1
|
Kazak M, Valavičiūtė-Pocienė K, Kondrotaitė S, Duc M, Bukauskaitė D, Hernández-Lara C, Bernotienė R, Chagas CRF. Culicoides biting midges feeding behaviour as a key for understanding avian Haemoproteus transmission in Lithuania. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:530-541. [PMID: 39150734 DOI: 10.1111/mve.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Investigations of host feeding behaviour in haematophagous insects are critical to assess transmission routes of vector-borne diseases. Understanding if a certain species has ornithophilic or mammalophilic feeding behaviour can facilitate future studies focused on pathogens transmission to and from certain host species. Culicoides Latreille (Diptera: Ceratopogonidae) are vectors of several pathogens, which include arboviruses, bacteria and parasites to a considerable diversity of vertebrate hosts. However, most of the studies focused on feeding habits target Culicoides species that could transmit the Bluetongue virus, consequently with a mammalophilic feeding behaviour, leaving aside the Culicoides species that are involved in the transmission of vector-borne parasites to birds, such as Haemoproteus Kruse (Haemosporida: Haemoproteidae). This study aimed to investigate the source of blood meals of wild-caught Culicoides using molecular-based methods and to correlate our findings with the reports of Haemoproteus parasites in Culicoides species. Engorged Culicoides females were collected using ultraviolet (UV)-light traps at seven different localities in Lithuania in 2021-2023. Biting midges were dissected, and the abdomens of engorged females were used for molecular investigation of the blood meal source. A polymerase chain reaction (PCR) protocol that amplifies a fragment of the Cytochrome B gene of vertebrates was used. Obtained sequences were compared to available information in GenBank database to confirm the source of the blood meal. In total, 258 engorged Culicoides females, representing nine different species, were analysed. The source of blood meal was identified in 29.1% of them with most of the insects having fed on birds (74.7%) and the remaining on mammals (25.3%). Culicoides segnis Campbell, Pelham-Clinton was the only species to feed exclusively on birds; Culicoides from the Obsoletus group, C. pallidicornis Kieffer and C. punctatus Latreille were found to feed exclusively on mammals; C. festivipennis Kieffer, C. kibunensis Tokunaga and C. pictipennis Staeger had an opportunistic feeding behaviour, with the first two preferably feeding on birds. Due to their feeding behaviour and the presence of Haemoproteus parasites reported in the literature, C. festivipennis, C. kibunensis, C. pictipennis, and C. segnis play an important role in the transmission of those avian vector-borne parasite in the wild. These Culicoides species were already confirmed as being able to support the development of several Haemoproteus species and lineages. Future studies focused on understanding the epidemiology of avian pathogens transmitted by Culicoides should target these species.
Collapse
Affiliation(s)
- Margarita Kazak
- Laboratory of Entomology, Nature Research Centre, Vilnius, Lithuania
| | | | | | - Mélanie Duc
- P. B. Šivickis Laboratory of Parasitology, Nature Research Centre, Vilnius, Lithuania
| | - Dovilė Bukauskaitė
- P. B. Šivickis Laboratory of Parasitology, Nature Research Centre, Vilnius, Lithuania
| | | | - Rasa Bernotienė
- Laboratory of Entomology, Nature Research Centre, Vilnius, Lithuania
| | | |
Collapse
|
2
|
Tchoumbou M, Iezhova T, Hernández-Lara C, Duc M, Valkiūnas G. Unravelling the patterns of exo-erythrocytic development of Haemoproteus parasites (Haemoproteidae, Haemosporida), with a case of abortive tissue stages in a naturally infected bird. Int J Parasitol 2024:S0020-7519(24)00185-1. [PMID: 39393755 DOI: 10.1016/j.ijpara.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan blood parasites that affect bird fitness and health. Recent discoveries based on the application of molecular markers showed that exo-erythrocytic or tissue stages of haemoproteids damage various internal organs including the brain. However, the patterns of exo-erythrocytic development remain unclear for most of the described species. This study aimed to understand the exo-erythrocytic development of Haemoproteus parasites in naturally infected Thrush nightingales Luscinia luscinia (Muscicapidae). Infections were confirmed in eight bird individuals by microscopic examination and PCR-based methods. Organs were examined using histology and in situ hybridization, which applied genus-specific and lineage-specific oligonucleotide probes targeting the 18S rRNA of the parasites. Exo-erythrocytic meronts of Haemoproteus attenuatus (lineage hROBIN1) were found and described for the first known time in this avian host. Most meronts were seen in the lungs, with a few also present in the liver, heart, and pectoral muscle. The available data suggest that this parasite produces only meronts, and not megalomeronts. However, numerous megalomeronts at different stages of development were observed in the gizzard and the heart of one individual. Based on the morphology, location in organs, and diagnostics using the lineage-specific probes, the megalomeronts were attributed to Haemoproteus majoris (lineage hWW2). Two cases of empty capsular-like walls of megalomeronts were seen in the gizzard, indicating that the megalomeronts had already ruptured and degenerated. The extensive microscopic examination did not reveal gametocytes of H. majoris, obviously indicating an abortive development. Abortive haemosporidian infections were often speculated to occur in wildlife but have not been documented in naturally infected birds. This study recognised patterns in the exo-erythrocytic development of H. attenuatus, and is to our knowledge the first documentation of abortive Haemoproteus infection in a naturally infected bird during exo-erythrocytic development.
Collapse
Affiliation(s)
| | - Tatjana Iezhova
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | | | - Mélanie Duc
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | | |
Collapse
|
3
|
Tchoumbou M, Harl J, Souaibou A, Iezhova T, Valkiūnas G. Molecular characterization of Haemoproteus enucleator with emphasis on the host and geographic distribution. Acta Trop 2024; 253:107154. [PMID: 38373526 DOI: 10.1016/j.actatropica.2024.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan and highly diverse blood parasites of birds that have been neglected in avian medicine. However, recent discoveries based on molecular diagnostic markers show that these pathogens often cause marked damage to various internal organs due to exo-erythrocytic development, sometimes resulting in severe and even lethal avian haemoproteosis, including cerebral pathologies. Molecular markers are essential for haemoproteosis diagnostics, but the data is limited, particularly for parasites transmitted in tropical ecosystems. This study combined microscopic and molecular approaches to characterize Haemoproteus enucleator morphologically and molecularly. Blood samples were collected from the African pygmy kingfisher Ispidina picta in Cameroon, and the parasite was identified using morphological characters of gametocytes. The analysis of partial cytochrome b sequences (cytb) identified a new Haemoproteus lineage (hISPIC03), which was linked to the morphospecies H. enucleator. Illustrations of blood stages were provided and the phylogenetic analysis showed that the new lineage clustered with five other closely related lineages belonging to the same morphospecies (hALCLEU01, hALCLEU02, hALCLEU03, hISPIC01, and hALCQUA01), with a maximum genetic distance between these lineages of 1.5 % (7 bp difference) in the 478 bp cytb sequences. DNA haplotype network was developed and identified geographic and host distribution of all lineages belonging to H. enucleator group. These lineages were almost exclusively detected in African kingfishers from Gabon, Cameroon, South Africa, and Botswana. This study developed the molecular characterization of H. enucleator and provides opportunities for diagnostics of this pathogen at all stages of its life cycle, which remains undescribed in all its closely related lineages.
