1
|
Byers NM, Ledermann JP, Hughes HR, Powers AM. Evidence of Limited Laboratory Infection of Culex Tarsalis (Diptera: Culicidae) by Usutu Virus. Vector Borne Zoonotic Dis 2024. [PMID: 39377133 DOI: 10.1089/vbz.2024.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Background: Usutu virus (USUV) is an emerging flavivirus, closely related to West Nile virus (WNV), that has spread into Europe from Africa. Since Culex tarsalis Coquillett is an important vector for WNV transmission in the United States, we tested the ability of USUV to replicate in and be transmitted by these mosquitoes. Materials and Methods: USUV was used to infect 3-4 day-old Cx. tarsalis with 5.6 to 7.5 log10 pfu/ml in goose bloodmeals. Saliva, heads, and bodies were collected on day 13 or 14 and analyzed by RT-qPCR for detection for USUV vRNA. Blotting paper punches were also collected daily to assess viral transmissibility. Results: The low and high dose blood meal resulted in 0% and 19.6% of the mosquitoes having established infections, respectively. All of the high dose had a dissemination of USUV RNA to the heads and none of the filter papers had detectable USUV RNA, but five of the capillary saliva collections were positive, representing 45.5% of the infected mosquitoes. Conclusions: Limited infection of Cx. tarsalis was observed when exposed to bloodmeals with greater than 107 pfu/mL of USUV, indicating this vector is not likely to have a key role in transmission of the virus.
Collapse
Affiliation(s)
- Nathaniel M Byers
- Division of Vector-Borne Diseases, CDC, Fort Collins, Colorado, USA
- Current affiliation: the Salt Lake City Mosquito Abatement District, Salt Lake City, Utah, USA
| | | | - Holly R Hughes
- Division of Vector-Borne Diseases, CDC, Fort Collins, Colorado, USA
| | - Ann M Powers
- Division of Vector-Borne Diseases, CDC, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Guidez A, Tirera S, Talaga S, Lacour G, Carinci R, Darcissac E, Donato D, Gaborit P, Clervil E, Epelboin Y, de Thoisy B, Dusfour I, Duchemin JB, Lavergne A. Mosquito Feeding Habits in Coastal French Guiana: Mammals in the Crosshairs? INSECTS 2024; 15:718. [PMID: 39336686 PMCID: PMC11432726 DOI: 10.3390/insects15090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024]
Abstract
Pathogens transmitted by mosquitoes (Diptera, Culicidae) in sylvatic or urban cycles involve wild or domestic animals and humans, driven by various mosquito species with distinct host preferences. Understanding mosquito-host associations is crucial for ecological insights and pathogen surveillance. In this study, we analyzed mosquito blood meals from coastal French Guiana by amplifying and sequencing host DNA from blood-fed females. Using the 12S ribosomal RNA gene and Sanger sequencing, we identified blood meals from 26 mosquito species across six genera, with 59% belonging to the Culex genus. Nanopore sequencing of selected samples showed 12 mosquito species with one to three mixed blood-meal sources. Mammals were the primary hosts (88%), followed by birds (7%), squamates (3%), and amphibians (2%), indicating a strong preference for mammalian hosts. A total of 46 vertebrate host species were identified, demonstrating high host diversity. This research provides insights into mosquito host usage and highlights the complexities of monitoring arboviruses of public health concern.
Collapse
Affiliation(s)
- Amandine Guidez
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Stanislas Talaga
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Guillaume Lacour
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Romuald Carinci
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Edith Darcissac
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Pascal Gaborit
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Emmanuelle Clervil
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Yanouk Epelboin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Isabelle Dusfour
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | | | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| |
Collapse
|
3
|
Jobe NB, Franz NM, Johnston MA, Malone AB, Ruberto I, Townsend J, Will JB, Yule KM, Paaijmans KP. The Mosquito Fauna of Arizona: Species Composition and Public Health Implications. INSECTS 2024; 15:432. [PMID: 38921147 PMCID: PMC11203593 DOI: 10.3390/insects15060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Arizona is home to many mosquito species, some of which are known vectors of infectious diseases that harm both humans and animals. Here, we provide an overview of the 56 mosquito species that have been identified in the State to date, but also discuss their known feeding preference and the diseases they can (potentially) transmit to humans and animals. This list is unlikely to be complete for several reasons: (i) Arizona's mosquitoes are not systematically surveyed in many areas, (ii) surveillance efforts often target specific species of interest, and (iii) doubts have been raised by one or more scientists about the accuracy of some collection records, which has been noted in this article. There needs to be an integrated and multifaceted surveillance approach that involves entomologists and epidemiologists, but also social scientists, wildlife ecologists, ornithologists, representatives from the agricultural department, and irrigation and drainage districts. This will allow public health officials to (i) monitor changes in current mosquito species diversity and abundance, (ii) monitor the introduction of new or invasive species, (iii) identify locations or specific populations that are more at risk for mosquito-borne diseases, and (iv) effectively guide vector control.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Nico M. Franz
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Murray A. Johnston
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA;
| | - Adele B. Malone
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - Irene Ruberto
- Arizona Department of Health Services, Phoenix, AZ 85007, USA;
