y, Robello C. Trypanosoma cruzi Isolates Naturally Adapted to Congenital Transmission Display a Unique Strategy of Transplacental Passage. Microbiol Spectr 2023; 11:e0250422. [PMID: 36786574 PMCID: PMC10100920 DOI: 10.1128/spectrum.02504-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
Chagas disease is mainly transmitted by vertical transmission (VT) in nonendemic areas and in endemic areas where vector control programs have been successful. For the present study, we isolated natural Trypanosoma cruzi strains vertically transmitted through three generations and proceeded to study their molecular mechanism of VT using mice. No parasitemia was detected in immunocompetent mice, but the parasites were able to induce an immune response and colonize different organs. VT experiments revealed that infection with different strains did not affect mating, pregnancy, or resorption, but despite low parasitemia, VT strains reached the placenta and resulted in higher vertical transmission rates than strains of either moderate or high virulence. While the virulent strain modulated more than 2,500 placental genes, VT strains modulated 150, and only 29 genes are shared between them. VT strains downregulated genes associated with cell division and replication and upregulated immunomodulatory genes, leading to anti-inflammatory responses and tolerance. The virulent strain stimulated a strong proinflammatory immune response, and this molecular footprint correlated with histopathological analyses. We describe a unique placental response regarding the passage of T. cruzi VT isolates across the maternal-fetal interphase, challenging the current knowledge derived mainly from studies of laboratory-adapted or highly virulent strains. IMPORTANCE The main findings of this study are that we determined that there are Trypanosoma cruzi strains adapted to transplacental transmission and completely different from the commonly used laboratory reference strains. This implies a specific strategy for the vertical transmission of Chagas disease. It is impressive that the strains specialized for vertical transmission modify the gene expression of the placenta in a totally different way than the reference strains. In addition, we describe isolates of T. cruzi that cannot be transmitted transplacentally. Taken together, these results open up new insights into the molecular mechanisms of this insect vector-independent transmission form.
Collapse
Affiliation(s)
- Paula Faral-Tello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Selva Romero
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Cabrera
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Unidad de Microbiología, Instituto de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Cristina Oviedo
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Telma González
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Paula Arévalo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Belén Varela
- Unidad de Patología, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - José Manuel Verdes
- Unidad de Patología, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Yester Basmadjián
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
TORCH Congenital Syndrome Infections in Central America's Northern Triangle. Microorganisms 2023; 11:microorganisms11020257. [PMID: 36838223 PMCID: PMC9964893 DOI: 10.3390/microorganisms11020257] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
TORCH pathogens are a group of globally prevalent infectious agents that may cross the placental barrier, causing severe negative sequalae in neonates, including fetal death and lifelong morbidity. TORCH infections are classically defined by Toxoplasma gondii, other infectious causes of concern (e.g., syphilis, Zika virus, malaria, human immunodeficiency virus), rubella virus, cytomegalovirus, and herpes simplex viruses. Neonatal disorders and congenital birth defects are the leading causes of neonatal mortality in Central America's Northern Triangle, yet little is known about TORCH congenital syndrome in this region. This review synthesizes the little that is known regarding the most salient TORCH infections among pregnant women and neonates in Central America's Northern Triangle and highlights gaps in the literature that warrant further research. Due to the limited publicly available information, this review includes both peer-reviewed published literature and university professional degree theses. Further large-scale studies should be conducted to clarify the public health impact these infections in this world region.
