1
|
Durigan M, Ewing-Peeples L, Almeria S, Balan KV, Grocholl J, Irizawa S, Mammel M. Detection of Cyclospora cayetanensis in Food and Water Samples: Optimized Protocols for Specific and Sensitive Molecular Methods from a Regulatory Agency Perspective. J Food Prot 2024; 87:100291. [PMID: 38701974 DOI: 10.1016/j.jfp.2024.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Cyclospora cayetanensis is a coccidian parasite of the phylum Apicomplexa that causes cyclosporiasis, a human-specific gastrointestinal disease. Unlike most enteric pathogens, C. cayetanensis does not infect via direct fecal-oral transmission between humans because shed oocysts must be exposed to environmental triggers prior to becoming infectious. The development of specific and sensitive detection methods for C. cayetanensis is crucial to effectively address data gaps and provide regulatory support during outbreak investigations. In this study, new more specific molecular markers for the detection of C. cayetanensis were developed based on updated genomic databases of Apicomplexa mitochondrial sequences. Novel alternative reagents and supplies, as well as optimization protocols, were tested in spiked produce and agricultural water samples. The selected Mit1C primers and probe combined showed at least 13 mismatches to other related species. The new optimized qualitative real-time PCR assay with modifications to sample processing and replacement of discontinued items produced results comparable to the previously validated methods. In conclusion, the new optimized qualitative Mit1C real-time PCR assay demonstrated an increase in its specificity in comparison to other detection methods previously published, while it showed to be robust and as sensitive as the previously validated method at the FDA. This study has also expanded the array of PCR reagents that can be used to detect C. cayetanensis in produce and agricultural water samples and provided several improvements to the method for detection in agricultural water including replacements for discontinued items and a new dialysis filter for water filtration.
Collapse
Affiliation(s)
- Mauricio Durigan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Virulence Assessment, Laurel, MD 20708, USA.
| | - Laura Ewing-Peeples
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Sonia Almeria
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Kannan V Balan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Virulence Assessment, Laurel, MD 20708, USA
| | - John Grocholl
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Virulence Assessment, Laurel, MD 20708, USA; Goldbelt C6, Chesapeake, VA 23320, USA
| | - Sachi Irizawa
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20742, USA
| | - Mark Mammel
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Virulence Assessment, Laurel, MD 20708, USA
| |
Collapse
|
2
|
Richins T, Houghton K, Barratt J, H. Sapp SG, Peterson A, Qvarnstrom Y. Comparison of two novel one-tube nested real-time qPCR assays to detect human-infecting Cyclospora spp. Microbiol Spectr 2023; 11:e0138823. [PMID: 37819113 PMCID: PMC10715049 DOI: 10.1128/spectrum.01388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Human-infecting Cyclospora spp. cause gastrointestinal distress among healthy individuals contributing to morbidity and putting stress on the economics of countries and companies in the form of produce recalls. Accessible and easy-to-use diagnostic tools available to a wide variety of laboratories would aid in the early detection of possible outbreaks of cyclosporiasis. This, in turn, will assist in the timely traceback investigation to the suspected source of an outbreak by informing the smallest possible recall and protecting consumers from contaminated produce. This manuscript describes two novel detection methods with improved performance for the causative agents of cyclosporiasis when compared to the currently used 18S assay.
Collapse
Affiliation(s)
- Travis Richins
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Parasitic Disease Branch, Atlanta, USA
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | | | - Joel Barratt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Parasitic Disease Branch, Atlanta, USA
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Sarah G. H. Sapp
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Parasitic Disease Branch, Atlanta, USA
| | - Anna Peterson
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Parasitic Disease Branch, Atlanta, USA
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Parasitic Disease Branch, Atlanta, USA
| |
Collapse
|
3
|
Almeria S, Chacin-Bonilla L, Maloney JG, Santin M. Cyclospora cayetanensis: A Perspective (2020-2023) with Emphasis on Epidemiology and Detection Methods. Microorganisms 2023; 11:2171. [PMID: 37764015 PMCID: PMC10536660 DOI: 10.3390/microorganisms11092171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclospora cayetanensis infections are prevalent worldwide, and the parasite has become a major public health and food safety concern. Although important efforts have been dedicated to advance toward preventing and reducing incidences of cyclosporiasis, there are still several knowledge gaps that hamper the implementation of effective measures to prevent the contamination of produce and water with Cyclospora oocysts. Some of these data gaps can be attributed to the fact that access to oocysts is a limiting factor in C. cayetanensis research. There are no animal models or in vivo or in vitro culture systems to propagate the oocysts needed to facilitate C. cayetanensis research. Thus, researchers must rely upon limited supplies of oocysts obtained from naturally infected human patients considerably restricting what can be learnt about this parasite. Despite the limited supply of C. cayetanensis oocysts, several important advances have happened in the past 3 years. Great progress has been made in the Cyclospora field in the areas of molecular characterization of strains and species, generation of genomes, and development of novel detection methods. This comprehensive perspective summarizes research published from 2020 to 2023 and evaluates what we have learnt and identifies those aspects in which further research is needed.
