1
|
Ma R, Yue C, Gu J, Wu W, Hou R, Huang W, Li B, Xue F, Huang C, Bi W, Liu J, Yu X, Li Z, Yang W, Fu M, Yang H, Qi D. Efficacy of azithromycin combined with compounded atovaquone in treating babesiosis in giant pandas. Parasit Vectors 2024; 17:531. [PMID: 39716228 DOI: 10.1186/s13071-024-06615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Babesia is a tick-borne protozoan blood parasite that can cause hemolytic anemia, thrombocytopenia, lethargy and splenomegaly in giant pandas. METHODS We evaluated the efficacy and safety profile of a therapeutic regimen combining atovaquone and zithromycin in the context of babesiosis in giant pandas that have been naturally infected. The examined pandas underwent clinical and laboratory analyses, including hematology, biochemistry and thyroid hormone profiles. Upon diagnosis, the giant pandas were administered a compounded treatment consisting of atovaquone oral suspension (15 mg/kg, PO, q8 h), azithromycin tablets (10 mg/kg, PO, q24 h) and Enteral Nutritional Suspension (TPF) as a fat-rich supplement (0.5 ml/kg, PO, q8 h) for a 10-day period. RESULTS The combination treatment increased the red blood cell count, hemoglobin levels and hematocrit in the pandas within a short period, while also reducing parasite levels below the PCR detection threshold. CONCLUSIONS Our study suggested that atovaquone and azithromycin combination therapy is highly effective for emergency treatment of Babesia sp. infection in giant pandas.
Collapse
Affiliation(s)
- Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Chanjuan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Jiang Gu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Wei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Wenjun Huang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Bi Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Chong Huang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Xiang Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Zusheng Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Wanjing Yang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China
| | - Mingxia Fu
- Administration of Daxiangling Nature Reserve, Yaan, 625000, Sichuan, China
| | - Hong Yang
- Administration of Daxiangling Nature Reserve, Yaan, 625000, Sichuan, China
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
2
|
Xiong L, Yang G. Description and molecular characterisation of Babesia ailuropodae n. sp., a new piroplasmid species infecting giant pandas. Parasit Vectors 2024; 17:315. [PMID: 39033131 PMCID: PMC11265107 DOI: 10.1186/s13071-024-06402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Babesia spp. are protozoan parasites that infect the red blood cells of domesticated animals, wildlife and humans. A few cases of giant pandas (a flagship species in terms of wildlife conservation) infected with a putative novel Babesia sp. have been reported. However, comprehensive research on the morphological and molecular taxonomic classification of this novel Babesia sp. is still lacking. This study was designed to close this gap and formally describe this new Babesia sp. infecting giant pandas. METHODS Detailed morphological, molecular and phylogenetic analyses were conducted to characterise this Babesia sp. and to assess its systematic relationships with other Babesia spp. Blood samples from giant pandas infected with Babesia were subjected to microscopic examination. The 18S ribosomal RNA (18S rRNA), cytochrome b (cytb) and mitochondrial genome (mitogenome) of the new Babesia sp. were amplified, sequenced and assembled using DNA purified from blood samples taken from infected giant pandas. Based on the newly generated 18S rRNA, cytb and mitogenome sequences, phylogenetic trees were constructed. RESULTS Morphologically, the Babesia sp. from giant pandas exhibited various forms, including round to oval ring-shaped morphologies, resembling those found in other small canine Babesia spp. and displaying typical tetrads. Phylogenetic analyses with the 18S rRNA, cytb and mitogenome sequences revealed that the new Babesia sp. forms a monophyletic group, with a close phylogenetic relationship with the Babesia spp. that infect bears (Ursidae), raccoons (Procyonidae) and canids (Canidae). Notably, the mitogenome structure consisted of six ribosomal large subunit-coding genes (LSU1-6) and three protein-coding genes (cytb, cox3 and cox1) arranged linearly. CONCLUSIONS Based on coupled morphological and genetic analyses, we describe a novel species of the genus Babesia, namely, Babesia ailuropodae n. sp., which infects giant pandas.
