1
|
Cerqueira ARA, Rodrigues L, Coavoy-Sánchez SA, Teixeira SA, Feitosa KB, Taniguchi EY, Lopes LR, Cassola AC, Muscará MN, Sá-Nunes A, Costa SKP. Aedes aegypti salivary gland extract alleviates acute itching by blocking TRPA1 channels. Front Physiol 2023; 14:1055706. [PMID: 37441000 PMCID: PMC10333701 DOI: 10.3389/fphys.2023.1055706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aedes aegypti (Ae. aegypti) saliva induces a variety of anti-inflammatory and immunomodulatory activities. Interestingly, although it is known that mosquito bites cause allergic reactions in sensitised hosts, the primary exposure of humans to Ae. aegypti does not evoke significant itching. Whether active components in the saliva of Ae. aegypti can counteract the normal itch reaction to injury produced by a histaminergic or non-histaminergic pathway in vertebrate hosts is unknown. This study investigated the effects of Ae. aegypti mosquito salivary gland extract (SGE) on sensitive reactions such as itching and associated skin inflammation. Acute pruritus and plasma extravasation were induced in mice by the intradermal injection of either compound 48/80 (C48/80), the Mas-related G protein-coupled receptor (Mrgpr) agonist chloroquine (CQ), or the transient receptor potential ankyrin 1 (TRPA1) agonist allyl isothiocyanate (AITC). The i.d. co-injection of Ae. aegypti SGE inhibited itching, plasma extravasation, and neutrophil influx evoked by C48/80, but it did not significantly affect mast cell degranulation in situ or in vitro. Additionally, SGE partially reduced CQ- and AITC-induced pruritus in vivo, suggesting that SGE affects pruriceptive nerve firing independently of the histaminergic pathway. Activation of TRPA1 significantly increased intracellular Ca2+ in TRPA-1-transfected HEK293t lineage, which was attenuated by SGE addition. We showed for the first time that Ae. aegypti SGE exerts anti-pruriceptive effects, which are partially regulated by the histamine-independent itch TRPA1 pathway. Thus, SGE may possess bioactive molecules with therapeutic potential for treating nonhistaminergic itch.
Collapse
Affiliation(s)
- Anderson R. A. Cerqueira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro Rodrigues
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Simone A. Teixeira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Karla B. Feitosa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Erika Y. Taniguchi
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lucia R. Lopes
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Antônio C. Cassola
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo N. Muscará
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | - Soraia K. P. Costa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens. Trop Med Infect Dis 2021; 6:tropicalmed6040185. [PMID: 34698307 PMCID: PMC8544703 DOI: 10.3390/tropicalmed6040185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Humoral immunity to Plasmodium falciparum is acquired after repeated infections, and can lead to clinical protection. This study aimed to evaluate how human-, parasite-, and environment-related determinants can modulate the dynamics of IgG responses to Plasmodium falciparum after an infection. Individuals (n = 68, average age = 8.2 years) with uncomplicated malaria were treated with ACT and followed up for 42 days. IgG responses to P. falciparum merozoite antigens (PfMSP1, PfMSP3, PfAMA1, PfGLURP-R0), to whole schizont extract (PfSchz), and to Anopheles gSG6-P1 and Aedes Nterm–34 kDa salivary peptides were measured. Regression analyses were used to identify factors that influence the dynamics of IgG response to P. falciparum antigen between D0 and D42, including demographic and biological factors and the level of exposure to mosquito bites. The dynamics of IgG response to P. falciparum differed according to the antigen. According to multivariate analysis, IgG responses to PfSchz and to PfGLURP-R0 appear to be affected by exposure to Aedes saliva and are associated with age, parasite density, and anti-Plasmodium pre-existing immune response at study inclusion. The present work shows that human exposure to Aedes saliva may contribute, in addition to other factors, to the regulation of anti-Plasmodium immune responses during a natural infection.
Collapse
|
3
|
Lara PG, Esteves E, Sales-Campos H, Assis JB, Henrique MO, Barros MS, Neto LS, Silva PI, Martins JO, Cardoso CRB, Ribeiro JMC, Sá-Nunes A. AeMOPE-1, a Novel Salivary Peptide From Aedes aegypti, Selectively Modulates Activation of Murine Macrophages and Ameliorates Experimental Colitis. Front Immunol 2021; 12:681671. [PMID: 34349757 PMCID: PMC8327214 DOI: 10.3389/fimmu.2021.681671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.