Collapse
Affiliation(s)
- Sonia Almeria
- Center for Food Safety and Nutrition (CFSAN), Department of Health and Human Services, Food and Drug Administration, Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | | | - Jenny G. Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| |
Collapse
|
4
|
Li J, Xu F, Karim MR, Zhang L. Review on Cyclosporiasis Outbreaks and Potential Molecular Markers for Tracing Back Investigations. Foodborne Pathog Dis 2022; 19:796-805. [PMID: 36450125 DOI: 10.1089/fpd.2022.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cyclosporiasis is an emerging disease caused by Cyclospora cayetanensis, which induces protracting and relapsing gastroenteritis and has been linked to huge and complicated travel- and food-related outbreaks worldwide. Cyclosporiasis has become more common in both developing and developed countries as a result of increased global travel and the globalization of the human food supply. It is not just a burden on individual human health but also a worldwide public health problem. As a pathogen of interest, the molecular biological characteristics of C. cayetanensis have advanced significantly over the last few decades. However, only one FDA-approved molecular platform has been commercially used in the investigation of cyclosporiasis outbreaks. More potential molecular markers and genotyping of C. cayetanensis in samples based on the polymorphic region of the whole genomes might differentiate between separate case clusters and would be useful in tracing back investigations, especially during cyclosporiasis outbreak investigations. Considering that there is no effective vaccine for cyclosporosis, epidemiological investigation using effective tools is crucial for controlling cyclosporiasis by source tracking. Therefore, more and more epidemiological investigative studies for human cyclosporiasis should be promoted around the world to get a deeper understanding of its characteristics as well as management. This review focuses on major cyclosporiasis outbreaks and potential molecular markers for tracing back investigations into cyclosporiasis outbreaks.
Collapse
Affiliation(s)
- Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Feifei Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Md Robiul Karim
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| |
Collapse
|
5
|
Abstract
Cyclospora is an intracellular, gastrointestinal parasite found in birds and mammals worldwide. Limited accessibility of the protozoan for experimental use, scarcity, genome heterogeneity of the isolates and narrow panel of molecular markers hamper zoonotic investigations. One of the significant limitation in zoonotic studies is the lack of precise molecular tools that would be useful in linking animal vectors as a source of human infection. Strong and convincing evidence of zoonotic features will be achieved through proper typing of Cyclospora spp. taxonomic units (e.g. species or genotypes) in animal reservoirs. The most promising method that can be employ for zoonotic surveys is next-generation sequencing.
Collapse
|
6
|
Houghton KA, Lomsadze A, Park S, Nascimento FS, Barratt J, Arrowood MJ, VanRoey E, Talundzic E, Borodovsky M, Qvarnstrom Y. Development of a workflow for identification of nuclear genotyping markers for Cyclospora cayetanensis. ACTA ACUST UNITED AC 2020; 27:24. [PMID: 32275020 PMCID: PMC7147239 DOI: 10.1051/parasite/2020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/02/2020] [Indexed: 01/29/2023]
Abstract
Cyclospora cayetanensis is an intestinal parasite responsible for the diarrheal illness, cyclosporiasis. Molecular genotyping, using targeted amplicon sequencing, provides a complementary tool for outbreak investigations, especially when epidemiological data are insufficient for linking cases and identifying clusters. The goal of this study was to identify candidate genotyping markers using a novel workflow for detection of segregating single nucleotide polymorphisms (SNPs) in C. cayetanensis genomes. Four whole C. cayetanensis genomes were compared using this workflow and four candidate markers were selected for evaluation of their genotyping utility by PCR and Sanger sequencing. These four markers covered 13 SNPs and resolved parasites from 57 stool specimens, differentiating C. cayetanensis into 19 new unique genotypes.
