1
|
Logan RAE, Mäurer JB, Wapler C, Ingham VA. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are associated with insecticide resistance in the major malaria vectors Anopheles gambiae s.l. and Anopheles funestus. Sci Rep 2024; 14:19821. [PMID: 39191827 DOI: 10.1038/s41598-024-70713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Malaria remains one of the highest causes of morbidity and mortality, with 249 million cases and over 608,000 deaths in 2022. Insecticides, which target the Anopheles mosquito vector, are the primary method to control malaria. The widespread nature of resistance to the most important insecticide class, the pyrethroids, threatens the control of this disease. To reverse the stall in malaria control there is urgent need for new vector control tools, which necessitates understanding the molecular basis of pyrethroid resistance. In this study we utilised multi-omics data to identify uridine-diphosphate (UDP)-glycosyltransferases (UGTs) potentially involved in resistance across multiple Anopheles species. Phylogenetic analysis identifies sequence similarities between Anopheline UGTs and those involved in agricultural pesticide resistance to pyrethroids, pyrroles and spinosyns. Expression of five UGTs was characterised in An. gambiae and An. coluzzii to determine constitutive over-expression, induction, and tissue specificity. Furthermore, a UGT inhibitor, sulfinpyrazone, restored susceptibility to pyrethroids and DDT in An. gambiae, An. coluzzii, An. arabiensis and An. funestus, the major African malaria vectors. Taken together, this study provides clear association of UGTs with pyrethroid resistance as well as highlighting the potential use of sulfinpyrazone as a novel synergist for vector control.
Collapse
Affiliation(s)
- Rhiannon Agnes Ellis Logan
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Julia Bettina Mäurer
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Charlotte Wapler
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Victoria Anne Ingham
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Govoetchan R, Fongnikin A, Hueha C, Ahoga J, Boko C, Syme T, Issiakou R, Agbevo A, Aikpon R, Small G, Snetselaar J, Ossè R, Tokponnon F, Padonou GG, Ngufor C. Malaria prevalence and transmission in the Zakpota sub-district of central Benin: baseline characteristics for a community randomised trial of a new insecticide for indoor residual spraying. Parasit Vectors 2024; 17:303. [PMID: 38997729 PMCID: PMC11245802 DOI: 10.1186/s13071-024-06342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/01/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Malaria transmission is known to be perennial and heterogeneous in Benin. Studies assessing local malaria prevalence, transmission levels and vector characteristics are critical for designing, monitoring and evaluating new vector control interventions in community trials. We conducted a study in the Zakpota sub-district of central Benin to collect baseline data on household characteristics, malaria prevalence, vector characteristics and transmission dynamics in preparation for a randomised controlled trial to evaluate the community impact of VECTRON™ T500, a new broflanilide indoor residual spraying (IRS) product. METHODS A total of 480 children under 5 years of age from the 15 villages of the sub-district were tested for malaria by rapid diagnostic tests (RDTs). Mosquitoes were collected by human landing catches (HLCs), pyrethrum spray catches (PSCs) and Centers for Disease Control and Prevention miniature light traps (CDC-LTs) in selected houses in each village to assess vector density, composition, vector infectivity and prevalence of insecticide resistance markers. Bioassays were performed to detect vector susceptibility to pyrethroids, broflanilide (6 µg/bottle) and clothianidin (90 µg/bottle). RESULTS A total of 9080 households were enumerated in the 15 study villages. Insecticide-treated net (ITN) usage was > 90%, with 1-2 ITNs owned per household. Houses were constructed mainly with cement (44%) and mud (38%) substrates or a mixture of cement and mud (18%), and 60% of them had open eaves. The overall prevalence of P. falciparum infection was 19% among surveyed children: 20% among females and 18% among males. The haemoglobin rate showed an anaemia (< 11 g/dl) prevalence of 66%. Anopheles coluzzii and An. gambiae sensu stricto (s.s.) were the two vector species present at an overall proportion of 46% versus 54%, respectively. The human biting rate was 2.3 bites per person per night (b/p/n) and biting occurred mostly indoors compared with outdoors (IRR = 0.776; P = 0.001). The overall proportion of outdoor biting was 44% and exceeded indoor biting in three villages. The sporozoite rate was 2% with a combined yearly entomological inoculation rate (EIR) of 16.1 infected bites per person per year (ib/p/y). There was great variability in malaria transmission risk across the villages, with EIR ranging from 0 to 29.3 ib/p/y. The vector population showed a high intensity of resistance to pyrethroids across the study villages but was largely susceptible to broflanilide and clothianidin. CONCLUSIONS This study found high levels of malaria prevalence, vector density and transmission in the Zakpota sub-district despite the wide use of insecticide-treated nets. The vector population was mostly indoor resting and showed a high intensity of pyrethroid resistance but was generally fully susceptible to broflanilide. These findings demonstrated the suitability of the study area for the assessment of VECTRON™ T500 in a community randomised trial.
