1
|
Little S, Braff J, Duncan K, Elsemore D, Hanna R, Hanscom J, Lee A, Martin KA, Sobotyk C, Starkey L, Sundstrom K, Tyrrell P, Verocai GG, Wu T, Beall M. Diagnosis of canine intestinal parasites: Improved detection of Dipylidium caninum infection through coproantigen testing. Vet Parasitol 2023; 324:110073. [PMID: 37976897 DOI: 10.1016/j.vetpar.2023.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Intestinal parasites, including cestodes like Dipylidium caninum, are common in dogs in the United States of America (USA), but fecal flotation consistently, and, at times, dramatically, fails to identify many of these infections. To determine the extent to which including coproantigen testing for D. caninum would improve the identification of dogs infected with this cestode, we evaluated fecal samples from 877 dogs (589 pet and 288 from municipal shelters) from six USA states using zinc sulfate (specific gravity 1.24) fecal flotation with centrifugation along with coproantigen detection for Giardia sp., hookworms, ascarids, and Trichuris vulpis. For D. caninum, PCR of perianal swabs was included. Intestinal parasite infections were identified, using centrifugal fecal flotation or coproantigen, in 265 dogs (13.2 % pet, 64.9 % shelter). Dipylidium caninum infection was detected in 5.6 % of dogs with the combination of coproantigen and centrifugal fecal flotation, and 7.3 % of dogs when perianal swab results were included; prevalence varied by diagnostic method, population, and geographic region. In pet dogs, D. caninum infection was identified by fecal flotation (0), coproantigen (2.2 %), or perianal swabs (1.2 %). The same methods revealed infection in 0.3 %, 12.5 %, and 11.1 % of shelter dogs, respectively. Frequent use of praziquantel in shelter dogs (116/288; 40.3 %) may have reduced prevalence. Positive and negative agreement of D. caninum coproantigen with perianal swab PCR in pet dogs was 85.7 % and 98.8 %, respectively. Multiple logistic regression analysis accounting for region, population, and age found D. caninum infection to be more common in shelter dogs relative to pet (adjusted OR 4.91 [2.48, 10.24]) and in the Southcentral and Southeast regions relative to North (adjusted OR 9.59 [1.92, 174.13] and 17.69 [3.67, 318.09] respectively). Coproantigen testing also enhanced the detection of other intestinal parasites over fecal flotation alone, including Giardia sp. (14.7 % vs 3.3 %), hookworms (13.8 % vs 8.4 %), ascarids (2.9 % vs 2.2 %), and T. vulpis (2.9 % vs 1.4 %). Together, these data indicate that the coproantigen assay employed increases detection of D. caninum infections several fold, supporting the use of this test in clinical practice, and add to a growing body of research documenting enhanced diagnosis through implementation of multiple laboratory-based methods.
Collapse
Affiliation(s)
- Susan Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Kathryn Duncan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; Merck Animal Health, Rahway, NJ 07065, USA
| | | | - Rita Hanna
- IDEXX Laboratories, Inc., Westbrook, ME 04092, USA
| | | | - Alice Lee
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Katy A Martin
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA 50011, USA
| | - Caroline Sobotyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA
| | - Lindsay Starkey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, 166 Greene Hall, Auburn, AL 36849, USA
| | - Kellee Sundstrom
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Guilherme G Verocai
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA
| | - Timothy Wu
- Department of Population Medicine, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
2
|
Illiano S, Ciuca L, Maurelli MP, Pepe P, Caruso V, Bosco A, Pennacchio S, Amato R, Pompameo M, Rinaldi L. Epidemiological and molecular updates on hookworm species in dogs from southern Italy. BMC Vet Res 2023; 19:204. [PMID: 37833701 PMCID: PMC10571300 DOI: 10.1186/s12917-023-03765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The zoonotic hookworms Ancylostoma caninum and Uncinaria stenocephala are widespread soil-transmitted helminths in dogs in Europe. Given the veterinary and public health importance of hookworms in dogs and the recent changes in the molecular epidemiology of some species, there is a need to continuously monitor the epidemiological and molecular prevalence of these parasites also at the "local" level. The present study aimed to update the epidemiological scenario of hookworm infections in both owned and stray dogs in southern Italy and to discriminate between different hookworm species (A. caninum and U. stenocephala) through molecular analyses. For this purpose, a retrospective analysis was performed over 10 years (2011-2021), including a total of 7008 owned dogs and 5642 stray dogs referred to our laboratory for copromicroscopic examinations. Moreover, 72 faecal samples, from dogs naturally infected by hookworms, were used to discriminate between A. caninum and U. stenocephala using two PCR protocols. Prior to molecular analyses, a subsample of 40/72 positive faecal samples was used for morphometric investigations on hookworm eggs. RESULTS The results of the ten-year retrospective analysis (2011-2021) showed an overall prevalence of hookworm infection of 9.16%, specifically 5.1% in owned dogs and 14.2% in stray dogs. Logistic regression showed a significant association between positivity to hookworms and the variable "puppies" both in stray (13.84%; OR = 2.4) and owned (7.07%; OR = 2.2) dogs. The results of molecular analyses showed that positivity was confirmed only in 21/72 samples, specifically, 6 samples using protocol A and 19 with protocol B. Sequencing revealed 15 samples positive to U. stenocephala and 6 to A. caninum. CONCLUSIONS The findings of this study showed a high prevalence of hookworm infections in dogs in southern Italy, updating the epidemiological scenario of the last decade. Moreover, the results of the study revealed the first identification of hookworm species in dogs in Italy by molecular studies, highlighting that U. stenocephala is more prevalent than A. caninum.