Collapse
Affiliation(s)
- Katelyn A Houghton
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Alexandre Lomsadze
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Subin Park
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Fernanda S Nascimento
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael J Arrowood
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Erik VanRoey
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mark Borodovsky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yvonne Qvarnstrom
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
7
|
Cinar HN, Gopinath G, Murphy HR, Almeria S, Durigan M, Choi D, Jang A, Kim E, Kim R, Choi S, Lee J, Shin Y, Lee J, Qvarnstrom Y, Benedict TK, Bishop HS, da Silva A. Molecular typing of Cyclospora cayetanensis in produce and clinical samples using targeted enrichment of complete mitochondrial genomes and next-generation sequencing. Parasit Vectors 2020; 13:122. [PMID: 32143704 PMCID: PMC7060604 DOI: 10.1186/s13071-020-3997-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/26/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Outbreaks of cyclosporiasis, a diarrheal illness caused by Cyclospora cayetanensis, have been a public health issue in the USA since the mid 1990's. In 2018, 2299 domestically acquired cases of cyclosporiasis were reported in the USA as a result of multiple large outbreaks linked to different fresh produce commodities. Outbreak investigations are hindered by the absence of standardized molecular epidemiological tools for C. cayetanensis. For other apicomplexan coccidian parasites, multicopy organellar DNA such as mitochondrial genomes have been used for detection and molecular typing. METHODS We developed a workflow to obtain complete mitochondrial genome sequences from cilantro samples and clinical samples for typing of C. cayetanensis isolates. The 6.3 kb long C. cayetanensis mitochondrial genome was amplified by PCR in four overlapping amplicons from genomic DNA extracted from cilantro, seeded with oocysts, and from stool samples positive for C. cayetanensis by diagnostic methods. DNA sequence libraries of pooled amplicons were prepared and sequenced via next-generation sequencing (NGS). Sequence reads were assembled using a custom bioinformatics pipeline. RESULTS This approach allowed us to sequence complete mitochondrial genomes from the samples studied. Sequence alterations, such as single nucleotide polymorphism (SNP) profiles and insertion and deletions (InDels), in mitochondrial genomes of 24 stool samples from patients with cyclosporiasis diagnosed in 2014, exhibited discriminatory power. The cluster dendrogram that was created based on distance matrices of the complete mitochondrial genome sequences, indicated distinct strain-level diversity among the 2014 C. cayetanensis outbreak isolates analyzed in this study. CONCLUSIONS Our results suggest that genomic analyses of mitochondrial genome sequences may help to link outbreak cases to the source.
Collapse
Affiliation(s)
- Hediye Nese Cinar
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Helen R. Murphy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Sonia Almeria
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Mauricio Durigan
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Dajung Choi
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - AhYoung Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Eunje Kim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - RaeYoung Kim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Seonju Choi
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Jeongu Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Yurim Shin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Jieon Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Theresa K. Benedict
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Henry S. Bishop
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Alexandre da Silva
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| |
Collapse
|
8
|
A Molecular Tool for Rapid Detection and Traceability of Cyclospora cayetanensis in Fresh Berries and Berry Farm Soils. Foods 2020; 9:foods9030261. [PMID: 32121643 PMCID: PMC7142967 DOI: 10.3390/foods9030261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/16/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Due to recent outbreaks of cyclosporiasis associated with consumption of fresh berries, producers are demanding modern microbiological tools for the rapid and accurate identification of the human pathogen Cyclospora cayetanensis in berries and environmental samples. The aim of the present work was to develop a molecular tool based on a PCR approach for the rapid and accurate detection of C. cayetanensis. A nested PCR assay was validated for the amplification of a 294 bp size region of the 18S rRNA gene from C. cayetanensis. The limit of detection for the nested PCR assay was validated using 48 berry samples spiked with ~0, 10, 100, and 1000 oocyst per gram of sample. With this assay, it was possible to detect as few as 1 oocyst per gram of berry, in a 50 g sample. Sanger DNA sequencing and phylogenetic analysis were carried out to confirm the presence of C. cayetanensis in berry (n = 17) and soil (n = 5) samples. The phylogenetic analysis revealed that the C. cayetanensis sequences obtained from Mexico clustered within a group recovered from China, Peru, Guatemala-Haiti, and Japan. The PCR protocol designed in the present study could be an important tool for the rapid and accurate detection of this human pathogen in environmental and food samples.