Collapse
|
8
|
Glockzin K, Kostomiris D, Minnow YVT, Suthagar K, Clinch K, Gai S, Buckler JN, Schramm VL, Tyler PC, Meek TD, Katzfuss A. Kinetic Characterization and Inhibition of Trypanosoma cruzi Hypoxanthine–Guanine Phosphoribosyltransferases. Biochemistry 2022; 61:2088-2105. [PMID: 36193631 PMCID: PMC9536471 DOI: 10.1021/acs.biochem.2c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, affects over 8 million people
worldwide. Current antiparasitic treatments for Chagas disease are
ineffective in treating advanced, chronic stages of the disease, and
are noted for their toxicity. Like most parasitic protozoa, T. cruzi is unable to synthesize purines de novo, and relies on the salvage of preformed purines
from the host. Hypoxanthine–guanine phosphoribosyltransferases
(HGPRTs) are enzymes that are critical for the salvage of preformed
purines, catalyzing the formation of inosine monophosphate (IMP) and
guanosine monophosphate (GMP) from the nucleobases hypoxanthine and
guanine, respectively. Due to the central role of HGPRTs in purine
salvage, these enzymes are promising targets for the development of
new treatment methods for Chagas disease. In this study, we characterized
two gene products in the T. cruzi CL
Brener strain that encodes enzymes with functionally identical HGPRT
activities in vitro: TcA (TcCLB.509693.70) and TcC
(TcCLB.506457.30). The TcC isozyme was kinetically characterized to
reveal mechanistic details on catalysis, including identification
of the rate-limiting step(s) of catalysis. Furthermore, we identified
and characterized inhibitors of T. cruzi HGPRTs originally developed as transition-state analogue inhibitors
(TSAIs) of Plasmodium falciparum hypoxanthine–guanine–xanthine
phosphoribosyltransferase (PfHGXPRT), where the most
potent compound bound to T. cruzi HGPRT
with low nanomolar affinity. Our results validated the repurposing
of TSAIs to serve as selective inhibitors for orthologous molecular
targets, where primary and secondary structures as well as putatively
common chemical mechanisms are conserved.
Collapse
Affiliation(s)
- Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Demetrios Kostomiris
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Yacoba V. T. Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602, United States
| | - Kajitha Suthagar
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Sinan Gai
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Joshua N. Buckler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602, United States
| | - Peter C. Tyler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Thomas D. Meek
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| |
Collapse
|
9
|
Medina L, Guerrero-Muñoz J, Castillo C, Liempi A, Fernández-Moya A, Araneda S, Ortega Y, Rivas C, Maya JD, Kemmerling U. Differential microRNAs expression during ex vivo infection of canine and ovine placental explants with Trypanosoma cruzi and Toxoplasma gondii. Acta Trop 2022; 235:106651. [PMID: 35964709 DOI: 10.1016/j.actatropica.2022.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Trypanosoma cruzi and Toxoplasma gondii are two zoonotic parasites that constitute significant human and animal health threats, causing a significant economic burden worldwide. Both parasites can be transmitted congenitally, but transmission rates for T. gondii are high, contrary to what has been observed for T. cruzi. The probability of congenital transmission depends on complex interactions between the pathogen and the host, including the modulation of host cell gene expression by miRNAs. During ex vivo infection of canine and ovine placental explants, we evaluated the expression of 3 miRNAs (miR-30e-3p, miR-3074-5p, and miR-127-3p) previously associated with parasitic and placental diseases and modulated by both parasites. In addition, we identified the possible target genes of the miRNAs by using computational prediction tools and performed GO and KEGG enrichment analyses to identify the biological functions and associated pathologies. The three miRNAs are differentially expressed in the canine and ovine placenta in response to T. cruzi and T. gondii. We conclude that the observed differential expression and associated functions might explain, at least partially, the differences in transmission rates and susceptibility to parasite infection in different species.
Collapse
Affiliation(s)
- Lisvaneth Medina
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jesús Guerrero-Muñoz
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandro Fernández-Moya
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Yessica Ortega
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Cristian Rivas
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
11
|
Ex Vivo Infection of Human Placental Explants by Trypanosoma cruzi Reveals a microRNA Profile Similar to That Seen in Trophoblast Differentiation. Pathogens 2022; 11:pathogens11030361. [PMID: 35335686 PMCID: PMC8952303 DOI: 10.3390/pathogens11030361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Congenital Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is responsible for 22.5% of new cases each year. However, placental transmission occurs in only 5% of infected mothers and it has been proposed that the epithelial turnover of the trophoblast can be considered a local placental defense against the parasite. Thus, Trypanosoma cruzi induces cellular proliferation, differentiation, and apoptotic cell death in the trophoblast, which are regulated, among other mechanisms, by small non-coding RNAs such as microRNAs. On the other hand, ex vivo infection of human placental explants induces a specific microRNA profile that includes microRNAs related to trophoblast differentiation such as miR-512-3p miR-515-5p, codified at the chromosome 19 microRNA cluster. Here we determined the expression validated target genes of miR-512-3p and miR-515-5p, specifically human glial cells missing 1 transcription factor and cellular FLICE-like inhibitory protein, as well as the expression of the main trophoblast differentiation marker human chorionic gonadotrophin during ex vivo infection of human placental explants, and examined how the inhibition or overexpression of both microRNAs affects parasite infection. We conclude that Trypanosoma cruzi-induced trophoblast epithelial turnover, particularly trophoblast differentiation, is at least partially mediated by placenta-specific miR-512-3p and miR-515-5p and that both miRNAs mediate placental susceptibility to ex vivo infection of human placental explants. Knowledge about the role of parasite-modulated microRNAs in the placenta might enable their use as biomarkers, as prognostic and therapeutic tools for congenital Chagas disease in the future.
