1
|
Li R, Nie Y, Fu YT, Deng YP, Wang W, Ma PP, Liu GH. Characterization of the fragmented mitochondrial genome of domestic pig louse Haematopinus suis (Insecta: Haematopinidae) from China. Syst Parasitol 2023; 100:571-578. [PMID: 37382800 DOI: 10.1007/s11230-023-10106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
The domestic pig louse Haematopinus suis (Linnaeus, 1758) (Phthiraptera: Anoplura) is a common ectoparasite of domestic pigs, which can act as a vector of various infectious disease agents. Despite its significance, the molecular genetics, biology and systematics of H. suis from China have not been studied in detail. In the present study, the entire mitochondrial (mt) genome of H. suis isolate from China was sequenced and compared with that of H. suis isolate from Australia. We identified 37 mt genes located on nine circular mt minichromosomes, 2.9 kb-4.2 kb in size, each containing 2-8 genes and one large non-coding region (NCR) (1,957 bp-2,226 bp). The number of minichromosomes, gene content, and gene order in H. suis isolates from China and Australia are identical. Total sequence identity across coding regions was 96.3% between H. suis isolates from China and Australia. For the 13 protein-coding genes, sequence differences ranged from 2.8%-6.5% consistent nucleotides with amino acids. Our result is H. suis isolates from China and Australia being the same H. suis species. The present study determined the entire mt genome of H. suis from China, providing additional genetic markers for studying the molecular genetics, biology and systematics of domestic pig louse.
Collapse
Affiliation(s)
- Rong Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yu Nie
- College of Biotechnology, Hunan University of Environment and Biology, Hengyang, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Wang
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Ping-Ping Ma
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Fu YT, Shao R, Suleman, Wang W, Wang HM, Liu GH. The fragmented mitochondrial genomes of two Linognathus lice reveal active minichromosomal recombination and recombination hotspots. iScience 2023; 26:107351. [PMID: 37520725 PMCID: PMC10382929 DOI: 10.1016/j.isci.2023.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/04/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Evidence for recombination between mitochondrial (mt) minichromosomes has been reported in sucking lice, but it is still not clear how frequent mt minichromosomal recombination occurs. We sequenced the mt genomes of the cattle louse Linognathus vituli and the goat louse L. africanus. Both Linognathus species have 10 mt minichromosomes, and seven of them have the same gene content and gene arrangement. Comparison of mt karyotypes revealed numerous inter-minichromosomal recombination events in the evolution of Linognathus species. Minichromosome merger, gene duplication and gene translocation occurred in the lineage leading to Linognathus lice. After the divergence of L. vituli and L. africanus, duplication, degeneration, deletion and translocation of genes also occurred independently in each species. Most of the recombination events in the Linognathus species occurred upstream of either cox3 or nad2, indicating these two locations were hotspots for inter-minichromosomal recombination. Our results provide an important perspective on mt genome evolution in metazoans.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Suleman
- Department of Zoology, University of Swabi, Khyber Pakhtunkhwa 23430, Pakistan
| | - Wei Wang
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Hui-Mei Wang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Fu YT, Suleman, Yao C, Wang HM, Wang W, Liu GH. A Novel Mitochondrial Genome Fragmentation Pattern in the Buffalo Louse Haematopinus tuberculatus (Psocodea: Haematopinidae). Int J Mol Sci 2022; 23:13092. [PMID: 36361879 PMCID: PMC9658350 DOI: 10.3390/ijms232113092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Sucking lice are obligate ectoparasites of mammalian hosts, causing serious public health problems and economic losses worldwide. It is well known that sucking lice have fragmented mitochondrial (mt) genomes, but many remain undetermined. To better understand patterns of mt genome fragmentation in the sucking lice, we sequenced the mt genome of the buffalo louse Haematopinus tuberculatus using next-generation sequencing (NGS). The mt genome of H. tuberculatus has ten circular minichromosomes containing a total of 37 genes. Each minichromosome is 2.9-5.0 kb long and carries one to eight genes plus one large non-coding region. The number of mt minichromosomes of H. tuberculatus (ten) is different from those of congeneric species (horse louse H. asini, domestic pig louse H. suis and wild pig louse H. apri) and other sucking lice. Two events (gene translocation and merger of mt minichromosome) are observed in Haematopinus. Compared to other studies, our phylogeny generated from mt genome datasets showed a different topology, suggesting that inclusion of data other than mt genomes would be required to resolve phylogeny of sucking lice. To our knowledge, this is the first report of a ten mt minichromosomes genome in sucking lice, which opens a new outlook into unexplored mt genome fragmentation patterns in sucking lice.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Suleman