Collapse
|
9
|
Li J, Cui Z, Qi M, Zhang L. Advances in Cyclosporiasis Diagnosis and Therapeutic Intervention. Front Cell Infect Microbiol 2020; 10:43. [PMID: 32117814 PMCID: PMC7026454 DOI: 10.3389/fcimb.2020.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cyclosporiasis is caused by the coccidian parasite Cyclospora cayetanensis and is associated with large and complex food-borne outbreaks worldwide. Associated symptoms include severe watery diarrhea, particularly in infants, and immune dysfunction. With the globalization of human food supply, the occurrence of cyclosporiasis has been increasing in both food growing and importing countries. As well as being a burden on the health of individual humans, cyclosporiasis is a global public health concern. Currently, no vaccine is available but early detection and treatment could result in a favorable clinical outcome. Clinical diagnosis is based on cardinal clinical symptoms and conventional laboratory methods, which usually involve microscopic examination of wet smears, staining tests, fluorescence microscopy, serological testing, or DNA testing for oocysts in the stool. Detection in the vehicle of infection, which can be fresh produce, water, or soil is helpful for case-linkage and source-tracking during cyclosporiasis outbreaks. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) can evidently cure C. cayetanensis infection. However, TMP-SMX is not suitable for patients having sulfonamide intolerance. In such case ciprofloxacin, although less effective than TMP-SMX, is a good option. Another drug of choice is nitazoxanide that can be used in the cases of sulfonamide intolerance and ciprofloxacin resistance. More epidemiological research investigating cyclosporiasis in humans should be conducted worldwide, to achieve a better understanding of its characteristics in this regard. It is also necessary to establish in vitro and/or in vivo protocols for cultivating C. cayetanensis, to facilitate the development of rapid, convenient, precise, and economical detection methods for diagnosis, as well as more effective tracing methods. This review focuses on the advances in clinical features, diagnosis, and therapeutic intervention of cyclosporiasis.
Collapse
Affiliation(s)
- Junqiang Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhaohui Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
Cyclospora cayetanensis infection in humans: biological characteristics, clinical features, epidemiology, detection method and treatment. Parasitology 2019; 147:160-170. [PMID: 31699163 DOI: 10.1017/s0031182019001471] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclospora cayetanensis, a coccidian parasite that causes protracted and relapsing gastroenteritis, has a short recorded history. At least 54 countries have documented C. cayetanensis infections and 13 of them have recorded cyclosporiasis outbreaks. Cyclospora cayetanensis infections are commonly reported in developing countries with low-socioeconomic levels or in endemic areas, although large outbreaks have also been documented in developed countries. The overall C. cayetanensis prevalence in humans worldwide is 3.55%. Among susceptible populations, the highest prevalence has been documented in immunocompetent individuals with diarrhea. Infections are markedly seasonal, occurring in the rainy season or summer. Cyclospora cayetanensis or Cyclospora-like organisms have also been detected in food, water, soil and some other animals. Detection methods based on oocyst morphology, staining and molecular testing have been developed. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) effectively cures C. cayetanensis infection, whereas ciprofloxacin is less effective than TMP-SMX, but is suitable for patients who cannot tolerate co-trimoxazole. Here, we review the biological characteristics, clinical features, epidemiology, detection methods and treatment of C. cayetanensis in humans, and assess some risk factors for infection with this pathogen.
Collapse
|
11
|
Almeria S, Cinar HN, Dubey JP. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019; 7:E317. [PMID: 31487898 PMCID: PMC6780905 DOI: 10.3390/microorganisms7090317] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal-oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. Trimetoprim-sulfamethoxazole is the antibiotic of choice for the treatment of cyclosporiasis, but relapses may occur. Further research is needed to understand many unknown epidemiological aspects of this parasitic disease. Here, we summarize the biology, epidemiology, outbreaks, clinical symptoms, diagnosis, treatment, control and prevention of C. cayetanensis; additionally, we outline future research needs for this parasite.
Collapse
Affiliation(s)
- Sonia Almeria
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Hediye N Cinar
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Jitender P Dubey
- Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA.
| |
Collapse
|