Collapse
|
12
|
Sun Q, Kim OS, He Y, Lim W, Ma G, Kim B, Kim Y, Kim O. Role of E2F1/ SPHK1 and HSP27 During Irradiation in a PMA-Induced Inflammatory Model. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 38:512-520. [PMID: 32780686 DOI: 10.1089/photob.2019.4801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Sphingosine kinase 1 (SPHK1) and heat shock protein 27 (HSP27) are important for antioxidant and anti-inflammatory effects after red light irradiation in an inflammatory model. Objective: The purpose of the present study was to evaluate whether SPHK1 and HSP27 work independently or are dependent on some other regulator after 625 nm light-emitting diode irradiation in the human keratinocyte (HaCaT) cell line. Methods: Differentially expressed genes (DEGs) were identified between groups with or without 625 nm photobiomodulation (PBM) in the inflammatory model. Potential transcription factors (TFs) of key DEGs were predicted using the iRegulon plugin. The mechanism was investigated by analyzing mRNA and protein expression levels, prostaglandin E2 levels, and intracellular reactive oxygen species (ROS) in phorbol 12-myristate 13-acetate (PMA)-induced HaCaT cells after 625 nm PBM. Results: A total of 6 TFs (e.g., E2F1) and 51 key DEGs (e.g., SPHK1) were identified after 625 nm PBM in PMA-stimulated HaCaT cells. E2F1 worked as a regulator of SPHK1; however, it did not affect HSP27. E2F1 knockdown drastically decreased the SPHK1 expression level and increased the intracellular ROS, as well as the expression levels of inflammation-related proteins in PMA-induced HaCaT cells. In addition, the inhibition of HSP27 decreased the anti-inflammatory effect of 625 nm PBM. Conclusions: E2F1 worked as a TF of SPHK1 and exhibited anti-inflammatory and antioxidative effects through SPHK1 in PMA-induced HaCaT cells after 625 nm PBM. HSP27 is essential for the 625 nm PBM-induced anti-inflammatory function. Therefore, E2F1/SPHK1 and HSP27 could be used as potential biomarkers for anti-inflammatory therapy with 625 nm PBM.
Collapse
Affiliation(s)
- Qiaochu Sun
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yuzhu He
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Wonbong Lim
- Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Korea
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
13
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Abstract
Among the ~22,000 human genes, very few remain that have unknown functions. One such example is suprabasin (SBSN). Originally described as a component of the cornified envelope, the function of stratified epithelia-expressed SBSN is unknown. Both the lack of knowledge about the gene role under physiological conditions and the emerging link of SBSN to various human diseases, including cancer, attract research interest. The association of SBSN expression with poor prognosis of patients suffering from oesophageal carcinoma, glioblastoma multiforme, and myelodysplastic syndromes suggests that SBSN may play a role in human tumourigenesis. Three SBSN isoforms code for the secreted proteins with putative function as signalling molecules, yet with poorly described effects. In this first review about SBSN, we summarised the current knowledge accumulated since its original description, and we discuss the potential mechanisms and roles of SBSN in both physiology and pathology.