Collapse
Affiliation(s)
- Mélanie Tchoumbou
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania; Biodiversity Initiative, Houghton, MI, USA.
| | - Josef Harl
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Aladji Souaibou
- Vector Borne Parasitic & Infectious Diseases Laboratory of the Applied Biology and Ecology Research Unit, University of Dschang, Cameroon
| | - Tatjana Iezhova
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | | |
Collapse
|
4
|
Valkiūnas G, Iezhova T, Ilgūnas M, Tchoumbou M, Duc M, Bukauskaitė D, Himmel T, Harl J, Weissenböck H. Unexpected absence of exo-erythrocytic merogony during high gametocytaemia in two species of Haemoproteus (Haemosporida: Haemoproteidae), including description of Haemoproteus angustus n. sp. (lineage hCWT7) and a report of previously unknown residual bodies during in vitro gametogenesis. Int J Parasitol Parasites Wildl 2024; 23:100905. [PMID: 38292244 PMCID: PMC10827498 DOI: 10.1016/j.ijppaw.2024.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 02/01/2024]
Abstract
Neglected avian blood parasites of the genus Haemoproteus (Haemoproteidae) have recently attracted attention due to the application of molecular diagnostic tools, which unravelled remarkable diversity of their exo-erythrocytic (or tissue) stages both regarding morphology and organ tropism levels. The development of haemoproteids might result in pathologies of internal organs, however the exo-erythrocytic development (EED) of most Haemoproteus species remains unknown. Seven individual birds - Curruca communis (1) and Phylloscopus trochilus (6) - with high gametocytaemia (between 1% and 24%) of Haemoproteus angustus n. sp. (hCWT7) and Haemoproteus palloris (lineage hWW1) were sampled in Lithuania, and their internal organs were examined extensively by parallel application of histology and chromogenic in situ hybridization methods. Tissue stages were apparently absent, suggesting that the parasitaemia was not accompanied by detectable tissue merogony. Haemoproteus angustus n. sp. was described and characterized morphologically and molecularly. Sexual process and ookinete development of the new species readily occurred in vitro, and a unique character for Haemoproteus parasites was discovered - the obligatory development of several tiny residual bodies, which were associated with intracellular transformation of both macrogametocytes and microgametocytes before their escape from the host cells and formation of gametes. A DNA haplotype network was constructed with lineages that cluster in one clade with the lineage hCWT7. This clade consists of lineages mostly found in Curruca birds, indicating specificity for birds of this genus. The lineage hCWT7 is mainly a parasite of C. communis. Most reports of this lineage came from Turkey, with only a few records in Europe, mostly in birds wintering in Africa where transmission probably occurs. This study highlights unexpected difficulties in the research of EED even when using sensitive molecular diagnostic tools and extends information about transformation in early stages of gametogenesis in haemosporidian parasites.
Collapse
Affiliation(s)
| | - Tatjana Iezhova
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | | | - Mélanie Duc
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | | | - Tanja Himmel
- Institute of Pathology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Josef Harl
- Institute of Pathology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
5
|
Himmel T, Harl J, Matt J, Nedorost N, Lunardi M, Ilgūnas M, Iezhova T, Valkiūnas G, Weissenböck H. Co-infecting Haemoproteus species (Haemosporida, Apicomplexa) show different host tissue tropism during exo-erythrocytic development in Fringilla coelebs (Fringillidae). Int J Parasitol 2024; 54:1-22. [PMID: 37598774 DOI: 10.1016/j.ijpara.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Avian haemosporidians of the genera Plasmodium, Haemoproteus, and Leucocytozoon are common blood parasites in wild birds all over the world. Despite their importance as pathogens potentially compromising host fitness and health, little is known about the exo-erythrocytic development of these parasites, particularly during co-infections which predominate in wildlife. This study aimed to address this issue using Haemoproteus parasites of Fringilla coelebs, a common bird species of the Western Palearctic and host to a variety of haemosporidian parasite lineages. Blood and tissue samples of 20 F. coelebs, positive for haemosporidians by blood film microscopy, were analysed by PCR and sequencing to determine cytochrome b lineages of the parasites. Tissue sections were examined for exo-erythrocytic stages by histology and in situ hybridization applying genus-, species-, and lineage-specific probes which target the 18S rRNA of the parasites. In addition, laser microdissection of tissue stages was performed to identify parasite lineages. Combined molecular results of PCR, laser microdissection, and in situ hybridization showed a high rate of co-infections, with Haemoproteus lineages dominating. Exo-erythrocytic meronts of five Haemoproteus spp. were described for the first known time, including Haemoproteus magnus hCCF6, Haemoproteus fringillae hCCF3, Haemoproteus majoris hCCF5, Haemoproteus sp. hROFI1, and Haemoproteus sp. hCCF2. Merogonic stages were observed in the vascular system, presenting a formerly unknown mode of exo-erythrocytic development in Haemoproteus parasites. Meronts and megalomeronts of these species were distinct regarding their morphology and organ distribution, indicating species-specific patterns of merogony and different host tissue tropism. New pathological aspects of haemoproteosis were reported. Furthermore, phylogenetic analysis of Haemoproteus spp. with regard to their exo-erythrocytic stages points towards separation of non-megalomeront-forming species from megalomeront-forming species, calling for further studies on exo-erythrocytic development of haemosporidian parasites to explore the phylogenetic character of this trait.
Collapse
Affiliation(s)
- Tanja Himmel
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Josef Harl
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Julia Matt
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Nora Nedorost
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Madeleine Lunardi
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | - Tatjana Iezhova
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | | | - Herbert Weissenböck
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
6
|
Haas M, Ploščicová L. Contribution to ecological environmental factors and the occurrence of haemosporidians in birds in Zhongar Alatau National Park, Kazakhstan. Parasitol Res 2023; 123:68. [PMID: 38135737 PMCID: PMC10746751 DOI: 10.1007/s00436-023-08097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
In addition to the presence of a suitable host and vector, the prevalence of haemosporidians is influenced by several important factors, including the environmental conditions of the habitat, which depend on broader geographic characteristics. The aim of this study is to perform a preliminarily assessment of the distribution of blood parasites in birds from the mountainous area of Zhongar Alatau NP and to find potential new sites for research on their ecology in Kazakhstan. The results of this research constitute the first report on the occurrence of blood parasites from this area. A total of 58 birds, from the order Passeriformes and one individual from the order Caprimulgiformes, were examined during the study. The overall prevalence of infections caused by haemosporidian parasites (Haemoproteus, Leucocytozoon) was 18.6%. Neither the genus Plasmodium nor the presence of trypanosomes and microfilariae was detected in the birds examined. Three birds (5.1% prevalence) were infected with parasites of the genus Haemoproteus, in all eleven positive birds the analyses showed the presence of parasites of the genus Leucocytozoon (18.6% prevalence). The presence of parasites genus Haemoproteus was detected only in birds that were also infected with Leucocytozoon parasites. More infections with parasites of the genus Leucocytozoon are predicted due to the higher altitude and ecological factors at the capture sites, which are more favourable for the development of vectors of this genus. The species Haemoproteus majoris was detected in the host Emberiza cioides and species Haemoproteus minutus in host Turdus merula. Other species of this genus in the hosts Cyanistes cyanus and Turdus atrogularis were not determined. The species Leucocytozoon fringilinarum was detected in the hosts Cyanistes cyanus and Parus major, Leucocytozoon dubreuili was detected in Turdus atrogularis and Turdus merula. In the other host species Aegithalos caudatus, Emberiza cioides and Periparus aterus, it was not possible to dermine the species of the genus Leucocytozoon.