Collapse
Affiliation(s)
- Lang Xiong
- Sichuan Agricultural University, Sichuan, China
| | | |
Collapse
|
3
|
Liu Y, Niu J, Cui J, Rao H, Yu J. Prevalence and molecular detection of Babesia microti in rodents in Southeastern Shanxi, China. PLoS One 2024; 19:e0306181. [PMID: 38959227 PMCID: PMC11221649 DOI: 10.1371/journal.pone.0306181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Babesia is a tick-transmitted parasite that infects wild and domestic animals, causes babesiosis in humans, and is an increasing public health concern. Here, we investigated the prevalence and molecular characteristics of Babesia infections in the rodents in Southeastern Shanxi, China. Small rodents were captured, and the liver and spleen tissues were used for Babesia detection using traditional PCR and sequencing of the partial 18S rRNA gene. The analysis revealed that 27 of 252 small rodents were positive for Babesia, with an infection rate of 10.71%. The infection rates in different sexes and rodent tissues were not statistically different, but those in different rodent species, habitats, and sampling sites were statistically different. The highest risk of Babesia infection was observed in Niviventer confucianus captured from the forests in Huguan County. Forty-three sequences from 27 small rodents positive for Babesia infection were identified as Babesia microti, including 42 sequences from 26 N. confucianus, and one sequence from Apodemus agrarius. Phylogenetic analysis showed that all sequences were clustered together and had the closest genetic relationship with Babesia microti strains isolated from Rattus losea and N. confucianus in China, and belonged to the Kobe-type, which is pathogenic to humans. Compared to other Kobe-type strains based on the nearly complete 18S rRNA gene, the sequences obtained in this study showed the difference by 1-3 bp. Overall, a high prevalence of Babesia microti infection was observed in small rodents in Southeastern Shanxi, China, which could benefit us to take the implementation of relevant prevention and control measures in this area.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, China
| | - Jingrong Niu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, China
| | - Jia Cui
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, China
| | - Huaxiang Rao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Juan Yu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, China
| |
Collapse
|
4
|
Bi W, Liu S, O’Connor MP, Owens JR, Valitutto MT, Hou R, Qi D, Hayek LAC, Wu F, Ma R, Liu J, Zhou Y, Zhang L, Callan R, Luo L, Huang W, Zhang Z, Spotila JR. Hematological and biochemical parameters of giant pandas ( Ailuropoda melanoleuca) in captive and semi-natural environments. CONSERVATION PHYSIOLOGY 2024; 12:coad083. [PMID: 38369984 PMCID: PMC10873526 DOI: 10.1093/conphys/coad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 02/20/2024]
Abstract
Physiological indexes like blood parameters have been widely used to monitor the health of free-roaming animals. Attempts to reintroduce one of China's most endangered species, the giant panda (Ailuropoda melanoleuca), have been hampered by a lack of data on its ecology and physiology. We examined three giant pandas' hematological and blood chemistry parameters in a soft release program and 30 captive giant pandas as controls and determined the reference intervals (RIs) for those blood parameters in the captive animals. Elevation, captivity status and the interaction of those factors were statistically significant for hematologic measures. Release pandas had significantly higher hemoglobin and hematocrit values after they moved to high elevation locations. We also found significant difference in the enzyme parameters between high and low elevation pandas such as higher aspartate aminotransferase, alanine aminotransferase, creatinine kinase, amylase and lower lactate dehydrogenase and alkaline phosphatase. Release pandas also had higher nutrition parameter values such as higher albumin, globulin and creatinine. The RI for blood parameters in our study provides a baseline to monitor the health of captive animals and forms the basis for assessing the health of free-roaming giant pandas in future reintroduction efforts.
