1
|
Shih KY, Chang YT, Wang YJ, Huang JM. Ouabain, ATPase inhibitor, potentially enhances the effect of polyhexamethylene biguanide on Acanthamoeba castellanii. Int J Parasitol Drugs Drug Resist 2024; 25:100550. [PMID: 38821038 PMCID: PMC11177127 DOI: 10.1016/j.ijpddr.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Acanthamoeba, a free-living amoeba, is commonly found in various natural environments, such as rivers and soil, as well as in public baths, swimming pools, and sewers. Acanthamoeba can cause severe illness such as granulomatous amoebic encephalitis and Acanthamoeba keratitis (AK) in humans. AK, the most recognized disease, can cause permanent visual impairment or blindness by affecting the cornea. AK commonly affects contact lens wearers who neglect proper cleaning habits. The symptoms of AK include epithelial and stromal destruction, corneal infiltrate, and intense ocular pain, occasionally necessitating surgical removal of the entire eyeball. Current AK treatment involves the hourly application of eye drops containing polyhexamethylene biocide (PHMB). However, studies have revealed their ineffectiveness against drug-resistant strains. Acanthamoeba can form cysts as a survival mechanism in adverse environments, though the exact mechanism remains unknown. Our experiments revealed that sodium P-type ATPase (ACA1_065450) is closely linked to encystation. In addition, various encystation buffers, such as MgCl2 or NaCl, induced the expression of P-type ATPase. Furthermore, we used ouabain, an ATPase inhibitor, to inhibit the Na+/K+ ion pump, consequently decreasing the encystation rate of Acanthamoeba. Our primary objective is to develop an advanced treatment for AK. We anticipate that the combination of ouabain and PHMB may serve as an effective therapeutic approach against AK in the future.
Collapse
Affiliation(s)
- Kuang-Yi Shih
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yao-Tsung Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yu-Jen Wang
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Jian-Ming Huang
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Akbar N, Siddiqui R, El-Gamal MI, Zaraei SO, Saeed BQ, Alawfi BS, Khan NA. Potential anti-amoebic activity of sulfonate- and sulfamate-containing carboxamide derivatives against pathogenic Acanthamoeba castellanii belonging to the genotype T4. Parasitol Int 2024; 98:102814. [PMID: 37806551 DOI: 10.1016/j.parint.2023.102814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Acanthamoeba are ubiquitously distributed in the environment and can cause infection of the central nervous system as well a sight-threatening eye infection. Herein, the potential anti-amoebic activity of a series of sulfonate/sulfamate derivatives against pathogenic A. castellanii was evaluated. These compounds were tested using several assays namely amoebicidal, adhesion, excystation, cytotoxic, and cytopathogenicity. Amoebicidal assays revealed that the selected compounds reduced amoebae viability significantly (P < 0.05), and exhibited IC50 values at two-digit micromolar concentrations. Sulfamate derivatives 1j & 1k inhibited 50% of amoebae at 30.65 μM and 27.21 μM, respectively. The tested compounds blocked amoebae binding to host cells as well as inhibited amoebae excystation. Notably, the selected derivatives exhibited minimal human cell cytotoxicity but reduced parasite-mediated host cell damage. Overall, our study showed that sulfamate derivatives 1j & 1k have anti-amoebic potential and offer a promising avenue in the development of potential anti-amoebic drug candidates.
Collapse
Affiliation(s)
- Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Seyed-Omar Zaraei
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Balsam Qubais Saeed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bader Saleem Alawfi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Siddiqui R, El-Gamal MI, Sajeev S, Zaraei SO, Khan NA. Novel anti-Acanthamoebic properties of raloxifene sulfonate/sulfamate derivatives. Mol Biochem Parasitol 2023; 256:111582. [PMID: 37562558 DOI: 10.1016/j.molbiopara.2023.111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; Microbiota Research Center, Istinye University, Istanbul 34010, Turkey
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Sreedevi Sajeev
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, Unites Arab Emirates
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Huang JM, Sung KC, Lin WC, Lai HY, Wang YJ. Enhancement of capsular hypermucoviscosity in Klebsiella pneumoniae by Acanthamoeba. PLoS Negl Trop Dis 2023; 17:e0011541. [PMID: 37566587 PMCID: PMC10495012 DOI: 10.1371/journal.pntd.0011541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/11/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Acanthamoeba and Klebsiella pneumoniae are both environmental commensals. Recently, clinical harm caused by hypermucoviscous K. pneumoniae has been observed. However, the interaction between these microbes and the origin of hypermucoviscous K. pneumoniae have not been reported. METHODOLOGY/PRINCIPAL FINDINGS Here, we report that the bacterial capsule is enlarged when co-cultured with Acanthamoeba using India ink staining, and this effect depends on the number of parasites present. This interaction results in an enhancement of capsular polysaccharide production in the subsequent generations of K. pneumoniae, even without co-culturing with Acanthamoeba. The hypermucoviscosity of the capsule was examined using the sedimentation assay and string test. We also screened other K. pneumoniae serotypes, including K1, K2, K5, and K20, for interaction with Acanthamoeba using India ink staining, and found the same interaction effect. CONCLUSIONS/SIGNIFICANCE These findings suggest that the interaction between Acanthamoeba and K. pneumoniae could lead to harmful consequences in public health and nosocomial disease control, particularly hypermucoviscous K. pneumoniae infections.