Collapse
Affiliation(s)
- Martina Haas
- Institute of High Mountain Biology, Žilina University, Tatranská Javorina 7, 059 56, Tatranská Javorina, Slovakia.
| | - Lenka Ploščicová
- Institute of High Mountain Biology, Žilina University, Tatranská Javorina 7, 059 56, Tatranská Javorina, Slovakia
| |
Collapse
|
7
|
Chagas CRF, Duc M, Himmel T, Eigirdas V, Weissenböck H, Valkiūnas G. Exo-erythrocytic development of Leucocytozoon parasites (Haemosporida, Leucocytozoidae) in song thrushes Turdus philomelos. Int J Parasitol Parasites Wildl 2023; 22:60-68. [PMID: 37692054 PMCID: PMC10485597 DOI: 10.1016/j.ijppaw.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Leucocytozoon parasites (Haemosporida, Leucocytozoidae) are haemosporidians whose diversity, exo-erythrocytic development and potential vectors are the least studied. The knowledge about their exo-erythrocytic development and pathogenicity is fragmentary, resulting in an incomplete comprehension of the impact of these parasites on avian hosts. For a long time, Leucocytozoon infections were considered benign to wild birds, even though they were virulent in poultry and responsible for some wild bird population declines. This study aimed to investigate the presence of Leucocytozoon species exo-erythrocytic stages in song thrushes Turdus philomelos using conventional histological techniques (sections stained by H&E) and chromogenic in situ hybridization (CISH). Tissues from ten birds (seven naturally infected and three opportunistic samplings) were examined using both methods. Parasite lineages were identified from blood samples using PCR-based techniques. Leucocytozoon species meronts were found in five individuals (in four birds using H&E staining protocol, and in three in CISH-treated histological sections). Meronts were found mainly in the kidneys, but some meronts were also present in the lungs. It was possible to observe different maturation stages of meronts in the same bird individual, indicating an asynchronous development. Cytomeres were readily visible in developing meronts. One megalomeront-like structure was present close to a blood vessel in the heart. It was covered with a prominent capsular-like wall. No inflammatory reaction or necrosis was seen in the tissues surrounding the meronts or the megalomeront-like structure. We could confirm the transmission of three Leucocytozoon lineages (lTUPHI14, lSTUR1 and lTUPHI13) in Europe, and add evidence of the transmission of two Plasmodium lineages, including Plasmodium circumflexum (pTURDUS1), and Haemoproteus asymmetricus (hTUPHI01). We call for further research to better understand Leucocytozoon parasite exo-erythrocytic development.
Collapse
Affiliation(s)
| | - Mélanie Duc
- P. B. Šivickis Laboratory of Parasitology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Tanja Himmel
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Vytautas Eigirdas
- Ventės Ragas Ornithological Station, Marių 24, 99361, Ventė, Lithuania
| | - Herbert Weissenböck
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Gediminas Valkiūnas
- P. B. Šivickis Laboratory of Parasitology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| |
Collapse
|
8
|
González-Olvera M, Hernandez-Colina A, Chantrey J, Allen S, Lopez J, Baylis M. A non-invasive feather-based methodology for the detection of blood parasites (Haemosporida). Sci Rep 2023; 13:16712. [PMID: 37794079 PMCID: PMC10550939 DOI: 10.1038/s41598-023-43932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
Blood parasite (haemosporidian) infections are conventionally detected using blood samples; this implies capturing and handling birds to obtain them, which induces stress and causes pain. Feathers have blood vessels, and some blood could be preserved in the feather's shaft after moulting. We used feather DNA for detecting haemosporidians by PCR testing in diverse scenarios. First, haemosporidian DNA was detected in feathers from carcasses of infected birds, proving the feasibility of the approach. Storage temperature affected DNA recovery, with maximum retrieval and haemosporidian detection at the lowest temperature (- 20 °C). All feather types from infected birds kept at optimal conditions yielded haemosporidian DNA. Parasite detection by PCR was correlated with DNA yield, which was significantly higher in heavier birds, flight feathers, and more feathers per pool. Lastly, haemosporidians were detected employing feathers moulted from wild and captive birds to estimate infection prevalence. We show for the first time that using blood from feather shafts for haemosporidian detection can be an advantageous and less invasive alternative to blood sampling if feathers are optimally preserved. This method could contribute to uncovering haemosporidian infections in endangered and elusive birds, and it might facilitate routine screening in captive birds, thereby improving infection detection, prevention, and control.
Collapse
Affiliation(s)
- Merit González-Olvera
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Arturo Hernandez-Colina
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK.
| | - Julian Chantrey
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Simon Allen
- Gower Bird Hospital, Sandy Lane, Pennard, Swansea, SA3 2EW, UK
| | - Javier Lopez
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
9
|
Duc M, Himmel T, Ilgūnas M, Eigirdas V, Weissenböck H, Valkiūnas G. Exo-erythrocytic development of two Haemoproteus species (Haemosporida, Haemoproteidae), with description of Haemoproteus dumbbellus, a new blood parasite of bunting birds (Emberizidae). Int J Parasitol 2023; 53:531-543. [PMID: 37263375 PMCID: PMC7615398 DOI: 10.1016/j.ijpara.2023.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 06/03/2023]
Abstract
Avian haemosporidians are widespread parasites categorized into four families of the order Haemosporida (Apicomplexa). Species of the subgenus Parahaemoproteus (genus Haemoproteus) belong to the Haemoproteidae and are transmitted by Culicoides biting midges. Reports of death due to tissue damage during haemoproteosis in non-adapted birds have raised concerns about these pathogens, especially as their exo-erythrocytic development is known for only a few Haemoproteus spp. More research is needed to better understand the patterns of the parasites' development in tissues and their impact on avian hosts. Yellowhammers Emberiza citrinella (Emberizidae) and common house martins Delichon urbicum (Hirundinidae) were screened for Haemoproteus parasites by microscopic examination of blood films and PCR-based testing. Individuals with single infection were selected for histological investigations. H & E-stained sections were screened for detection and characterization of the exo-erythrocytic stages, while chromogenic in situ hybridization (CISH) and phylogenetic analysis were performed to confirm the Haemoproteus origin and their phylogenetic relationships. Haemoproteus dumbbellus n. sp. was discovered in Emberiza citrinella single-infected with the lineage hEMCIR01. Meronts of H. dumbbellus n. sp. developed in various organs of five of six tested individuals, a pattern which was reported in other Haemoproteus species clustering in the same clade, suggesting this could be a phylogenetic trait. By contrast, in Delichon urbicum infected with the Haemoproteus lineage hDELURB2, which was linked to the more distantly related parasite Haemoproteus hirundinis, only megalomeronts were found in the pectoral muscles of two of six infected individuals. All exo-erythrocytic stages were confirmed to be Haemoproteus parasites by CISH using a Haemoproteus genus-specific probe. While the development of meronts seems to be typical for species of the clade containing H. dumbbellus, further investigations and data from more species are needed to explore whether a phylogenetic pattern occurs in meront or megalomeront formation.