Collapse
|
15
|
Libisch MG, Rego N, Robello C. Transcriptional Studies on Trypanosoma cruzi - Host Cell Interactions: A Complex Puzzle of Variables. Front Cell Infect Microbiol 2021; 11:692134. [PMID: 34222052 PMCID: PMC8248493 DOI: 10.3389/fcimb.2021.692134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
Chagas Disease, caused by the protozoan parasite Trypanosoma cruzi, affects nearly eight million people in the world. T. cruzi is a complex taxon represented by different strains with particular characteristics, and it has the ability to infect and interact with almost any nucleated cell. The T. cruzi-host cell interactions will trigger molecular signaling cascades in the host cell that will depend on the particular cell type and T. cruzi strain, and also on many different experimental variables. In this review we collect data from multiple transcriptomic and functional studies performed in different infection models, in order to highlight key differences between works that in our opinion should be addressed when comparing and discussing results. In particular, we focus on changes in the respiratory chain and oxidative phosphorylation of host cells in response to infection, which depends on the experimental model of T. cruzi infection. Finally, we also discuss host cell responses which reiterate independently of the strain, cell type and experimental conditions.
Collapse
Affiliation(s)
- María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Carlos Robello,
| |
Collapse
|
16
|
Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Rojas-Pirela M, Maya JD, Prieto H, Kemmerling U. Trypanosoma cruzi and Toxoplasma gondii Induce a Differential MicroRNA Profile in Human Placental Explants. Front Immunol 2020; 11:595250. [PMID: 33240284 PMCID: PMC7677230 DOI: 10.3389/fimmu.2020.595250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi and Toxoplasma gondii are two parasites than can be transmitted from mother to child through the placenta. However, congenital transmission rates are low for T. cruzi and high for T. gondii. Infection success or failure depends on complex parasite-host interactions in which parasites can alter host gene expression by modulating non-coding RNAs such as miRNAs. As of yet, there are no reports on altered miRNA expression in placental tissue in response to either parasite. Therefore, we infected human placental explants ex vivo by cultivation with either T. cruzi or T. gondii for 2 h. We then analyzed the miRNA expression profiles of both types of infected tissue by miRNA sequencing and quantitative PCR, sequence-based miRNA target prediction, pathway functional enrichment, and upstream regulator analysis of differentially expressed genes targeted by differentially expressed miRNAs. Both parasites induced specific miRNA profiles. GO analysis revealed that the in silico predicted targets of the differentially expressed miRNAs regulated different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the differentially expressed miRNAs identified here modulated crucial host cellular targets that participate in determining the success of infection, these miRNAs might explain the differing congenital transmission rates between the two parasites. Molecules of the different pathways that are regulated by miRNAs and modulated during infection, as well as the miRNAs themselves, may be potential targets for the therapeutic control of either congenital Chagas disease or toxoplasmosis.
Collapse
Affiliation(s)
- Lisvaneth Medina
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Jesús Guerrero-Muñoz
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Maura Rojas-Pirela
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Humberto Prieto
- Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
|
18
|
Libisch MG, Rego N, Díaz-Viraqué F, Robello C. Host-pathogen transcriptomics: Trypanosoma cruzi as a model for studying RNA contamination. J Proteomics 2020; 223:103804. [PMID: 32422276 DOI: 10.1016/j.jprot.2020.103804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 01/12/2023]
Abstract
Cellular infection assays constitute essential tools to understand host-pathogen interactions, particularly for intracellular microorganisms that are produced in cell lines are needed to propagate the microorganism. In this work, we demonstrate that RNA derived from Vero cells is an important contaminant to consider in order to avoid false positive results in transcriptomic experiments. We study the cross-contamination on a Trypanosoma cruzi cell infection model, the etiological agent of Chagas disease. We implemented the most frequently used trypanosome-purification protocols and, for all of them, we detected RNAs derived from Vero cells in trypomastigote extracts. For some of the protocols we also detected Vero RNAs in infected human cells. We also found this type of contamination in microarray experiments of human samples infected with T. cruzi. Concerning Illumina RNA-Seq data, we found that the contamination with Vero cells is probably introducing spurious results. Finally, we recommend a protocol to purify trypomastigotes, which showed a high percentage of trypomastigote recovery and the absence of Vero contamination in infected human samples. Avoiding this type of contamination should be an important factor to consider during experimental design, in order to minimize false positive results in transcriptomic studies as well as RNA contamination in vaccine production. SIGNIFICANCE: Transcriptomic studies are widely used to understand host-pathogen interactions. When the pathogen is an intracellular microorganism, an additional mammalian cell system can be needed to propagate it. In this work we demonstrate that pathogens purified from infected monolayers can carry RNAs from these mammalian cells, and that this ambient RNA contamination is probably producing false positive results in subsequent transcriptomic studies performed with qRT-PCR, microarrays or Next Generation Sequencing.