- Department of Zoology, University of Swabi, Swabi 23561, Pakistan
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Hui-Mei Wang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wei Wang
- The Centre for Bioinnovation, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Johnson KP. Genomic Approaches to Uncovering the Coevolutionary History of Parasitic Lice. Life (Basel) 2022; 12:life12091442. [PMID: 36143478 PMCID: PMC9501036 DOI: 10.3390/life12091442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New sequencing technologies have now made it possible to sequence entire genomes for a diversity of life on earth. Parasites comprise nearly half of all species. Lice are one important group of parasites of birds and mammals, including humans. Genome sequencing approaches have been applied to this group of parasites to uncover patterns of diversification. These patterns can be compared to the patterns of diversification in their hosts. Key findings from these studies have revealed that parasitic lice likely originated on birds and then switched to mammals multiple times. Within groups of birds and mammals, the evolutionary trees of lice match those for mammal hosts more than those for birds. Genomic approaches have also revealed that individual birds and mammals harbor distinct populations of lice. Thus, these new techniques allow for the study of patterns of diversification at a wide variety of scales. Abstract Next-generation sequencing technologies are revolutionizing the fields of genomics, phylogenetics, and population genetics. These new genomic approaches have been extensively applied to a major group of parasites, the lice (Insecta: Phthiraptera) of birds and mammals. Two louse genomes have been assembled and annotated to date, and these have opened up new resources for the study of louse biology. Whole genome sequencing has been used to assemble large phylogenomic datasets for lice, incorporating sequences of thousands of genes. These datasets have provided highly supported trees at all taxonomic levels, ranging from relationships among the major groups of lice to those among closely related species. Such approaches have also been applied at the population scale in lice, revealing patterns of population subdivision and inbreeding. Finally, whole genome sequence datasets can also be used for additional study beyond that of the louse nuclear genome, such as in the study of mitochondrial genome fragmentation or endosymbiont function.
Collapse
Affiliation(s)
- Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA
| |
Collapse
|
5
|
Phylogenetic Analysis of Mitochondrial Genome of Tabanidae (Diptera: Tabanidae) Reveals the Present Status of Tabanidae Classification. INSECTS 2022; 13:insects13080695. [PMID: 36005320 PMCID: PMC9408937 DOI: 10.3390/insects13080695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Tabanidae suck the blood of humans and animals, are important biological vectors for the transmission of diseases, and are of considerable economic and medical significance. However, current knowledge about the mitochondrial genome of this family is limited. Therefore, six newly completed mitochondrial genomes of four genera of Tabanidae (Haematopota turkestanica, Chrysops vanderwulpi, Chrysops dissectus, Tabanus chrysurus, Tabanus pleskei, and Hybomitra sp. species) were sequenced and analyzed. The results show that the six newly mitochondrial genomes have quite similar structures and features. Phylogeny was inferred by analyzing the 13 amino acid sequences coded by mitochondrial genes of 22 mitogenomes (all available complete mitochondrial genomes of tabanidae). Bayesian inference, maximum likelihood trees, and maximum parsimony inference analyses all showed consistent results. This study supports the concept of monophyly of all groups, ratifies the current taxonomic classification, and provides useful genetic markers for studying the molecular ecology, systematics, and population genetics of Tabanidae. Abstract Tabanidae suck the blood of humans and animals, are important biological vectors for the transmission of diseases, and are of considerable economic and medical significance. However, current knowledge about the mitochondrial genome of this family is limited. More complete mitochondrial genomes of Tabanidae are essential for the identification and phylogeny. Therefore, this study sequenced and analyzed six complete mitochondrial (mt) genome sequences of four genera of Tabanidae for the first time. The complete mt genomes of the six new sequences are circular molecules ranging from 15,851 to 16,107 base pairs (bp) in size, with AT content ranging from 75.64 to 77.91%. The six complete mitochondrial genomes all consist of 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (RRNA), 22 transfer RNA genes (tRNAs), and a control region, making a total of 37 functional subunits. ATT/ATG was the most common start codon, and the stop codon was TAA of all PCGS. All tRNA except tRNA Ser1 had a typical clover structure. Phylogeny was inferred by analyzing the 13 concatenated amino acid sequences of the 22 mt genomes. Bayesian inference, maximum-likelihood trees, and maximum-parsimony inference analyses all showed consistent results. This study supports the concept of monophyly of all genus, ratifies the current taxonomic classification, and provides effective genetic markers for molecular classification, systematics, and genetic studies of Tabanidae.