Collapse
Affiliation(s)
- Mélanie Duc
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania.
| | - Tanja Himmel
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | - Vytautas Eigirdas
- Ventės Ragas Ornithological Station, Marių 24, 99361 Ventė, Lithuania
| | - Herbert Weissenböck
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | | |
Collapse
|
10
|
Harl J, Himmel T, Ilgūnas M, Valkiūnas G, Weissenböck H. The 18S rRNA genes of Haemoproteus (Haemosporida, Apicomplexa) parasites from European songbirds with remarks on improved parasite diagnostics. Malar J 2023; 22:232. [PMID: 37563610 PMCID: PMC10416517 DOI: 10.1186/s12936-023-04661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.
Collapse
Affiliation(s)
- Josef Harl
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tanja Himmel
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | - Herbert Weissenböck
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
11
|
Tembe D, Malatji MP, Mukaratirwa S. Occurrence, Prevalence, and Distribution of Haemoparasites of Poultry in Sub-Saharan Africa: A Scoping Review. Pathogens 2023; 12:945. [PMID: 37513792 PMCID: PMC10386234 DOI: 10.3390/pathogens12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
This review collated existing data on the occurrence, distribution, and prevalence of haemoparasites of poultry in sub-Saharan Africa. A literature search was conducted on three electronic search databases using search terms and Boolean operators (AND, OR). The results recorded 16 haemoparasites, viz., Leucocytozoon spp., L. marchouxi, L. neavei, L. sabrazesi, L. schoutedeni, Haemoproteus columbae, H. pratasi, Haemoproteus spp., Plasmodium spp., P. gallinaceum, P. circumflexum, P. juxtanucleare, Trypanosoma avium, T. gallinarum, T. numidae, and Hepatozoon spp. from a wide range of poultry species distributed across Nigeria, Kenya, South Africa, Tanzania, Uganda, Botswana, Zimbabwe, Ghana, Cameroon, and Zambia. Infections due to Haemoproteus and Leucocytozoon species were the most common and documented in eight of the ten reviewed countries. The presence of mixed infections was observed in quails, pigeons, chickens, ducks, turkeys, and guineafowls, but predominantly in chickens. Co-infections by Plasmodium spp. and Haemoproteus spp. were the most common, which may be attributed to the distribution of these species, coupled with the availability of vectors they are associated with in areas from which they were documented. The information generated in this review is essential for improving existing preventive and control measures of these parasites in sub-Saharan Africa.
Collapse
Affiliation(s)
- Danisile Tembe
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Mokgadi P Malatji
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 344, Saint Kitts and Nevis
| |
Collapse
|
12
|
Duc M, Himmel T, Harl J, Iezhova T, Nedorost N, Matt J, Ilgūnas M, Weissenböck H, Valkiūnas G. Comparative Analysis of the Exo-Erythrocytic Development of Five Lineages of Haemoproteus majoris, a Common Haemosporidian Parasite of European Passeriform Birds. Pathogens 2023; 12:898. [PMID: 37513745 PMCID: PMC10386383 DOI: 10.3390/pathogens12070898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Haemoproteus parasites (Apicomplexa, Haemosporida) are widespread pathogens of birds, with a rich genetic (about 1900 lineages) and morphospecies (178 species) diversity. Nonetheless, their life cycles are poorly understood. The exo-erythrocytic stages of three Haemoproteus majoris (widespread generalist parasite) lineages have been previously reported, each in a different bird species. We aimed to further study and compare the development of five H. majoris lineages-hCCF5, hCWT4, hPARUS1, hPHSIB1, and hWW2-in a wider selection of natural avian hosts. A total of 42 individuals belonging to 14 bird species were sampled. Morphospecies and parasitemia were determined by microscopy of blood films, lineages by DNA-barcoding a 478 bp section of the cytochrome b gene, and exo-erythrocytic stages by histology and chromogenic in situ hybridization. The lineage hCWT4 was morphologically characterized as H. majoris for the first time. All lineage infections exclusively featured megalomeronts. The exo-erythrocytic stages found in all examined bird species were similar, particularly for the lineages hCCF5, hPARUS1, and hPHSIB1. Megalomeronts of the lineages hWW2 and hCWT4 were more similar to each other than to the former three lineages. The kidneys and gizzard were most often affected, followed by lungs and intestines; the site of development showed variation depending on the lineage.
Collapse
Affiliation(s)
- Mélanie Duc
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania; (T.I.); (M.I.); (G.V.)
| | - Tanja Himmel
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (T.H.); (J.H.); (N.N.); (J.M.); (H.W.)
| | - Josef Harl
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (T.H.); (J.H.); (N.N.); (J.M.); (H.W.)
| | - Tatjana Iezhova
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania; (T.I.); (M.I.); (G.V.)
| | - Nora Nedorost
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (T.H.); (J.H.); (N.N.); (J.M.); (H.W.)
| | - Julia Matt
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (T.H.); (J.H.); (N.N.); (J.M.); (H.W.)
| | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania; (T.I.); (M.I.); (G.V.)
| | - Herbert Weissenböck
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (T.H.); (J.H.); (N.N.); (J.M.); (H.W.)
| | - Gediminas Valkiūnas
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania; (T.I.); (M.I.); (G.V.)
| |
Collapse
|
13
|
Valkiūnas G, Iezhova TA. Keys to the avian Haemoproteus parasites (Haemosporida, Haemoproteidae). Malar J 2022; 21:269. [PMID: 36123731 PMCID: PMC9487097 DOI: 10.1186/s12936-022-04235-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Haemoproteus is a sister genus to malaria parasites (Plasmodium), which both belong to the order Haemosporida (Apicomplexa). Parasites of both genera are flourishing in birds, however, Haemoproteus species are noticeably less investigated. This is unfortunate because knowledge about close relatives of malaria pathogens is important for better understanding the evolutionary origin and basic biological features of the entire group of haemosporidian infections. Moreover, recent findings show that Haemoproteus species can cause severe damage of various bird organs due to megalomeronts and other exo-erythrocytic stages. These haemosporidians are remarkably diverse, but remain neglected partly due to difficulties in species identification. Hundreds of Haemoproteus genetic lineages have been reported in birds, and numerous new lineages are found each year, but most remain unidentified to the species level. Numerous new Haemoproteus pathogens were described during the past 20 years. However, keys for their identification are absent. Identification of Haemoproteus species remains a difficult task and is an obstacle for better understanding of the distribution and epidemiology of these parasites. This study aimed to develop comprehensive keys for the identification of described avian Haemoproteus species using morphological features of their blood stages (gametocytes). METHODS Type and voucher preparations of avian Haemoproteus species were accessed in museums in Europe, Australia and the USA. Gametocytes of most described species were examined, and these data formed a background for this study. The data also were considered from published articles containing parasite species descriptions. The method of dichotomous keys was applied. The most difficult steps in the keys were accompanied with references to the corresponding parasite pictures. RESULTS In all, 201 published articles were included in this review. Morphological diagnostic features of gametocytes of all described Haemoproteus species were analysed and compared. Illustrated keys for identification of these parasite species were developed. Available information about the molecular characterization of Haemoproteus parasites was provided. CONCLUSION This review shows that 177 described species of avian Haemoproteus can be distinguished and identified in blood films using morphological characters of their gametocytes and host cells. These species were incorporated in the keys. Information about possible morphologically cryptic parasites was provided. Molecular markers are available for only 42% of the described Haemoproteus parasites, calling for researchers to fill this gap.