Collapse
Affiliation(s)
- Renaud Govoetchan
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.
- Pan-African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin.
| | - Augustin Fongnikin
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Pan-African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Corneille Hueha
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Pan-African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Juniace Ahoga
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Pan-African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Chantal Boko
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Thomas Syme
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Pan-African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Riliwanou Issiakou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Pan-African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Abel Agbevo
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Pan-African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Rock Aikpon
- National Malaria Control Programme, Ministry of Health, Cotonou, Benin
| | - Graham Small
- Innovative Vector Control Consortium (IVCC), Liverpool, UK
| | | | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | | | | | - Corine Ngufor
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.
- Pan-African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin.
| |
Collapse
|
3
|
Zoungbédji DM, Padonou GG, Sovi A, Konkon AK, Salako AS, Azondékon R, Sidick A, Ahouandjinou JM, Towakinou L, Ossè R, Aïkpon R, Affoukou C, Baba-Moussa L, Akogbéto M. Bio-efficacy of Olyset ® Plus, PermaNet ® 3.0 and Interceptor ® G2 on pyrethroid-resistant populations of Anopheles gambiae s.l. prior to the June 2023 net distribution campaign in Benin, West Africa. Trop Med Health 2024; 52:34. [PMID: 38689360 PMCID: PMC11059851 DOI: 10.1186/s41182-024-00599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND This study investigates the effectiveness of new-generation mosquito nets, like Olyset® Plus and PermaNet® 3.0, and dual-action nets such as Interceptor® G2, against pyrethroid-resistant Anopheles gambiae mosquitoes following the 2023 mass distribution of long-lasting insecticidal nets in Benin. METHODS We tested wild mosquito populations from six communes in Benin against various pyrethroid (permethrin 0.75%, alphacypermethrin 0.05%, and deltamethrin 0.05%) using WHO tube tests. Additionally, we exposed mosquitoes to chlorfenapyr 100 µg/ml using the CDC bottle bioassay method. A subset of mosquitoes underwent biochemical and PCR tests to check the overexpression of metabolic enzymes and the Kdr L1014F mutation. We evaluated the effectiveness of Olyset® Plus, PermaNet® 3.0, and Interceptor® G2 nets using cone and tunnel tests on both laboratory and field populations of An. gambiae. RESULTS Overall, the highest mortality rate was 60% with pyrethroid and 98 to100% with chlorfenapyr. In cone tests, all three types of nets induced mortality rates above 80% in the susceptible laboratory strain of An. gambiae. Notably, Olyset® Plus showed the highest mortality rates for pyrethroid-resistant mosquitoes in cone tests, ranging from 81.03% (95% CI: 68.59-90.13) in Djougou to 96.08% (95% CI: 86.54-99.52) in Akpro-Missérété. PermaNet® 3.0 had variable rates, from 42.5% (95% CI: 27.04-59.11) in Djougou to 58.54% (95% CI: 42.11-73.68) in Porto-Novo. However, revealed good results for Interceptor® G2, with 94% (95% CI: 87.40-97.77) mortality and 89.09% blood sampling inhibition in local populations of An. gambiae. In comparison, Interceptor® had lower rates of 17% (95% CI: 10.23-25.82) and 60%, respectively. CONCLUSION These results suggest that tunnel tests are effective for evaluating dual-active ingredient nets. Additionally, Interceptor® G2 and PBO nets like Olyset® Plus could be considered as alternatives against pyrethroid-resistant mosquitoes.
Collapse
Affiliation(s)
- David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin.
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin.