Collapse
|
6
|
Nie Y, Fu YT, Wang W, Li R, Tang WQ, Liu GH. Comparative analyses of the fragmented mitochondrial genomes of wild pig louse Haematopinus apri from China and Japan. Int J Parasitol Parasites Wildl 2022; 18:25-29. [PMID: 35399589 PMCID: PMC8989706 DOI: 10.1016/j.ijppaw.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Nie
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wei Wang
- The Centre for Bioinnovation, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Rong Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wan-Qing Tang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Corresponding author.
| |
Collapse
|
7
|
Fu YT, Zhang Y, Xun Y, Liu GH, Suleman, Zhao Y. Characterization of the complete mitochondrial genomes of six horseflies (Diptera: Tabanidae). INFECTION GENETICS AND EVOLUTION 2021; 95:105054. [PMID: 34461311 DOI: 10.1016/j.meegid.2021.105054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
The family Tabanidae (Insecta: Diptera) is one of the economically most important group of haematophagous insects, causing millions of livestock deaths per year. However, current knowledge on the mitochondrial genomes (mitogenomes) from this family is limited. Additional tabanid mitogenomes characterization is of utmost importance for their identification, epidemiologic and phylogenetic studies. We sequenced the mt genomes of six horseflies with an Illumina platform and their phylogenetic relationship was conducted with other infraorder Tabanomorpha members with available mt genome datasets. All six newly sequenced mitogenomes were typical 37-gene circular structures retaining the gene order of Tabanomorpha. The trnQ, trnM and trnA were highly conserved among the six mitogenomes (identity = 100%). The TΨC arm and variable loop regions were relatively more variable compared to the amino acid receptor arm, anticodon arm and DHU arm of the tRNAs. Among 13 protein-coding genes (PCGs) of tabanids mitogenomes, the highest nucleotide diversity was detected in atp8, cox1, cox3, nad6 and cytb (0.1 for each). In addition, atp8 genes exhibited the highest evolutionary rate (ω = 0.24) among 13 PCGs. The interspecies K2P genetic distances among some Tabanus spp. across the mitogenome was greater (0.08) than intergeneric genetic distance between T. amaenus and Atylotus miser (0.07). Phylogenetic analyses revealed non-monophyletic relationships among horseflies of the genus Tabanus. The present study showed mt gene order is highly conserved within Tabanus species. Our mito-phylogenomic analysis supports the paraphyly of the genus Tabanus. The new data provide novel genetic markers for studies of population genetics and systematics of horseflies.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China
| | - Yu Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China
| | - Ying Xun
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China
| | - Suleman
- Department of Zoology, University of Swabi, Swabi 23340, Khyber Pakhtunkhwa, Pakistan.
| | - Yu Zhao
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province 410128, China; College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan province 464000, PR China.
| |
Collapse
|
8
|
Spradling TA, Place AC, Campbell AL, Demastes JW. Mitochondrial genome of Geomydoecus aurei, a pocket-gopher louse. PLoS One 2021; 16:e0254138. [PMID: 34314423 PMCID: PMC8315533 DOI: 10.1371/journal.pone.0254138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Parasitic lice demonstrate an unusual array of mitochondrial genome architectures and gene arrangements. We characterized the mitochondrial genome of Geomydoecus aurei, a chewing louse (Phthiraptera: Trichodectidae) found on pocket gophers (Rodentia: Geomyidae) using reads from both Illumina and Oxford Nanopore sequencing coupled with PCR, cloning, and Sanger sequencing to verify structure and arrangement for each chromosome. The genome consisted of 12 circular mitochondrial chromosomes ranging in size from 1,318 to 2,088 nucleotides (nt). Total genome size was 19,015 nt. All 37 genes typical of metazoans (2 rRNA genes, 22 tRNA genes, and 13 protein-coding genes) were present. An average of 26% of each chromosome was composed of non-gene sequences. Within the non-gene region of each chromosome, there was a 79-nt nucleotide sequence that was identical among chromosomes and a conserved sequence with secondary structure that was always followed by a poly-T region. We hypothesize that these regions may be important in the initiation of transcription and DNA replication, respectively. The G. aurei genome shares 8 derived gene clusters with other chewing lice of mammals, but in G. aurei, genes on several chromosomes are not contiguous.