Collapse
Affiliation(s)
- María Gabriela Libisch
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Díaz-Viraqué
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
19
|
Wozniak JM, Silva TA, Thomas D, Siqueira-Neto JL, McKerrow JH, Gonzalez DJ, Calvet CM. Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Negl Trop Dis 2020; 14:e0007980. [PMID: 32433643 PMCID: PMC7279607 DOI: 10.1371/journal.pntd.0007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.
Collapse
Affiliation(s)
- Jacob M. Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
| | - Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
- * E-mail: (DJG); (CMC)
| | - Claudia M. Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
- * E-mail: (DJG); (CMC)
| |
Collapse
|
20
|
Rodríguez ME, Rizzi M, Caeiro LD, Masip YE, Perrone A, Sánchez DO, Búa J, Tekiel V. Transmigration of Trypanosoma cruzi trypomastigotes through 3D cultures resembling a physiological environment. Cell Microbiol 2020; 22:e13207. [PMID: 32270902 DOI: 10.1111/cmi.13207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 12/24/2022]
Abstract
To disseminate and colonise tissues in the mammalian host, Trypanosoma cruzi trypomastogotes should cross several biological barriers. How this process occurs or its impact in the outcome of the disease is largely speculative. We examined the in vitro transmigration of trypomastigotes through three-dimensional cultures (spheroids) to understand the tissular dissemination of different T. cruzi strains. Virulent strains were highly invasive: trypomastigotes deeply transmigrate up to 50 μm inside spheroids and were evenly distributed at the spheroid surface. Parasites inside spheroids were systematically observed in the space between cells suggesting a paracellular route of transmigration. On the contrary, poorly virulent strains presented a weak migratory capacity and remained in the external layers of spheroids with a patch-like distribution pattern. The invasiveness-understood as the ability to transmigrate deep into spheroids-was not a transferable feature between strains, neither by soluble or secreted factors nor by co-cultivation of trypomastigotes from invasive and non-invasive strains. Besides, we demonstrated that T. cruzi isolates from children that were born congenitally infected presented a highly migrant phenotype while an isolate from an infected mother (that never transmitted the infection to any of her children) presented significantly less migration. In brief, we demonstrated that in a 3D microenvironment each strain presents a characteristic migration pattern that can be associated to their in vivo behaviour. Altogether, data presented here repositionate spheroids as a valuable tool to study host-pathogen interactions.
Collapse
Affiliation(s)
- Matías Exequiel Rodríguez
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Mariana Rizzi
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Lucas D Caeiro
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Yamil E Masip
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Alina Perrone
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Carlos G. Malbrán, Buenos Aires, Argentina
| | - Daniel O Sánchez
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Jacqueline Búa
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Carlos G. Malbrán, Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
21
|
Campos-Estrada C, González-Herrera F, Greif G, Carillo I, Guzmán-Rivera D, Liempi A, Robello C, Kemmerling U, Castillo C, Maya JD. Notch receptor expression in Trypanosoma cruzi-infected human umbilical vein endothelial cells treated with benznidazole or simvastatin revealed by microarray analysis. Cell Biol Int 2020; 44:1112-1123. [PMID: 31943572 DOI: 10.1002/cbin.11308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
Chagas disease is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti-inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.