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - James B. Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - Kelsey M. Yule
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ 85281, USA;
| | - Krijn P. Paaijmans
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
4
|
Maleki-Ravasan N, Ghafari SM, Najafzadeh N, Karimian F, Darzi F, Davoudian R, Farshbaf Pourabad R, Parvizi P. Characterization of bacteria expectorated during forced salivation of the Phlebotomus papatasi: A neglected component of sand fly infectious inoculums. PLoS Negl Trop Dis 2024; 18:e0012165. [PMID: 38771858 PMCID: PMC11108182 DOI: 10.1371/journal.pntd.0012165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 05/23/2024] Open
Abstract
The infectious inoculum of a sand fly, apart from its metacyclic promastigotes, is composed of factors derived from both the parasite and the vector. Vector-derived factors, including salivary proteins and the gut microbiota, are essential for the establishment and enhancement of infection. However, the type and the number of bacteria egested during salivation is unclear. In the present study, sand flies of Phlebotomus papatasi were gathered from three locations in hyperendemic focus of zoonotic cutaneous leishmaniasis (ZCL) in Isfahan Province, Iran. By using the forced salivation assay and targeting the 16S rRNA barcode gene, egested bacteria were characterized in 99 (44%) out of 224 sand flies. Culture-dependent and culture-independent methods identified the members of Enterobacter cloacae and Spiroplasma species as dominant taxa, respectively. Ten top genera of Spiroplasma, Ralstonia, Acinetobacter, Reyranella, Undibacterium, Bryobacter, Corynebacterium, Cutibacterium, Psychrobacter, and Wolbachia constituted >80% of the saliva microbiome. Phylogenetic analysis displayed the presence of only one bacterial species for the Spiroplasma, Ralstonia, Reyranella, Bryobacter and Wolbachia, two distinct species for Cutibacterium, three for Undibacterium and Psychrobacter, 16 for Acinetobacter, and 27 for Corynebacterium, in the saliva. The abundance of microbes in P. papatasi saliva was determined by incorporating the data on the read counts and the copy number of 16S rRNA gene, about 9,000 bacterial cells, per sand fly. Both microbiological and metagenomic data indicate that bacteria are constant companions of Leishmania, from the intestine of the vector to the vertebrate host. This is the first forced salivation experiment in a sand fly, addressing key questions on infectious bite and competent vectors.
Collapse
Affiliation(s)
| | | | | | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Darzi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Viginier B, Raquin V. Aedes aegypti Vector Competence Assay for Rift Valley Fever Virus Using Artificial Blood Meal. Methods Mol Biol 2024; 2824:15-25. [PMID: 39039403 DOI: 10.1007/978-1-0716-3926-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Vector competence assays allow to measure, in the laboratory, the ability of a mosquito to get infected and then retransmit an arbovirus while mimicking natural vector infection route. Aedes aegypti is a major vector of arboviruses worldwide and thus a reference species used in vector competence assays. Rift Valley fever virus (RVFV) is a major public health threat, mostly in Africa, that infects humans and animals through the bite of mosquito vectors. Here, we describe vector competence assay of Aedes aegypti mosquitoes for RVFV, from mosquito exposure to the virus through an infectious artificial blood meal to the measurement of virus prevalence in the mosquito's body, head, and saliva.
Collapse
Affiliation(s)
- Barbara Viginier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Vincent Raquin
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France.
| |
Collapse
|
6
|
Soto A, De Coninck L, Devlies AS, Van De Wiele C, Rosales Rosas AL, Wang L, Matthijnssens J, Delang L. Belgian Culex pipiens pipiens are competent vectors for West Nile virus while Culex modestus are competent vectors for Usutu virus. PLoS Negl Trop Dis 2023; 17:e0011649. [PMID: 37729233 PMCID: PMC10545110 DOI: 10.1371/journal.pntd.0011649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) and Usutu virus (USUV) are emerging arthropod-borne viruses (arboviruses) in Europe transmitted by Culex mosquitoes. In Belgium, it is currently unknown which Culex species are competent vectors for WNV or USUV and if these mosquitoes carry Wolbachia, an endosymbiotic bacterium that can block arbovirus transmission. The aims of our study were to measure the vector competence of Belgian Culex mosquitoes to WNV and USUV and determine if a naturally acquired Wolbachia infection can influence virus transmission. METHODOLOGY/PRINCIPAL FINDINGS Female Culex mosquitoes were captured from urban and peri-urban sites in Leuven, Belgium and offered an infectious bloodmeal containing WNV lineage 2, USUV European (EU) lineage 3, or USUV African (AF) lineage 3. Blood-fed females were incubated for 14 days at 25°C after which the body, head, and saliva were collected to measure infection, dissemination, and transmission rates as well as transmission efficiency. Mosquito species were identified by qRT-PCR or Sanger sequencing, the presence of infectious virus in mosquitoes was confirmed by plaque assays, and viral genome copies were quantified by qRT-PCR. Culex pipiens pipiens were able to transmit WNV (4.3% transmission efficiency, n = 2/47) but not USUV (EU lineage: n = 0/56; AF lineage: n = 0/37). In contrast, Culex modestus were able to transmit USUV (AF lineage: 20% transmission efficiency, n = 1/5) but not WNV (n = 0/6). We found that the presence or absence of Wolbachia was species-dependent and did not associate with virus transmission. CONCLUSIONS/SIGNIFICANCE This is the first report that Belgian Culex mosquitoes can transmit both WNV and USUV, forewarning the risk of human transmission. More research is needed to understand the potential influence of Wolbachia on arbovirus transmission in Culex modestus mosquitoes.