Collapse
Affiliation(s)
- Theresa A. Spradling
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Alexandra C. Place
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Ashley L. Campbell
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - James W. Demastes
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| |
Collapse
|
9
|
Nie Y, Fu YT, Zhang Y, Deng YP, Wang W, Tu Y, Liu GH. Highly rearranged mitochondrial genome in Falcolipeurus lice (Phthiraptera: Philopteridae) from endangered eagles. Parasit Vectors 2021; 14:269. [PMID: 34016171 PMCID: PMC8139141 DOI: 10.1186/s13071-021-04776-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Fragmented mitochondrial (mt) genomes and extensive mt gene rearrangements have been frequently reported from parasitic lice (Insecta: Phthiraptera). However, relatively little is known about the mt genomes from the family Philopteridae, the most species-rich family within the suborder Ischnocera. Methods Herein, we use next-generation sequencing to decode the mt genome of Falcolipeurus suturalis and compare it with the mt genome of F. quadripustulatus. Phylogenetic relationships within the family Philopteridae were inferred from the concatenated 13 protein-coding genes of the two Falcolipeurus lice and members of the family Philopteridae using Bayesian inference (BI) and maximum likelihood (ML) methods. Results The complete mt genome of F. suturalis is a circular, double-stranded DNA molecule 16,659bp in size that contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and three non-coding regions. The gene order of the F. suturalis mt genome is rearranged relative to that of F. quadripustulatus, and is radically different from both other louse species and the putative ancestral insect. Phylogenetic analyses revealed clear genetic distinctiveness between F. suturalis and F. quadripustulatus (Bayesian posterior probabilities=1.0 and bootstrapping frequencies=100), and that the genus Falcolipeurus is sister to the genus Ibidoecus (Bayesian posterior probabilities=1.0 and bootstrapping frequencies=100). Conclusions These datasets help to better understand gene rearrangements in lice and the phylogenetic position of Falcolipeurus and provide useful genetic markers for systematic studies of bird lice. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04776-5.
Collapse
Affiliation(s)
- Yu Nie
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yu Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yuan-Ping Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wei Wang
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Ya Tu
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, 101300, China.
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
10
|
Zhang Y, Nie Y, Deng YP, Liu GH, Fu YT. The complete mitochondrial genome sequences of the cat flea Ctenocephalides felis felis (Siphonaptera: Pulicidae) support the hypothesis that C. felis isolates from China and USA were the same C. f. felis subspecies. Acta Trop 2021; 217:105880. [PMID: 33662336 DOI: 10.1016/j.actatropica.2021.105880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
The cat flea Ctenocephalides felis (Siphonaptera: Pulicidae) is the most important ectoparasite in cats and dogs worldwide. Over the years, there has been much dispute regarding the taxonomic and systematic status of C. felis. Mitochondrial (mt) genome sequences are useful genetic markers for the identification and differentiation of ectoparasites, but the mt genome of C. felis and its subspecies has not yet been entirely characterized. In the present study, the entire mt genome of C. f. felis from China was sequenced and compared with that of C. felis from the USA. Both contain 37 genes and a long non-coding region of >6 kbp. The molecular identity between the Chinese and American isolates was 99%, except for the non-coding region. The protein-coding genes showed differences at both the nucleotide (1.2%) and amino acid (1%) levels. Interestingly, the cox1 gene of the Chinese isolate had an unusual putative start codon (TTT). Taken together, our analyses strongly support the hypothesis that C. felis isolates from China and the USA were the same C. f. felis subspecies. The mt genome sequence of the C. f. felis China isolate presented in this study provides useful molecular markers to further address the taxonomy and systematics of C. felis.
Collapse
Affiliation(s)
- Yu Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Yu Nie
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Yuan-Ping Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan Province, 410128, China.
| | - Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| |
Collapse
|