Collapse
Affiliation(s)
| | - Tatjana A Iezhova
- Nature Research Centre, Akademijos 2, 2100, LT-08412, Vilnius, Lithuania
| |
Collapse
|
14
|
Exo-Erythrocytic Development of Avian Haemosporidian Parasites in European Owls. Animals (Basel) 2022; 12:ani12172212. [PMID: 36077935 PMCID: PMC9454416 DOI: 10.3390/ani12172212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Avian haemosporidians of the genera Plasmodium, Haemoproteus, and Leucocytozoon are vector-borne blood parasites, which commonly infect birds all over the world, except for Antarctica. Although called blood parasites, these pathogens develop not only in the blood cells of vertebrate hosts, but also in the tissues of various organs. While the blood stages have been studied quite intensively, the tissue stages, patterns of their development, and their effect on the vertebrate host are not well understood, especially in wild, non-passerine birds. The present study aimed at gaining new knowledge about avian haemosporidian parasites naturally infecting owls in Austria and Lithuania. Organ samples of 121 owls were investigated for blood parasites using molecular and histological methods. Over 70% of the owls were infected, revealing seven new genetic variants (lineages) of avian haemosporidian parasites. Tissue stages of Leucocytozoon spp. and Haemoproteus syrnii, a common parasite in owls, were discovered, providing new insights into the parasites’ tissue development. This study contributes new knowledge to a better understanding of the biodiversity and life cycles of avian haemosporidian parasites. These data are crucial for avian medicine and bird protection and indicate directions for further research on the tissue development of haemosporidian infections. Abstract Avian haemosporidian parasites (Haemosporida, Apicomplexa) are globally distributed and infect birds of many orders. These pathogens have been much investigated in domestic and wild passeriform birds, in which they are relatively easy to access. In birds belonging to other orders, including owls (order Strigiformes), these parasites have been studied fragmentarily. Particularly little is known about the exo-erythrocytic development of avian haemosporidians. The goal of this study was to gain new knowledge about the parasites infecting owls in Europe and investigate their exo-erythrocytic stages. Tissue samples of 121 deceased owls were collected in Austria and Lithuania, and examined using polymerase chain reactions (PCR), histology, and chromogenic in situ hybridization (CISH). PCR-based diagnostics showed a total prevalence of 73.6%, revealing two previously unreported Haemoproteus and five novel Leucocytozoon lineages. By CISH and histology, meronts of several Leucocytozoon lineages (lASOT06, lSTAL5, lSTAL7) were discovered in the brains, heart muscles, and kidneys of infected birds. Further, megalomeronts of Haemoproteus syrnii (lineage hSTAL2) were discovered. This study contributes new knowledge to a better understanding of the biodiversity of avian haemosporidian parasites infecting owls in Europe, provides information on tissue stages of the parasites, and calls for further research of these under-investigated pathogens relevant to bird health.
Collapse
|
15
|
Šujanová A, Václav R. Phylogeographic Patterns of Haemoproteid Assemblages of Selected Avian Hosts: Ecological and Evolutionary Implications. Microorganisms 2022; 10:1019. [PMID: 35630463 PMCID: PMC9144617 DOI: 10.3390/microorganisms10051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND While the dynamics of disease emergence is driven by host-parasite interactions, the structure and dynamics of these interactions are still poorly understood. Here we study the phylogenetic and morphological clustering of haemosporidian parasite lineages in a local avian host community. Subsequently, we examine geographical patterns of parasite assemblages in selected avian hosts breeding in Europe. METHODS We conduct phylogenetic and haplotype network analyses of Haemoproteus (Parahaemoproteus) lineages based on a short and an extended cytochrome b barcode region. Ordination analyses are used to examine changes in parasite assemblages with respect to climate type and geography. RESULTS We reveal relatively low phylogenetic clustering of haemoproteid lineages in a local avian host community and identify a potentially new Haemoproteus morphospecies. Further, we find that climate is effectively capturing geographical changes in parasite assemblages in selected widespread avian hosts. Moreover, parasite assemblages are found to vary distinctly across the host's breeding range, even within a single avian host. CONCLUSIONS This study suggests that a few keystone hosts can be important for the local phylogenetic and morphological clustering of haemoproteid parasites. Host spatio-temporal dynamics, both for partially and long-distance migratory birds, appear to explain geographical variation in haemoproteid parasite assemblages. This study also gives support to the idea that climate variation in terms of rainfall seasonality can be linked to the propensity for host switching in haemosporidians.
Collapse
Affiliation(s)
| | - Radovan Václav
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 84506 Bratislava, Slovakia;
| |
Collapse
|
16
|
Massive Infection of Lungs with Exo-Erythrocytic Meronts in European Robin Erithacus rubecula during Natural Haemoproteus attenuatus Haemoproteosis. Animals (Basel) 2021; 11:ani11113273. [PMID: 34828005 PMCID: PMC8614495 DOI: 10.3390/ani11113273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Haemoproteus parasites are cosmopolitan bird pathogens belonging to the order Haemosporida (Apicomplexa). A majority of the described species are transmitted by Culicoides biting midges, which inject infective stages (sporozoites) in birds during blood meals. The sporozoites initiate tissue merogony, resulting in numerous merozoites, part of which penetrate red blood cells and produce blood stages (gametocytes), which are infective for vectors. The blood stages of Haemoproteus parasites have been relatively well-investigated, although tissue stages and patterns of their development remain unidentified in the majority of Haemoproteus species. Nevertheless, they often damage various organs which makes them important for bird health. This study contributes new knowledge about tissue merogony of Haemoproteus attenuatus, which parasitize birds of the Muscicapidae. Naturally infected European robins Erithacus rubecula were caught in Lithuania during autumnal migration. Parasites were identified using morphological features of gametocytes and DNA sequence analysis. Organs of infected birds were examined using histological methods. Tissue stages (meronts) were present only in the lungs, where they were numerous and markedly varied in shape, size and maturation stage. Description of meronts was provided and molecular phylogenetic analysis identified closely related lineages that could present similar exo-erythrocytic development in lungs. Lung damage caused by meronts of H. attenuatus and closely related lineages is worth attention due to their possible implications on a bird’s health. Abstract Haemoproteus species are widespread avian blood parasites belonging to Haemoproteidae (Haemosporida). Blood stages of these pathogens have been relatively well-investigated, though exo-erythrocytic (tissue) stages remain unidentified for the majority of species. However, recent histopathological studies show that haemoproteins markedly affect bird organs during tissue merogony. This study investigated the exo-erythrocytic development of Haemoproteus (Parahaemoproteus) attenuatus (lineage hROBIN1), the common parasite of flycatchers (Muscicapidae). Naturally infected European robins Erithacus rubecula were examined. Parasite species and lineage were identified using microscopic examination of blood stages and DNA sequence analysis. Parasitaemia intensity varied between 0.8 and 26.5% in seven host individuals. Organs of infected birds were collected and processed for histological examination. Tissues stages (meronts) were seen in six birds and were present only in the lungs. The parasites were usually located in groups and were at different stages of maturation, indicating asynchronous exo-erythrocytic development. In most parasitized individuals, 100 meronts were observed in 1 cm2 section of lungs. The largest meronts reached 108 µm in length. Mature meronts contained numerous roundish merozoites of approximately 0.8 µm in diameter. Megalomeronts were not observed. Massive merogony and resulting damage of lungs is a characteristic feature during H. attenuatus infections and might occur in related parasite lineages, causing haemoproteosis.