Collapse
Affiliation(s)
- Jian-Ming Huang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ko-Chiang Sung
- Department of Clinical Laboratory, Chest Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Wei-Chen Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Jen Wang
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Siddiqui R, Makhlouf Z, Akbar N, Khamis M, Ibrahim T, Khan AS, Khan NA. Antiamoebic properties of Methyltrioctylammonium chloride based deep eutectic solvents. Cont Lens Anterior Eye 2023; 46:101758. [PMID: 36243521 DOI: 10.1016/j.clae.2022.101758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens. METHODS Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death. RESULTS In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B. CONCLUSIONS Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates; Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Mustafa Khamis
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates; Department of Chemistry, University of Science & Technology, Banuu 28100, Khyber Pakhtunkhwa, C
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University, City, Sharjah 27272, United Arab Emirates; Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey..
| |
Collapse
|
6
|
Bajgar A, Krejčová G. On the origin of the functional versatility of macrophages. Front Physiol 2023; 14:1128984. [PMID: 36909237 PMCID: PMC9998073 DOI: 10.3389/fphys.2023.1128984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages represent the most functionally versatile cells in the animal body. In addition to recognizing and destroying pathogens, macrophages remove senescent and exhausted cells, promote wound healing, and govern tissue and metabolic homeostasis. In addition, many specialized populations of tissue-resident macrophages exhibit highly specialized functions essential for the function of specific organs. Sometimes, however, macrophages cease to perform their protective function and their seemingly incomprehensible response to certain stimuli leads to pathology. In this study, we address the question of the origin of the functional versatility of macrophages. To this end, we have searched for the evolutionary origin of macrophages themselves and for the emergence of their characteristic properties. We hypothesize that many of the characteristic features of proinflammatory macrophages evolved in the unicellular ancestors of animals, and that the functional repertoire of macrophage-like amoebocytes further expanded with the evolution of multicellularity and the increasing complexity of tissues and organ systems. We suggest that the entire repertoire of macrophage functions evolved by repurposing and diversification of basic functions that evolved early in the evolution of metazoans under conditions barely comparable to that in tissues of multicellular organisms. We believe that by applying this perspective, we may find an explanation for the otherwise counterintuitive behavior of macrophages in many human pathologies.
Collapse
Affiliation(s)
- Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
7
|
Mungroo MR, Khan NA, Maciver S, Siddiqui R. Opportunistic free-living amoebal pathogens. Pathog Glob Health 2021; 116:70-84. [PMID: 34602025 DOI: 10.1080/20477724.2021.1985892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Pathogenic free-living amoebae affecting the central nervous system are known to cause granulomatous amoebic encephalitis (GAE) or primary amoebic meningoencephalitis (PAM). Although hosts with impaired immunity are generally at a higher risk of severe disease, amoebae such as Naegleria fowleri and Balamuthia mandrillaris can instigate disease in otherwise immunocompetent individuals, whereas Acanthamoeba species mostly infect immunocompromised people. Acanthamoeba also cause a sight-threatening eye infection, mostly in contact lens wearers. Although infections due to pathogenic amoebae are considered rare, recently, these deadly amoebae were detected in water supplies in the USA. This is of particular concern, especially with global warming further exacerbating the problem. Herein, we describe the epidemiology, presentation, diagnosis, and management of free-living amoeba infections.
Collapse
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Clinical Sciences, College of Medicine, University City, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University City, Sharjah, United Arab Emirates.,Research Institute of Health and Medical Sciences, University of Sharjah, Sharjah, UAE
| | - Sutherland Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
8
|
Mungroo MR, Tong T, Khan NA, Anuar TS, Maciver SK, Siddiqui R. Development of anti-acanthamoebic approaches. Int Microbiol 2021; 24:363-371. [PMID: 33754231 DOI: 10.1007/s10123-021-00171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Acanthamoeba keratitis is a sight-endangering eye infection, and causative organism Acanthamoeba presents a significant concern to public health, given escalation of contact lens wearers. Contemporary therapy is burdensome, necessitating prompt diagnosis and aggressive treatment. None of the contact lens disinfectants (local and international) can eradicate Acanthamoeba effectively. Using a range of compounds targeting cellulose, ion channels, and biochemical pathways, we employed bioassay-guided testing to determine their anti-amoebic effects. The results indicated that acarbose, indaziflam, terbuthylazine, glimepiride, inositol, vildagliptin and repaglinide showed anti-amoebic effects. Compounds showed minimal toxicity on human cells. Therefore, effects of the evaluated compounds after conjugation with nanoparticles should certainly be the subject of future studies and will likely lead to promising leads for potential applications.