Collapse
Affiliation(s)
- Wenlei Bi
- Department of Biodiversity, Earth and Environmental Science, Drexel University, 3145 Chestnut St, Philadelphia, PA 19104, USA
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Songrui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Michael P O’Connor
- Department of Biodiversity, Earth and Environmental Science, Drexel University, 3145 Chestnut St, Philadelphia, PA 19104, USA
| | - Jacob R Owens
- Department of Conservation, Los Angeles Zoo, Botanical Gardens, 5333 Zoo Dr Los Angeles, California, CA 90027, USA
| | - Marc T Valitutto
- EcoHealth Alliance, 520 Eighth Avenue, Ste. 1200, New York, NY 10018, USA
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Lee-Ann Collins Hayek
- Smithsonian Institution, MRC, PO Box 37012, SI Building, Room 153, MRC 010, Washington, DC 20013, USA
| | - Fanqi Wu
- Global Cause Foundation, 1002 Doe Run, Blacksburg, VA 24060, USA
- Purdue University at Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN, USA
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Long Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Ramana Callan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
- Miami University, 501 E. High St, Oxford OH, USA
| | - Li Luo
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Wenjun Huang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Rd, Chengdu, Sichuan 610081, China
| | - Zhihe Zhang
- Sichuan Academy of Giant Panda, 1375 Panda Rd, Chengdu, Sichuan Province, China
| | - James R Spotila
- Department of Biodiversity, Earth and Environmental Science, Drexel University, 3145 Chestnut St, Philadelphia, PA 19104, USA
- Global Cause Foundation, 1002 Doe Run, Blacksburg, VA 24060, USA
| |
Collapse
|
5
|
Fan X, Ma R, Yue C, Liu J, Yue B, Yang W, Li Y, Gu J, Ayala JE, Bunker DE, Yan X, Qi D, Su X, Li L, Zhang D, Zhang H, Yang Z, Hou R, Liu S. A snapshot of climate drivers and temporal variation of Ixodes ovatus abundance from a giant panda living in the wild. Int J Parasitol Parasites Wildl 2023; 20:162-169. [PMID: 36890989 PMCID: PMC9986245 DOI: 10.1016/j.ijppaw.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Ticks and tick-borne diseases have negative impacts on the health of wild animals including endangered and vulnerable species. The giant panda (Ailuropoda melanoleuca), a vulnerable and iconic flagship species, is threatened by tick infestation as well. Not only can ticks cause anemia and immunosuppression in the giant panda, but also bacterial and viral diseases. However, previous studies regarding tick infestation on giant pandas were limited in scope as case reports from sick or dead animals. In this study, an investigation focusing on the tick infestation of a reintroduced giant panda at the Daxiangling Reintroduction Base in Sichuan, China was conducted. Ticks were routinely collected and identified from the ears of the giant panda from March to September in 2021. A linear model was used to test the correlation between tick abundance and climate factors. All ticks were identified as Ixodes ovatus. Tick abundance was significantly different among months. Results from the linear model showed temperature positively correlated to tick abundance, while air pressure had a negative correlation with tick abundance. To the best of our knowledge, this study is the first reported investigation of tick species and abundance on a healthy giant panda living in the natural environment, and provides important information for the conservation of giant pandas and other species sharing the same habitat.
Collapse
Affiliation(s)
- Xueyang Fan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Changjuan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Wanjing Yang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Yunli Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Jiang Gu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - James E Ayala
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Daniel E Bunker
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xia Yan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Lin Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Dongsheng Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Hongwen Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Songrui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| |
Collapse
|
6
|
Mahdy OA, Nassar AM, Elsawy BSM, Alzan HF, Kandil OM, Mahmoud MS, Suarez CE. Cross-sectional analysis of Piroplasma species-infecting camel ( Camelus dromedaries) in Egypt using a multipronged molecular diagnostic approach. Front Vet Sci 2023; 10:1178511. [PMID: 37187929 PMCID: PMC10175621 DOI: 10.3389/fvets.2023.1178511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Camel piroplasmosis is a tick-borne disease (TBD) caused by hemoprotozoan parasites. Hereby, we describe a cross-sectional study aiming at identifying Piroplasma spp.-infecting camels in Egypt using a multipronged molecular diagnostic approach. A total of 531 blood samples from camels (Camelus dromedarius) were collected from slaughterhouses at different governorates in Egypt for analysis during the period from June 2018 to May 2019. Piroplasma spp. was identified using microscopical examination and several different and sequential polymerase chain reaction (PCR) assays targeting the 18S rRNA genes. The overall prevalence of Piroplasma spp. in microscopical and molecular analyses in the samples was 11% (58/531) and 38% (203/531), respectively. Further discriminative multiplex PCR analysis targeting the 18S rRNA gene applied on all Piroplasma spp.-positive samples allowed the detection of Theileria equi (41%), Babesia caballi (5.4%), Babesia bigemina (0.5%), and Babesia bovis (4%). Additionally, the blast analysis of nested (n) PCR, targeting the V4 region, amplicon sequences resulted in the identification of B. vulpes (22%), Babesia sp. (9%), and Theileria sp. (3%). Overall, the results of this study confirmed the high prevalence of TBDs caused by several types of piroplasm hemoparasites in camel and suggests the need for future interventions aimed at improving the control of these potentially debilitating diseases that may be t-hreatening important economic resources and food security in Egypt.