Collapse
|
17
|
Himmel T, Harl J, Matt J, Weissenböck H. A citizen science-based survey of avian mortality focusing on haemosporidian infections in wild passerine birds. Malar J 2021; 20:417. [PMID: 34688278 PMCID: PMC8542282 DOI: 10.1186/s12936-021-03949-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Haemosporidioses are common in birds and their manifestations range from subclinical infections to severe disease, depending on the involved parasite and bird species. Clinical haemosporidioses are often observed in non-adapted zoo or aviary birds, whereas in wild birds, particularly passerines, haemosporidian infections frequently seem to be asymptomatic. However, a recent study from Austria showed pathogenic haemosporidian infections in common blackbirds due to high parasite burdens of Plasmodium matutinum LINN1, a common parasite in this bird species, suggesting that virulent infections also occur in natural hosts. Based on these findings, the present study aimed to explore whether and to what extent other native bird species are possibly affected by pathogenic haemosporidian lineages, contributing to avian morbidity. Methods Carcasses of passerine birds and woodpeckers were collected during a citizen science-based survey for avian mortality in Austria, from June to October 2020. Tissue samples were taken and examined for haemosporidian parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon by nested PCR and sequencing the mitochondrial cytb barcode region, histology, and chromogenic in situ hybridization applying genus-specific probes. Results From over 160 dead bird reportings, 83 carcasses of 25 avian species were submitted for investigation. Overall haemosporidian infection rate was 31%, with finches and tits prevailing species counts and infections. Sequence analyses revealed 17 different haplotypes (4 Plasmodium, 4 Haemoproteus, 9 Leucocytozoon), including 4 novel Leucocytozoon lineages. Most infected birds presented low parasite burdens in the peripheral blood and tissues, ruling out a significant contribution of haemosporidian infections to morbidity or death of the examined birds. However, two great tits showed signs of avian malaria, suggesting pathogenic effects of the detected species Plasmodium relictum SGS1 and Plasmodium elongatum GRW06. Further, exo-erythrocytic tissue stages of several haemosporidian lineages are reported. Conclusions While suggesting generally little contribution of haemosporidian infections to mortality of the investigated bird species, the findings indicate a possible role of certain haemosporidian lineages in overall clinical manifestation, either as main causes or as concurrent disease agents. Further, the study presents new data on exo-erythrocytic stages of previously reported lineages and shows how citizen science can be used in the field of haemosporidian research. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03949-y.
Collapse
Affiliation(s)
- Tanja Himmel
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Josef Harl
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Julia Matt
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
18
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|
19
|
Duc M, Ilgūnas M, Kubiliūnaitė M, Valkiūnas G. First Report of Haemoproteus (Haemosporida, Haemoproteidae) Megalomeronts in the Brain of an Avian Host, with Description of Megalomerogony of Haemoproteus Pastoris, the Blood Parasite of the Common Starling. Animals (Basel) 2021; 11:ani11102824. [PMID: 34679845 PMCID: PMC8532782 DOI: 10.3390/ani11102824] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Birds are hosts to diverse blood parasites belonging to many taxonomic groups. Among them, numerous haemosporidian parasites of the genus Haemoproteus are transmitted globally. These pathogens develop in the blood and internal organs of birds. The blood stages (gametocytes) are known for about 150 described species, but the tissues stages or exo-erythrocytic stages (meronts and megalomeronts) are known only fragmentarily for about 10% of the described species. Knowledge on merogony is important in avian medicine for better understanding of pathologies during haemoproteosis. This study reported and characterized the megalomeronts of Haemoproteus pastoris, a parasite of the widespread Common starling (Sturnus vulgaris). Parasites were identified using molecular and microscopy examination tools. Five individual naturally infected birds were sampled, and their organs were examined histologically. Megalomeronts were found in eight different organs. The parasites were described and illustrated. The largest megalomeront, of all observed forms and shapes, reached 800 μm in length. Importantly, Haemoproteus megalomeronts were reported in the brain of avian hosts for the first time, indicating non-described pathology during avian haemoproteosis. This study contributes to a better understanding of the life cycle of avian haemoproteids and opens new perspectives in pathology research during avian haemoproteosis, which is important for birds’ health. Abstract Species of Haemoproteus (Haemoproteidae, Haemosporida) are common bird pathogens. Recent molecular studies combined with histopathology research have reported development of megalomeronts of these parasites in various organs, sometimes resulting in the death of the avian host. Five Common starlings (Sturnus vulgaris) were found naturally infected with Haemoproteus pastoris lineage hLAMPUR01. The parasite was identified using microscopic examination of blood films and DNA sequences. Infected bird organs were investigated histologically for (i) the presence of exo-erythrocytic stages and (ii) the patterns of development (morphology and localization) in different host individuals. For the first time, megalomeronts of Haemoproteus parasites were seen developing in the brain, while numerous others at different stages of maturation were found in the intestine, pancreas, kidneys, lungs, esophagus, spleen, gizzard, and trachea. Megalomeronts were predominantly roundish or oval, up to 800 μm, they were surrounded by a capsular-like wall and developed asynchronously in the same bird individual. After megalomeront maturation and rupture, a massive infiltration of blood cells occurred, indicating the hemorrhagic processes. Review of available data showed that different Haemoproteus species produce markedly different megalomeronts, morphology of which can probably be predicted using phylogenetic analysis based on partial sequences of cytochrome b gene.