Collapse
Affiliation(s)
- Alina Soto
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lander De Coninck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Ann-Sophie Devlies
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Celine Van De Wiele
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lanjiao Wang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Leen Delang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Tchouassi DP, Agha SB, Villinger J, Sang R, Torto B. The distinctive bionomics of Aedes aegypti populations in Africa. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100986. [PMID: 36243315 DOI: 10.1016/j.cois.2022.100986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Aedes aegypti is the primary vector of dengue, chikungunya, and Zika viruses of medical importance. Behavioral and biological attributes contribute to its vectorial capacity. The mosquito domestic form, which resides outside Africa (Ae. aegypti aegypti (Aaa)), is considered to breed in artificial containers in and around homes and preferentially feeds on human blood but commonly indulges in a plant diet. Potential divergence in these attributes, in sub-Saharan Africa (SSA) where Aaa coexists with the forest ecotype (Ae. aegypti formosus), should impact the vectoring ability and hence disease epidemiology. A summary of current knowledge on Ae. aegypti blood feeding, oviposition, and plant-feeding habits among SSA populations is provided in comparison with those in different geographies, globally. Emphasis is placed on improved understanding of the connection between changing subspecies adaptation in these traits and arbovirus disease risk in SSA in response to climate change and increasing urbanization, with the ultimate use of this information for effective disease control.
Collapse
Affiliation(s)
- David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| | - Sheila B Agha
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
8
|
Vector Competence of Mosquitoes from Germany for Sindbis Virus. Viruses 2022; 14:v14122644. [PMID: 36560650 PMCID: PMC9785343 DOI: 10.3390/v14122644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transmission of arthropod-borne viruses (arboviruses) are an emerging global health threat in the last few decades. One important arbovirus family is the Togaviridae, including the species Sindbis virus within the genus Alphavirus. Sindbis virus (SINV) is transmitted by mosquitoes, but available data about the role of different mosquito species as potent vectors for SINV are scarce. Therefore, we investigated seven mosquito species, collected from the field in Germany (Ae. koreicus, Ae. geniculatus, Ae. sticticus, Cx. torrentium, Cx. pipiens biotype pipiens) as well as lab strains (Ae. albopictus, Cx. pipiens biotype molestus, Cx. quinquefasciatus), for their vector competence for SINV. Analysis was performed via salivation assay and saliva was titrated to calculate the amount of infectious virus particles per saliva sample. All Culex and Aedes species were able to transmit SINV. Transmission could be detected at all four investigated temperature profiles (of 18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C or 27 ± 5 °C), and no temperature dependency could be observed. The concentration of infectious virus particles per saliva sample was in the same range for all species, which may suggest that all investigated mosquito species are able to transmit SINV in Germany.
Collapse
|
9
|
Wang L, Soto A, Remue L, Rosales Rosas AL, De Coninck L, Verwimp S, Bouckaert J, Vanwinkel M, Matthijnssens J, Delang L. First Report of Mutations Associated With Pyrethroid (L1014F) and Organophosphate (G119S) Resistance in Belgian Culex (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2072-2079. [PMID: 36130161 DOI: 10.1093/jme/tjac138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.
Collapse
Affiliation(s)
- Lanjiao Wang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Alina Soto
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Laure Remue
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Sam Verwimp
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Johanna Bouckaert
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Mathias Vanwinkel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Leen Delang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
10
|
Vaughan JA, Newman RA, Turell MJ. Bird species define the relationship between West Nile viremia and infectiousness to Culex pipiens mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010835. [PMID: 36201566 PMCID: PMC9578590 DOI: 10.1371/journal.pntd.0010835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/18/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
The transmission cycle of West Nile virus (WNV) involves multiple species of birds. The relative importance of various bird species to the overall transmission is often inferred from the level and duration of viremia that they experience upon infection. Reports utilizing in vitro feeding techniques suggest that the source and condition of blood in which arboviruses are fed to mosquitoes can significantly alter the infectiousness of arbovirus to mosquitoes. We confirmed this using live hosts. A series of mosquito feedings with Culex pipiens was conducted on WNV-infected American robins and common grackles over a range of viremias. Mosquitoes were assayed individually by plaque assay for WNV at 3 to 7 days after feeding. At equivalent viremia, robins always infected more mosquitoes than did grackles. We conclude that the infectiousness of viremic birds cannot always be deduced from viremia alone. If information concerning the infectiousness of a particular bird species is important, such information is best acquired by feeding mosquitoes directly on experimentally infected individuals of that species.
Collapse
Affiliation(s)
- Jefferson A. Vaughan
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Robert A. Newman
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Michael J. Turell
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|