Collapse
Affiliation(s)
- Sergio Illiano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137, Naples, Italy
| | - Lavinia Ciuca
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137, Naples, Italy.
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137, Naples, Italy
| | - Paola Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137, Naples, Italy
| | - Valeria Caruso
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137, Naples, Italy
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137, Naples, Italy
| | - Saverio Pennacchio
- ASL Naples 1 Centro, Veterinary Hospital, Via Marco Rocco Di Torrepadula, 13, 80145, Naples, Italy
| | - Ruggero Amato
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137, Naples, Italy
| | - Marina Pompameo
- ASL Naples 1 Centro, Veterinary Hospital, Via Marco Rocco Di Torrepadula, 13, 80145, Naples, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137, Naples, Italy
| |
Collapse
|
3
|
Fuehrer HP, Morelli S, Unterköfler MS, Bajer A, Bakran-Lebl K, Dwużnik-Szarek D, Farkas R, Grandi G, Heddergott M, Jokelainen P, Knific T, Leschnik M, Miterpáková M, Modrý D, Petersen HH, Skírnisson K, Vergles Rataj A, Schnyder M, Strube C. Dirofilaria spp. and Angiostrongylus vasorum: Current Risk of Spreading in Central and Northern Europe. Pathogens 2021; 10:1268. [PMID: 34684217 PMCID: PMC8537668 DOI: 10.3390/pathogens10101268] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
In the past few decades, the relevance of Dirofilaria immitis and Dirofilaria repens, causing cardiopulmonary and subcutaneous dirofilariosis in dogs and cats, and of Angiostrongylus vasorum, causing canine angiostrongylosis, has steadily increased in Central and Northern Europe. In this review, a summary of published articles and additional reports dealing with imported or autochthonous cases of these parasites is provided for Central (Austria, Czechia, Germany, Hungary, Luxemburg, Poland, Slovakia, Slovenia, and Switzerland) and Northern (Denmark, Finland, Iceland, Norway, and Sweden) Europe. Research efforts focusing on Dirofilaria spp. and A. vasorum have varied by country, and cross-border studies are few. The housing conditions of dogs, pet movements, the spread of competent vectors, and climate change are important factors in the spread of these nematodes. Dogs kept outside overnight are a major factor for the establishment of Dirofilaria spp. However, the establishment of invasive, diurnal, synanthropic, competent mosquito vectors such as Aedes albopictus may also influence the establishment of Dirofilaria spp. The drivers of the spread of A. vasorum remain not fully understood, but it seems to be influenced by habitats shared with wild canids, dog relocation, and possibly climatic changes; its pattern of spreading appears to be similar in different countries. Both Dirofilaria spp. and A. vasorum merit further monitoring and research focus in Europe.
Collapse
Affiliation(s)
- Hans-Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.S.U.); (K.B.-L.)
| | - Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Maria Sophia Unterköfler
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.S.U.); (K.B.-L.)
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.B.); (D.D.-S.)
| | - Karin Bakran-Lebl
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.S.U.); (K.B.-L.)
| | - Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.B.); (D.D.-S.)
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Giulio Grandi
- Section for Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden;
- Department of Microbiology, National Veterinary Institute (SVA), 756 51 Uppsala, Sweden
| | - Mike Heddergott
- Department of Zoology, Musée National d’Historire Naturelle, 25, Rue Münster, 2160 Luxembourg, Luxembourg;
| | - Pikka Jokelainen
- Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark;
| | - Tanja Knific
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Michael Leschnik
- Clinical Unit of Internal Medicine Small Animals, Department/Universitätsklinik für Kleintiere und Pferde, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Martina Miterpáková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia;
| | - David Modrý
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic;
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences Prague, 16500 Praha-Suchdol, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Heidi Huus Petersen
- Centre for Diagnostic, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Karl Skírnisson
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland;
| | - Aleksandra Vergles Rataj
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Manuela Schnyder
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland;
| | - Christina Strube
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| |
Collapse
|