Collapse
Affiliation(s)
- Olfat A. Mahdy
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Olfat A. Mahdy
| | - Ahmed M. Nassar
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Bassma S. M. Elsawy
- Parasitology and Animal Diseases Department, Veterinary Institute, National Research Centre, Giza, Egypt
- Tick and Tick-Borne Diseases Research Unit, National Research Centre, Giza, Egypt
| | - Heba F. Alzan
- Parasitology and Animal Diseases Department, Veterinary Institute, National Research Centre, Giza, Egypt
- Tick and Tick-Borne Diseases Research Unit, National Research Centre, Giza, Egypt
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Omnia M. Kandil
- Parasitology and Animal Diseases Department, Veterinary Institute, National Research Centre, Giza, Egypt
| | - Mona S. Mahmoud
- Parasitology and Animal Diseases Department, Veterinary Institute, National Research Centre, Giza, Egypt
- Tick and Tick-Borne Diseases Research Unit, National Research Centre, Giza, Egypt
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- *Correspondence: Carlos E. Suarez
| |
Collapse
|
7
|
Liu J, Yu J, Yu X, Bi W, Yang H, Xue F, Zhang G, Zhang J, Yi D, Ma R, Zhou Y, Lan G, Gu J, Wu W, Li Z, Qi G. Complete Mitogenomes of Ticks Ixodes acutitarsus and Ixodes ovatus Parasitizing Giant Panda: Deep Insights into the Comparative Mitogenomic and Phylogenetic Relationship of Ixodidae Species. Genes (Basel) 2022; 13:2049. [PMID: 36360286 PMCID: PMC9691169 DOI: 10.3390/genes13112049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 04/11/2024] Open
Abstract
Ticks rank second in the world as vectors of disease. Tick infestation is one of the factors threatening the health and survival of giant pandas. Here, we describe the mitogenomes of Ixodes acutitarsus and Ixodes ovatus parasitizing giant pandas, and perform comparative and phylogenetic genomic analyses on the newly sequenced and other available mitogenomes of hard ticks. All six newly determined mitogenomes contain a typical gene component and share an ancient Arthropoda gene arrangement pattern. Our study suggests that I. ovatus is a species complex with high genetic divergence, indicating that different clades of I. ovatus represent distinct species. Comparative mitogenomic analyses show that the average A + T content of Ixodidae mitogenomes is 78.08%, their GC-skews are strongly negative, while AT-skews fluctuate around 0. A large number of microsatellites are detected in Ixodidae mitogenomes, and the main microsatellite motifs are mononucleotide A and trinucleotide AAT. We summarize five gene arrangement types, and identify the trnY-COX1-trnS1-COX2-trnK-ATP8-ATP6-COX3-trnG fragment is the most conserved region, whereas the region near the control region is the rearrangement hotspot in Ixodidae mitogenomes. The phylogenetic trees based on 15 genes provide a very convincing relationship (Ixodes + (Robertsicus + ((Bothriocroton + Haemaphysalis) + (Amblyomma + (Dermacentor + (Rhipicentor + (Hyalomma + Rhipicephalus))))))) with very strong supports. Remarkably, Archaeocroton sphenodonti is embedded in the Haemaphysalis clade with strong supports, resulting in paraphyly of the Haemaphysalis genus, so in-depth morphological and molecular studies are essential to determine the taxonomic status of A. sphenodonti and its closely related species. Our results provide new insights into the molecular phylogeny and evolution of hard ticks, as well as basic data for population genetics assessment and efficient surveillance and control for the giant panda-infesting ticks.
Collapse
Affiliation(s)
- Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Jiaojiao Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xiang Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Hong Yang
- Management Center of Daxiangling Nature Reserve in Yingjing County, Ya’an 625200, China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Gexiang Zhang
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China
| | - Jindong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Dejiao Yi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guanwei Lan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Jiang Gu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Zusheng Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guilan Qi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| |
Collapse
|