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculty of Agronomy, University of Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Roseric Azondékon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | | | - Linda Towakinou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- École de Gestion et d'exploitation des Systèmes d'élevage, Université Nationale d'Agriculture, Kétou, Benin
| | - Rock Aïkpon
- Programme National de Lutte Contre le Paludisme, Cotonou, Benin
- Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM), Abomey, Benin
| | | | - Lamine Baba-Moussa
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), département de Biochimie et de Biologie Cellulaire (BBC), Université de Abomey-Calavi (UAC), Abomey-Calavi, Benin
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| |
Collapse
|
4
|
Al-Amin HM, Gyawali N, Graham M, Alam MS, Lenhart A, Hugo LE, Rašić G, Beebe NW, Devine GJ. Insecticide resistance compromises the control of Aedes aegypti in Bangladesh. PEST MANAGEMENT SCIENCE 2023. [PMID: 36942761 DOI: 10.1002/ps.7462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND With no effective drugs or widely available vaccines, dengue control in Bangladesh is dependent on targeting the primary vector Aedes aegypti with insecticides and larval source management. Despite these interventions, the dengue burden is increasing in Bangladesh, and the country experienced its worst outbreak in 2019 with 101 354 hospitalized cases. This may be partially facilitated by the presence of intense insecticide resistance in vector populations. Here, we describe the intensity and mechanisms of resistance to insecticides commonly deployed against Ae. aegypti in Dhaka, Bangladesh. RESULTS Dhaka Ae. aegypti colonies exhibited high-intensity resistance to pyrethroids. Using CDC bottle assays, we recorded 2-24% mortality (recorded at 24 h) to permethrin and 48-94% mortality to deltamethrin, at 10× the diagnostic dose. Bioassays conducted using insecticide-synergist combinations suggested that metabolic mechanisms were contributing to pyrethroid resistance, specifically multi-function oxidases, esterases, and glutathione S-transferases. In addition, kdr alleles were detected, with a high frequency (78-98%) of homozygotes for the V1016G mutation. A large proportion (≤ 74%) of free-flying and resting mosquitoes from Dhaka colonies survived exposure to standard applications of pyrethroid aerosols in an experimental free-flight room. Although that exposure affected the immediate host-seeking behavior of Ae. aegypti, the effect was transient in surviving mosquitoes. CONCLUSION The intense resistance characterized in this study is likely compromising the operational effectiveness of pyrethroids against Ae. aegypti in Dhaka. Switching to alternative chemical classes may offer a medium-term solution, but ultimately a more sustainable and effective approach to controlling dengue vectors is required. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hasan Mohammad Al-Amin
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Melissa Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mohammad Shafiul Alam
- International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nigel W Beebe
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
- CSIRO, Brisbane, Queensland, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Accrombessi M, Akogbeto MC, Dangbenon E, Akpovi H, Sovi A, Yovogan B, Adoha C, Assongba L, Ogouyemi-Hounto A, Padonou GG, Thickstun C, Rowland M, Ngufor C, Protopopoff N, Cook J. Malaria Burden and Associated Risk Factors in an Area of Pyrethroid-Resistant Vectors in Southern Benin. Am J Trop Med Hyg 2022; 107:tpmd220190. [PMID: 35895353 PMCID: PMC9490648 DOI: 10.4269/ajtmh.22-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022] Open
Abstract
Malaria remains the main cause of morbidity and mortality in Benin despite the scale-up of long-lasting insecticidal nets (LLINs), indoor residual spraying, and malaria case management. This study aimed to determine the malaria burden and its associated risk factors in a rural area of Benin characterized by high net coverage and pyrethroid-resistant mosquito vectors. A community-based cross-sectional survey was conducted in three districts in southern Benin. Approximately 4,320 randomly selected participants of all ages were tested for malaria using rapid diagnostic tests within 60 clusters. Risk factors for malaria infection were evaluated using mixed-effect logistic regression models. Despite high population net use (96%), malaria infection prevalence was 43.5% (cluster range: 15.1-72.7%). Children (58.7%) were more likely to be infected than adults (31.2%), with a higher malaria prevalence among older children (5-10 years: 69.1%; 10-15 years: 67.9%) compared with young children (< 5 years: 42.1%); however, young children were more likely to be symptomatic. High household density, low socioeconomic status, young age (< 15 years), poor net conditions, and low net usage during the previous week were significantly associated with malaria infection. Malaria prevalence remains high in this area of intense pyrethroid resistance despite high net use. New classes of LLINs effective against resistant vectors are therefore crucial to further reduce malaria in this area.
Collapse
Affiliation(s)
- Manfred Accrombessi
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Hilaire Akpovi
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Arthur Sovi
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Boulais Yovogan
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Constantin Adoha
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Landry Assongba
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Aurore Ogouyemi-Hounto
- UER Parasitology Mycology, Health Science Faculty, Abomey-Calavi University; National Malaria Control Program, Ministry of Health, Cotonou, Benin
| | | | - Charles Thickstun
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mark Rowland
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Corine Ngufor
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natacha Protopopoff
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jackie Cook
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|