1
|
Shirozu T, Regilme MAF, Ote M, Sasaki M, Soga A, Bochimoto H, Kawabata H, Umemiya-Shirafuji R, Kanuka H, Fukumoto S. Wolbachia infection in Aedes aegypti does not affect its vectorial capacity for Dirofilaria immitis. Sci Rep 2024; 14:22528. [PMID: 39341970 PMCID: PMC11439018 DOI: 10.1038/s41598-024-73421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Mosquito-borne diseases such as dengue and filariasis are a growing public health concern in endemic countries. Biological approaches, such as the trans-infection of Wolbachia pipientis in mosquitoes, are an alternative vector control strategy, especially for arthropod-borne viruses such as dengue. In the present study, the effect of Wolbachia (wMel strain) on the vectorial capacity of Aedes aegypti for Dirofilaria immitis was studied. Our results showed that Wolbachia does not affect the phenotype of mosquito survival or the prevalence, number, and molting rate of third-stage larvae in both susceptible and resistant strains of Ae. aegypti. RNA-seq analysis of Malpighian tubules at 2 days post-infection with D. immitis showed the differentially expressed genes (DEGs) with and without wMel infection. No characteristic immune-related gene expression patterns were observed among the DEGs. No significant change in the amount of Wolbachia was observed in the Ae. aegypti after D. immitis infection. Our results suggest that infection of D. immitis in Ae. aegypti populations will not interfere with Wolbachia-based vector control strategies in dengue-endemic areas where cases of D. immitis are present. This study demonstrated the veterinary medical validity of a dengue control program using Wolbachia.
Collapse
Affiliation(s)
- Takahiro Shirozu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Maria Angenica F Regilme
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Manabu Ote
- Department of Tropical Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Mizuki Sasaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hidenobu Kawabata
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
2
|
Mizuseki M, Ikeda N, Shirozu T, Yamagishi M, Oshiro S, Fukumoto S. Development of a novel rodent model for dog heartworm microfilaremia using the severe-combined immunodeficiency mouse. Sci Rep 2024; 14:13741. [PMID: 38877072 PMCID: PMC11178764 DOI: 10.1038/s41598-024-63165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024] Open
Abstract
Dirofilaria immitis is a mosquito-borne parasitic nematode that causes fatal heartworm disease in canids. The microfilariae are essential for research, including drug screening and mosquito-parasite interactions. However, no reliable methods for maintaining microfilaria long-term are currently available. Therefore, we used severe combined immunodeficiency (SCID) mice to develop a reliable method for maintaining D. immitis microfilaria. SCID mice were injected intravenously with microfilariae isolated from a D. immitis-infected dog. Microfilariae were detected in blood collected from the tail vein 218 days post-inoculation (dpi) and via cardiac puncture 296 dpi. Microfilariae maintained in and extracted from SCID mice showed infectivity and matured into third-stage larvae (L3s) in the vector mosquito Aedes aegypti. L3s can develop into the fourth stage larvae in vitro. Microfilariae from SCID mice respond normally to ivermectin in vitro. The microfilariae in SCID mice displayed periodicity in the peripheral circulation. The SCID mouse model aided in the separation of microfilariae from cryopreserved specimens. The use of SCID mice enabled the isolation and sustained cultivation of microfilariae from clinical samples. These findings highlight the usefulness of the SCID mouse model for studying D. immitis microfilaremia in canine heartworm research.
Collapse
Affiliation(s)
- Mihoko Mizuseki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Nao Ikeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Takahiro Shirozu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | | | - Sugao Oshiro
- Yanbaru Animal Clinic, Nago, Okinawa, 905-0019, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
3
|
Kalwa U, Park Y, Kimber MJ, Pandey S. An automated, high-resolution phenotypic assay for adult Brugia malayi and microfilaria. Sci Rep 2024; 14:13176. [PMID: 38849355 PMCID: PMC11161659 DOI: 10.1038/s41598-024-62692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Brugia malayi are thread-like parasitic worms and one of the etiological agents of Lymphatic filariasis (LF). Existing anthelmintic drugs to treat LF are effective in reducing the larval microfilaria (mf) counts in human bloodstream but are less effective on adult parasites. To test potential drug candidates, we report a multi-parameter phenotypic assay based on tracking the motility of adult B. malayi and mf in vitro. For adult B. malayi, motility is characterized by the centroid velocity, path curvature, angular velocity, eccentricity, extent, and Euler Number. These parameters are evaluated in experiments with three anthelmintic drugs. For B. malayi mf, motility is extracted from the evolving body skeleton to yield positional data and bending angles at 74 key point. We achieved high-fidelity tracking of complex worm postures (self-occlusions, omega turns, body bending, and reversals) while providing a visual representation of pose estimates and behavioral attributes in both space and time scales.
Collapse
Affiliation(s)
- Upender Kalwa
- Department of Electrical and Computer Engineering, College of Engineering, Iowa State University, Ames, IA, USA
| | - Yunsoo Park
- Department of Electrical and Computer Engineering, College of Engineering, Iowa State University, Ames, IA, USA
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Santosh Pandey
- Department of Electrical and Computer Engineering, College of Engineering, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Nunn LR, Juang TD, Beebe DJ, Wheeler NJ, Zamanian M. A high-throughput nematode sensory assay reveals an inhibitory effect of ivermectin on parasite gustation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538347. [PMID: 37163046 PMCID: PMC10168391 DOI: 10.1101/2023.04.25.538347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes.
Collapse
Affiliation(s)
- Leonardo R. Nunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Terry D. Juang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
5
|
Nunn LR, Juang TD, Beebe DJ, Wheeler NJ, Zamanian M. A high-throughput sensory assay for parasitic and free-living nematodes. Integr Biol (Camb) 2023; 15:zyad010. [PMID: 37555835 PMCID: PMC10752570 DOI: 10.1093/intbio/zyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes. Insight box Nematodes are powerful model organisms for understanding the sensory biology of multicellular eukaryotes, and many parasitic species cause disease in humans. Simple sensory assays performed on agarose plates have been the bedrock for establishing the neuronal, genetic, and developmental foundations for many sensory modalities in nematodes. However, these classical assays are poorly suited for translational movement of many parasitic nematodes and the sensation of water-soluble molecules (gustation). We have designed a device for high-throughput nematode sensory assays in a gel matrix. This 'gustatory microplate' is amenable to several species and reveals novel responses by free-living and parasitic nematodes to cues and drugs.
Collapse
Affiliation(s)
- Leonardo R. Nunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Terry D. Juang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
6
|
Wheeler NJ, Hallem EA, Zamanian M. Making sense of sensory behaviors in vector-borne helminths. Trends Parasitol 2022; 38:841-853. [PMID: 35931639 PMCID: PMC9481669 DOI: 10.1016/j.pt.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
Migrations performed by helminths are impressive and diverse, and accumulating evidence shows that many are controlled by sophisticated sensory programs. The migrations of vector-borne helminths are particularly complex, requiring precise, stage-specific regulation. We review the contrasting states of knowledge on snail-borne schistosomes and mosquito-borne filarial nematodes. Rich observational data exist for the chemosensory behaviors of schistosomes, while the molecular sensory pathways in nematodes are well described. Recent investigations on the molecular mechanisms of sensation in schistosomes and filarial nematodes have revealed some features conserved within their respective phyla, but adaptations correlated with parasitism are pronounced. Technological developments are likely to extend these advances, and we forecast how these technologies may be applied.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|