Collapse
Affiliation(s)
- Carolina Campos-Estrada
- Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso, 2360102, Chile
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Gonzalo Greif
- Molecular Biology Unit, Pasteur Institute and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, 11800, Uruguay
| | - Ileana Carillo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Daniela Guzmán-Rivera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Carlos Robello
- Molecular Biology Unit, Pasteur Institute and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, 11800, Uruguay
| | - Ulrike Kemmerling
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Christian Castillo
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| |
Collapse
|
22
|
Liempi A, Castillo C, Medina L, Rojas M, Maya JD, Parraguez VH, Kemmerling U. Ex vivo infection of human placental explants with Trypanosoma cruzi and Toxoplasma gondii: Differential activation of NF kappa B signaling pathways. Acta Trop 2019; 199:105153. [PMID: 31469971 DOI: 10.1016/j.actatropica.2019.105153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Trypanosoma cruzi (T. cruzi) and Toxoplasma gondii (T. gondii) are the causative agents of Chagas disease and Toxoplasmosis. T. cruzi and T. gondii present, respectively, low and high congenital transmission rates and induce a distinctive cytokine/chemokine profile in ex vivo infected human placental explants (HPE). Since the innate immune response is regulated, at least partially, by NF-κB signaling pathways, our main objective was to determine the effect of ex vivo infection with both parasites on the activation of canonical and non-canonical NF-κB pathways and its relation to parasite infection. T. cruzi activates both, the canonical and non-canonical pathways of NF-κB, unlike T. gondii, which has no effect on the canonical pathway and inhibits the non-canonical pathway. The inhibition of both pathways of NF-κB increases the DNA load of T. cruzi and T. gondii in HPE. Therefore, the differential modulation of NF-κB signal transduction pathways by both parasites might explain, at least partially, the low and high congenital transmission rates of T. cruzi and T. gondii.
Collapse
Affiliation(s)
- Ana Liempi
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lisvaneth Medina
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maura Rojas
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Victor H Parraguez
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
23
|
Kemmerling U, Osuna A, Schijman AG, Truyens C. Congenital Transmission of Trypanosoma cruzi: A Review About the Interactions Between the Parasite, the Placenta, the Maternal and the Fetal/Neonatal Immune Responses. Front Microbiol 2019; 10:1854. [PMID: 31474955 PMCID: PMC6702454 DOI: 10.3389/fmicb.2019.01854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is considered a neglected tropical disease by the World Health Organization. Congenital transmission of CD is an increasingly relevant public health problem. It progressively becomes the main transmission route over others and can occur in both endemic and non-endemic countries. Though most congenitally infected newborns are asymptomatic at birth, they display higher frequencies of prematurity, low birth weight, and lower Apgar scores compared to uninfected ones, and some suffer from severe symptoms. If not diagnosed and treated, infected newborns are at risk of developing disabling and life-threatening chronic pathologies later in life. The success or failure of congenital transmission depends on interactions between the parasite, the placenta, the mother, and the fetus. We review and discuss here the current knowledge about these parameters, including parasite virulence factors such as exovesicles, placental tropism, potential placental defense mechanisms, the placental transcriptome of infected women, gene polymorphism, and the maternal and fetal/neonatal immune responses, that might modulate the risk of T. cruzi congenital transmission.
Collapse
Affiliation(s)
- Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Alejandro Gabriel Schijman
- Molecular Biology of Chagas Disease Laboratory, Genetic Engineering and Molecular Biology Research Institute Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Oliveira AER, Grazielle-Silva V, Ferreira LRP, Teixeira SMR. Close encounters between Trypanosoma cruzi and the host mammalian cell: Lessons from genome-wide expression studies. Genomics 2019; 112:990-997. [PMID: 31229555 DOI: 10.1016/j.ygeno.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/22/2019] [Accepted: 06/15/2019] [Indexed: 12/15/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a life-threatening disease that affects different tissues. Within its mammalian host, T. cruzi develops molecular strategies for successful invasion of different cell types and adaptation to the intracellular environment. Conversely, the host cell responds to the infection by activating intracellular pathways to control parasite replication. Here, we reviewed genome-wide expression studies based on microarray and RNA-seq data from both parasite and host genes generated from animal models of infection as well as from Chagas disease patients. As expected, analyses of T. cruzi genes highlighted changes related to parasite energy metabolism and cell surface molecules, whereas host cell transcriptome emphasized the role of immune response genes. Besides allowing a better understanding of mechanisms behind the pathogenesis of Chagas disease, these studies provide essential information for the development of new therapies as well as biomarkers for diagnosis and assessment of disease progression.