Collapse
|
20
|
Valkiūnas G, Ilgūnas M, Bukauskaitė D, Duc M, Iezhova TA. Description of Haemoproteus asymmetricus n. sp. (Haemoproteidae), with remarks on predictability of the DNA haplotype networks in haemosporidian parasite taxonomy research. Acta Trop 2021; 218:105905. [PMID: 33775628 DOI: 10.1016/j.actatropica.2021.105905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan blood parasites, which have been neglected for over 100-years, but attracted attention recently due to reports of severe and even lethal haemoproteosis in birds and vectors. Approximately 150 species of avian Haemoproteus have been described and named, but molecular data suggest that hundreds of independently evolving molecular lineages might occur, indicating the existence of a remarkable undescribed species diversity. It is timely to develop a methodology, which allow the application of available genetic data in taxonomy of haemosporidians on species levels. This study aimed to test a hypothesis suggesting that DNA haplotype networks might aid in targeting genetically distinct, but still undescribed parasites, and might be used to direct taxonomic studies on haemosporidian species levels. Mainly, we tested a prediction that the lineage hTUPHI01, a common Haemoproteus parasite of Turdus philomelos, might be a new species, which is morphologically similar and genetically closely related to the parasites of Haemoproteus minutus group. Blood samples of T. philomelos naturally infected with this parasite lineage were collected and studied using microscopic examination of blood films and PCR-based methods. Haemoproteus asymmetricus n. sp. was found in this bird, described and characterised molecularly using partial cytochrome b (cytb) sequences. The new species shared some features with parasites of the H. minutus group, as was predicted by the DNA haplotype network. Due to the visualisation of closely related lineages as well as the evaluation of their host and geographic distributions, DNA haplotype networks can be recommended as the helpful methodology, able to direct and speed practical work on parasite species taxonomy and pathogen biodiversity. The combined molecular phylogenetic and morphological approaches showed that the well-supported clades in Bayesian phylogenetic trees based on the partial cytb gene sequences contain morphologically remarkably different Haemoproteus parasite species, which however, share some basic biological features. Phylogenetic analysis can be used for prediction of these basic features in still undescribed parasites. This study calls for further fusion of advanced molecular and microscopy approaches for better understanding haemosporidian parasite biology.
Collapse
Affiliation(s)
| | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, Vilnius 08412, Lithuania
| | | | - Mélanie Duc
- Nature Research Centre, Akademijos 2, Vilnius 08412, Lithuania
| | | |
Collapse
|
21
|
Rosyadi I, Salasia SIO, Argamjav B, Sato H. Impact of Subclinical Haemoproteus columbae Infection on Farmed Domestic Pigeons from Central Java (Yogyakarta), Indonesia, with Special Reference to Changes in the Hemogram. Pathogens 2021; 10:pathogens10040440. [PMID: 33917259 PMCID: PMC8067996 DOI: 10.3390/pathogens10040440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 11/30/2022] Open
Abstract
Pigeon haemoproteosis caused by Haemoproteus columbae (Apicomplexa: Haemosporida: Haemoproteidae) is globally prevalent in rock doves (Columba livia), although little is known regarding this disease in pigeons and doves in Indonesia. Blood samples of 35 farmed domestic pigeons (C. livia f. domestica) from four localities in Yogyakarta Special Region, Central Java, Indonesia, were collected from March to June, 2016, subjected to a hemogram, and analyzed for the presence of hemoprotozoan infections. Microscopic examination of blood smears revealed a prevalence of 62.5–100% of H. columbae at the four localities (n = 8–10 for each locality), and geometric means of 3.0–5.6% of erythrocytes were parasitized by young and mature gametocytes, suggesting that all infected pigeons were in the chronic phase of infection with repeated recurrences and/or reinfections. Nucleotide sequencing of mitochondrial cytochrome b gene (cytb) for haemosporidian species demonstrated the distribution of four major cytb lineages of H. columbae (mainly HAECOL1, accompanied by COLIV03, COQUI05, and CXNEA02 according to the MalAvi database). Hemogram analysis, involving the estimation of packed cell volume, erythrocyte counts, mean corpuscular volume, mean corpuscular hemoglobin concentration, and plasma protein and fibrinogen levels of 20 parasitized pigeons and five non-infected pigeons demonstrated significant macrocytic hypochromic anemia with hypoproteinemia and hyperfibrinogenemia in the infected pigeons. This study shows the profound impact of long-lasting subclinical pigeon haemoproteosis caused by H. columbae on the health of farmed domestic pigeons.
Collapse
Affiliation(s)
- Imron Rosyadi
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; (I.R.); (B.A.)
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia;
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia;
| | - Bayanzul Argamjav
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; (I.R.); (B.A.)
| | - Hiroshi Sato
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; (I.R.); (B.A.)
- Correspondence:
| |
Collapse
|
22
|
Duc M, Ilgūnas M, Valkiūnas G. Patterns of Haemoproteus majoris (Haemosporida, Haemoproteidae) megalomeront development. Acta Trop 2020; 212:105706. [PMID: 32956638 DOI: 10.1016/j.actatropica.2020.105706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 01/18/2023]
Abstract
Blood parasites of the genus Haemoproteus (Haemosporida, Haemoproteidae) are cosmopolitan and prevalent in birds. Numerous species and lineages of these pathogens have been identified. Some of the infections are lethal in avian hosts mainly due to damage of organs by tissue stages, which remain insufficiently investigated. Several closely related lineages of Haemoproteus majoris, a common parasite of passeriform birds, have been identified. One recent study described megalomeronts of unique morphology in the lineages hPHYBOR04 and hPARUS1 of H. majoris and suggested that the similar tissues stages might also be features in other phylogenetically closely related lineages of the same parasite species. This study aimed to test if (i) megalomeronts are present during the development of the lineage hPHSIB1 of H. majoris and if (ii) they are similar to the other investigated lineages of this species in regard of their morphology and location in organs. One adult wood warbler Phylloscopus sibilatrix, an Afrotropical migrant, naturally infected with H. majoris lineage hPHSIB1 was wild-caught after seasonal spring migration and screened using microscopic examination of blood films and histological sections of organs as well as using PCR-based testing. Bayesian phylogenetic analysis placed the lineages hPHSIB1, hPHYBOR04 and hPARUS1 in one, well-supported clade. Parasitaemia was high (6.5%) in the examined wood warbler, numerous megalomeronts were found in kidneys, and a few in the intestine. Megalomeronts of the lineage hPHSIB1 were morphologically hardly distinguishable from those of lineages hPHYBOR04 and hPARUS1; only negligible differences in the maturation stage of the cytomeres were seen. The kidneys were the main location site of the megalomeronts in all three lineages of this parasite species. This study shows that closely related lineages of H. majoris produce megalomeronts of similar morphology and predominant location in kidneys, while the normal function of this organ may be affected by the presence of numerous large megalomeronts. Megalomeronts of different avian Haemoproteus species are markedly variable in morphology and location, but phylogenetically closely related lineages possess cryptic megalomeronts. This finding suggests that phylogenies based on partial cytb gene could provide information for prediction of patterns of exo-erythrocytic development of closely related Haemoproteus parasites and are worthy of attention in planning haemosporidian parasite tissue stage research.