Collapse
Affiliation(s)
- Priscila G. Lara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Eliane Esteves
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Helioswilton Sales-Campos
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Josiane B. Assis
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maressa O. Henrique
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Michele S. Barros
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Leila S. Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Pedro I. Silva
- Laboratory for Applied Toxinology, Butantan Institute, Sao Paulo, Brazil
| | - Joilson O. Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina R. B. Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Assis JB, Cogliati B, Esteves E, Capurro ML, Fonseca DM, Sá-Nunes A. Aedes aegypti mosquito saliva ameliorates acetaminophen-induced liver injury in mice. PLoS One 2021; 16:e0245788. [PMID: 33556084 PMCID: PMC7869984 DOI: 10.1371/journal.pone.0245788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) overdose is the most common cause of drug-induced liver injury (DILI). Although the primary hepatic damage is induced by APAP-derived toxic intermediates resulting from cytochrome P450 metabolism, immune components also play an important role in DILI pathophysiology. Aedes aegypti saliva is a source of bioactive molecules with in vitro anti-inflammatory and immunomodulatory activities. However, evidences on the therapeutic use of Ae. aegypti salivary preparations in animal models of relevant clinical conditions are still scarce. Thus, the present study was designed to evaluate the protective role of Ae. aegypti saliva in a murine model of APAP-induced DILI. C57BL/6 mice were exposed to Ae. aegypti bites 2 hours after APAP overdose. Biochemical and immunological parameters were evaluated in blood and liver samples at different time points after APAP administration. Exposure to Ae. aegypti saliva attenuated liver damage, as demonstrated by reduced hepatic necrosis and serum levels of alanine aminotransferase in APAP-overdosed mice. The levels of hepatic CYP2E1, the major enzyme responsible for the bioactivation of APAP, were not changed in Ae. aegypti exposed animals, suggesting no effects in the generation of hepatotoxic metabolites. On the other hand, mice treated with Ae. aegypti saliva following APAP overdose presented lower serum concentration of TNF-α, IL-6, IL-1β and IL-10, as well as reduced frequency of inflammatory cell populations in the liver, such as NKT cells, macrophages and dendritic cells. These findings show that Ae. aegypti saliva has bioactive molecules with therapeutic properties and may represent a prospective source of new compounds in the management of DILI-associated inflammatory disorders and, perhaps, many other inflammatory/autoimmune diseases.
Collapse
Affiliation(s)
- Josiane B. Assis
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Cogliati
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Eliane Esteves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Margareth L. Capurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise M. Fonseca
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
5
|
Guerrero D, Cantaert T, Missé D. Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses. Front Cell Infect Microbiol 2020; 10:407. [PMID: 32850501 PMCID: PMC7426362 DOI: 10.3389/fcimb.2020.00407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Vector-borne diseases are responsible for over a billion infections each year and nearly one million deaths. Mosquito-borne dengue virus, West Nile, Japanese encephalitis, Zika, Chikungunya, and Rift Valley Fever viruses constitute major public health problems in regions with high densities of arthropod vectors. During the initial step of the transmission cycle, vector, host, and virus converge at the bite site, where local immune cells interact with the vector's saliva. Hematophagous mosquito saliva is a mixture of bioactive components known to modulate vertebrate hemostasis, immunity, and inflammation during the insect's feeding process. The capacity of mosquito saliva to modulate the host immune response has been well-studied over the last few decades and has led to the consensus that the presence of saliva is linked to the enhancement of virus transmission, host susceptibility, disease progression, viremia levels, and mortality. We review some of the major aspects of the interactions between mosquito saliva and the host immune response that may be useful for future studies on the control of arboviruses.
Collapse
Affiliation(s)
- David Guerrero
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Dorothée Missé
- MIVEGEC, IRD, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
6
|
Henrique MO, Neto LS, Assis JB, Barros MS, Capurro ML, Lepique AP, Fonseca DM, Sá-Nunes A. Evaluation of inflammatory skin infiltrate following Aedes aegypti bites in sensitized and non-sensitized mice reveals saliva-dependent and immune-dependent phenotypes. Immunology 2019; 158:47-59. [PMID: 31315156 DOI: 10.1111/imm.13096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/12/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
During probing and blood feeding, haematophagous mosquitoes inoculate a mixture of salivary molecules into their vertebrate hosts' skin. In addition to the anti-haemostatic and immunomodulatory activities, mosquito saliva also triggers acute inflammatory reactions, especially in sensitized hosts. Here, we characterize the oedema and the cellular infiltrate following Aedes aegypti mosquito bites in the skin of sensitized and non-sensitized BALB/c mice by flow cytometry. Ae. aegypti bites induced an increased oedema in the ears of both non-sensitized and salivary gland extract- (SGE-)sensitized mice, peaking at 6 hr and 24 hr after exposure, respectively. The quantification of the total cell number in the ears revealed that the cellular recruitment was more robust in SGE-sensitized mice than in non-sensitized mice, and the histological evaluation confirmed these findings. The immunophenotyping performed by flow cytometry revealed that mosquito bites were able to produce complex changes in cell populations present in the ears of non-sensitized and SGE-sensitized mice. When compared with steady-state ears, the leucocyte populations significantly recruited to the skin after mosquito bites in non-sensitized and sensitized mice were eosinophils, neutrophils, monocytes, inflammatory monocytes, mast cells, B-cells and CD4+ T-cells, each one with its specific kinetics. The changes in the absolute number of cells suggested two cell recruitment profiles: (i) a saliva-dependent migration; and (ii) a migration dependent on the immune status of the host. These findings suggest that mosquito bites influence the skin microenvironment by inducing differential cell migration, which is dependent on the degree of host sensitization to salivary molecules.
Collapse
Affiliation(s)
- Maressa O Henrique
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leila S Neto
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Josiane B Assis
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michele S Barros
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Margareth L Capurro
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, RJ, Brazil
| | - Ana P Lepique
- Laboratório de Imunomodulação, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Denise M Fonseca
- Laboratório de Imunologia de Mucosas, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Anderson Sá-Nunes
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, RJ, Brazil
| |
Collapse
|