Collapse
Affiliation(s)
- Antonio Edson R Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila R P Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
25
|
Bustos PL, Milduberger N, Volta BJ, Perrone AE, Laucella SA, Bua J. Trypanosoma cruzi Infection at the Maternal-Fetal Interface: Implications of Parasite Load in the Congenital Transmission and Challenges in the Diagnosis of Infected Newborns. Front Microbiol 2019; 10:1250. [PMID: 31231337 PMCID: PMC6568191 DOI: 10.3389/fmicb.2019.01250] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma cruzi is the protozoan unicellular parasite that causes Chagas disease. It can be transmitted from infected mothers to their babies via the connatal route, thus being able to perpetuate even in the absence of Triatomine insect vectors. Chagas disease was originally endemic in Central and South America, but migration of infected women of childbearing age has spread the T. cruzi congenital infection to non-endemic areas like North America, Europe, Japan, and Australia. Currently, 7 million people are affected by this infection worldwide. This review focuses on the relevance of the T. cruzi parasite levels in different aspects of the congenital T. cruzi infection such as the mother-to-child transmission rate, the maternal and fetal immune response, and its impact on the diagnosis of infected newborns. Improvements in detection of this parasite, with tools that can be easily adapted to be used in remote rural areas, will make the early diagnosis of infected children possible, allowing a prompt trypanocidal treatment and avoiding the current loss of opportunities for the diagnosis of 100% of T. cruzi congenitally infected infants.
Collapse
Affiliation(s)
- Patricia L Bustos
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Buenos Aires, Argentina
| | - Natalia Milduberger
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Buenos Aires, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Bibiana J Volta
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Buenos Aires, Argentina
| | - Alina E Perrone
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Buenos Aires, Argentina
| | - Susana A Laucella
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Buenos Aires, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
26
|
Téllez J, Romero I, Romanha AJ, Steindel M. Drug transporter and oxidative stress gene expression in human macrophages infected with benznidazole-sensitive and naturally benznidazole-resistant Trypanosoma cruzi parasites treated with benznidazole. Parasit Vectors 2019; 12:262. [PMID: 31126349 PMCID: PMC6534881 DOI: 10.1186/s13071-019-3485-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background Chagas disease is a potentially life-threatening disease caused by the protozoan parasite Trypanosoma cruzi. Current therapeutic management is limited to treatment with nitroheterocyclic drugs, such as nifurtimox (NFX) and benznidazole (BZ). Thus, the identification of affordable and readily available drugs to treat resistant parasites is urgently required worldwide. To analyse the effects of BZ on human macrophage gene expression, a quantitative PCR (qPCR) array analysis was performed using drug transporter and oxidative stress pathway genes to compare the gene expression profiles of human differentiated THP-1 macrophage (THP-1 MΦ) cells infected or not with benznidazole-sensitive (CL Brener) and naturally benznidazole-resistant (Colombiana) T. cruzi parasites followed by treatment with BZ. Results The gene expression analysis indicated that the expression levels of 62 genes were either up- or downregulated at least 3-fold in the host upon infection with CL Brener and BZ treatment, of which 46 were upregulated and 16 were downregulated. Moreover, the expression level of 32 genes was altered in THP-1 MФ cells infected with Colombiana and treated with BZ, of which 29 were upregulated and 3 were downregulated. Our results revealed that depending on the specific condition, human THP-1 MΦ cells infected with T. cruzi strains with sensitive or resistant phenotypes and treated with BZ expressed high mRNA levels of AQP1, AQP9 and ABCB1 (MDR1) compared to those of the control cells. Conclusions Our findings suggest that the proteins encoded by AQP1, AQP9 and ABCB1 may be implicated in benznidazole detoxification. Therefore, studies on gene expression are required to better understand the host response to pathogens and drug treatment integrated with functional and metabolic data to identify potentially novel targets for the treatment of this important and neglected tropical disease. Electronic supplementary material The online version of this article (10.1186/s13071-019-3485-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jair Téllez
- Laboratorio de Protozoologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. .,Vicerrectoría de Investigaciones, Universidad Manuela Beltrán, Bogotá, Cundinamarca, Colombia.
| | - Ibeth Romero
- Laboratorio de Protozoologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.,Programa de Ciencias Básicas, Universidad Manuela Beltrán, Bogotá, Cundinamarca, Colombia
| | - Alvaro José Romanha
- Laboratorio de Protozoologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Mario Steindel
- Laboratorio de Protozoologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|