Collapse
Affiliation(s)
- Mélanie Duc
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania.
| | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | | |
Collapse
|
23
|
Valkiūnas G, Ilgūnas M, Chagas CRF, Bernotienė R, Iezhova TA. Molecular characterization of swallow haemoproteids, with description of one new Haemoproteus species. Acta Trop 2020; 207:105486. [PMID: 32330450 DOI: 10.1016/j.actatropica.2020.105486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023]
Abstract
Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan bird blood parasites, which often cause relatively benign infections in adapted avian hosts, but severe and even lethal haemoproteosis might develop due to internal organ damage if these pathogens inhabit non-adapted (wrong) hosts. Haemoproteids of swallows (Hirundinidae) remain fragmentarily investigated, with only two haemoproteid species reported in this bird family, which members are cosmopolitan, diverse and inhabit various terrestrial ecosystems, particularly in tropical countries. This study describes and provides molecular characterization of Haemoproteus parahirundinis n. sp. (cytochrome b lineage hHIRUS05), parasite of the most broadly distributed swallow, the Barn swallow Hirundo rustica. Gametocytes, gametes and ookinetes of the new species were examined and compared with other haemoproteids described in swallows. The phylogenetic analysis indicated the existence of a largely undescribed Haemoproteus species diversity in birds of the Hirundinidae and also suggests that all lineages of haemoproteids reported in swallows are transmitted by Culicoides biting midges, but not louse flies of the Hippoboscidae, which often inhabit their nests. The biting midges should be the first targets in vectors research of swallow haemoproteids. This study indicates existence of Haemoproteus species, which are readily distinct based on morphological characters of their blood and sporogonic stages, but differ only negligently in partial cytochrome b sequences, the main markers broadly used in molecular characterization of haemoproteids. That calls for further taxonomic research on haemoproteid in swallows, many species of which are endangered or even threatened with extinction because of habitat degradation.
Collapse
|
24
|
Inumaru M, Aratani S, Shimizu M, Yamamoto M, Sato Y, Murata K, Valkiūnas G. Penguins are competent hosts of Haemoproteus parasites: the first detection of gametocytes, with molecular characterization of Haemoproteus larae. Parasit Vectors 2020; 13:307. [PMID: 32532316 PMCID: PMC7291633 DOI: 10.1186/s13071-020-04176-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background The majority of penguins (Sphenisciformes) have evolved in areas with weak or absent transmission of haemosporidian parasites and are usually naïve to avian haemosporidian infections. Plasmodium parasites are transmitted by mosquitoes, and lethal avian malaria has been often reported in captive penguins in many countries. The related haemosporidian parasites belonging to Haemoproteus and Leucocytozoon have also been detected in penguins but less often than Plasmodium infections. The majority of Haemoproteus infection reports in penguins are based solely on PCR-based diagnostics. It remains unclear if haemoproteids can complete their life-cycle and produce infective stages (gametocytes) in penguins or whether these infections are abortive in penguins, and thus dead ends for transmission. In other words, it remains unknown if penguins are competent hosts for Haemoproteus parasites, which cause disease in non-adapted birds. Methods Two captive African penguins (Spheniscus demersus) and two Magellanic penguins (S. magellanicus) were found to be positive for Haemoproteus infection in two open-air aquariums in Japan, and the parasites were investigated using both PCR-based testing and microscopical examination of blood films. Samples from a black-tailed gull (Larus crassirostris) and previously tested gulls were used for comparison. Results The lineage hSPMAG12 was detected, and gametocytes of Haemoproteus sp. were seen in the examined penguins and gull. Observed gametocytes were indistinguishable from those of Haemoproteus larae, which naturally parasitize birds of the genus Larus (Laridae). The detected sequence information and Bayesian phylogenetic analysis supported this conclusion. Additionally, morphologically similar gametocytes and closely related DNA sequences were also found in other gull species in Japan. Phylogenetic analysis based on partial cytb sequences placed the lineage hSPMAG12 of H. larae within the clade of avian haemoproteids which belong to the subgenus Parahaemoproteus, indicating that Culicoides biting midges likely transmit the parasites between penguins and gulls. Conclusions This study shows that some species of Haemoproteus parasites complete their development and produce gametocytes in penguins, which may be source of infection for biting midges transmitting haemoproteosis. To prevent haemosporidiosis in zoos, we call for control not only of mosquitoes, but also biting midges.![]()
Collapse
Affiliation(s)
- Mizue Inumaru
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan
| | - Shiori Aratani
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan
| | - Misa Shimizu
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan
| | - Mineka Yamamoto
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan
| | - Yukita Sato
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan.
| | - Koichi Murata
- Laboratory of Wildlife Science, Department of Animal Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan
| | | |
Collapse
|
25
|
Chagas CRF, Binkienė R, Ilgūnas M, Iezhova T, Valkiūnas G. The buffy coat method: a tool for detection of blood parasites without staining procedures. Parasit Vectors 2020; 13:104. [PMID: 32103784 PMCID: PMC7045512 DOI: 10.1186/s13071-020-3984-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Blood parasites belonging to the Apicomplexa, Trypanosomatidae and Filarioidea are widespread in birds and have been studied extensively. Microscopical examination (ME) of stained blood films remains the gold standard method for the detection of these infections in birds, particularly because co-infections predominate in wildlife. None of the available molecular tools can detect all co-infections at the same time, but ME provides opportunities for this to be achieved. However, fixation, drying and staining of blood films as well as their ME are relatively time-consuming. This limits the detection of infected hosts during fieldwork when captured animals should be released soon after sampling. It is an obstacle for quick selection of donor hosts for parasite experimental, histological and other investigations in the field. This study modified, tested and described the buffy coat method (BCM) for quick diagnostics (~ 20 min/sample) of avian blood parasites. METHODS Blood of 345 birds belonging to 42 species was collected, and each sample was examined using ME of stained blood films and the buffy coat, which was examined after centrifugation in capillary tubes and after being transferred to objective glass slides. Parasite detection using these methods was compared using sensitivity, specificity, positive and negative predictive values and Cohen's kappa index. RESULTS Haemoproteus, Leucocytozoon, Plasmodium, microfilariae, Trypanosoma and Lankesterella parasites were detected. BCM had a high sensitivity (> 90%) and specificity (> 90%) for detection of Haemoproteus and microfilariae infections. It was of moderate sensitivity (57%) and high specificity (> 90%) for Lankesterella infections, but of low sensitivity (20%) and high specificity (> 90%) for Leucocytozoon infections. Trypanosoma and Plasmodium parasites were detected only by BCM and ME, respectively. According to Cohen's kappa index, the agreement between two diagnostic tools was substantial for Haemoproteus (0.80), moderate for Lankesterella (0.46) and fair for microfilariae and Leucocytozoon (0.28) infections. CONCLUSIONS BCM is sensitive and recommended as a quick and reliable tool to detect Haemoproteus, Trypanosoma and microfilariae parasites during fieldwork. However, it is not suitable for detection of species of Leucocytozoon and Plasmodium. BCM is a useful tool for diagnostics of blood parasite co-infections. Its application might be extended to studies of blood parasites in other vertebrates during field studies.
Collapse
Affiliation(s)
| | - Rasa Binkienė
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Tatjana Iezhova
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | | |
Collapse
|