Collapse
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Tommy Tong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia.
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates.
| | - Tengku Shahrul Anuar
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Shah Alam, Selangor, Malaysia
| | - Sutherland K Maciver
- Centre for Discovery Brain Science, Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Weber-Lima MM, Prado-Costa B, Becker-Finco A, Costa AO, Billilad P, Furst C, de Moura JF, Alvarenga LM. Acanthamoeba spp. monoclonal antibody against a CPA2 transporter: a promising molecular tool for acanthamoebiasis diagnosis and encystment study. Parasitology 2020; 147:1678-1688. [PMID: 32951614 PMCID: PMC10317748 DOI: 10.1017/s0031182020001778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Free-living amoeba of the genus Acanthamoeba are ubiquitous protozoa involved in opportunistic and non-opportunistic infection in humans, such as granulomatous amoebic encephalitis and amoebic keratitis. Both infections have challenging characteristics such as the formation of the resistant cysts in infected tissues, hampering the treatment and most usual diagnosis depending on time-consuming and/or low sensitivity techniques. The use of monoclonal antibodies presents itself as an opportunity for the development of more effective alternative diagnostic methods, as well as an important and useful tool in the search for new therapeutic targets. This study investigated the possibility of using a previously produced monoclonal antibody (mAb3), as a diagnostic tool for the detection of Acanthamoeba trophozoites by direct and indirect flow cytometry and immunofluorescence. Immunoprecipitation assay and mass spectrometry allowed the isolation of the antibody's target and suggested it is a transporter part of the CPA (cation: proton antiporter) superfamily. In vitro tests indicate an important role of this target in Acanthamoeba's encystment physiology. Our results support the importance of studying the role of CPA2 transporters in the context of acanthamoebiasis, as this may be a way to identify new therapeutic candidates.
Collapse
Affiliation(s)
- Michele Martha Weber-Lima
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Bianca Prado-Costa
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Alessandra Becker-Finco
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | - Philippe Billilad
- IPSIT, School of Pharmacy, University Paris-Saclay, Châtenay-Malabry, France
| | - Cinthia Furst
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Juliana Ferreira de Moura
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Larissa Magalhães Alvarenga
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba-PR, Brazil
| |
Collapse
|
10
|
Dick CF, Meyer-Fernandes JR, Vieyra A. The Functioning of Na +-ATPases from Protozoan Parasites: Are These Pumps Targets for Antiparasitic Drugs? Cells 2020; 9:E2225. [PMID: 33023071 PMCID: PMC7600311 DOI: 10.3390/cells9102225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
The ENA ATPases (from exitus natru: the exit of sodium) belonging to the P-type ATPases are structurally very similar to the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA); they exchange Na+ for H+ and, therefore, are also known as Na+-ATPases. ENA ATPases are required in alkaline milieu, as in the case for Aspergillus, where other transporters cannot mediate an uphill Na+ efflux. They are also important for salt tolerance, as described for Arabidopsis. During their life cycles, protozoan parasites might encounter a high pH environment, thus allowing consideration of ENA ATPases as possible targets for controlling certain severe parasitic diseases, such as Chagas' Disease. Phylogenetic analysis has now shown that, besides the types IIA, IIB, IIC, and IID P-type ATPases, there exists a 5th subgroup of ATPases classified as ATP4-type ATPases, found in Plasmodium falciparum and Toxoplasma gondii. In malaria, for example, some drugs targeting PfATP4 destroy Na+ homeostasis; these drugs, which include spiroindolones, are now in clinical trials. The ENA P-type (IID P-type ATPase) and ATP4-type ATPases have no structural homologue in mammalian cells, appearing only in fungi, plants, and protozoan parasites, e.g., Trypanosoma cruzi, Leishmania sp., Toxoplasma gondii, and Plasmodium falciparum. This exclusivity makes Na+-ATPase a potential candidate for the biologically-based design of new therapeutic interventions; for this reason, Na+-ATPases deserves more attention.
Collapse
Affiliation(s)
- Claudia F. Dick
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil;
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil;
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Graduate Programa of Translational Biomedicine/BIOTRANS, Unigranrio University, Duque de Caxias 25071-202, Brazil
| |
Collapse
|
11
|
|