1
|
Ito EE, Eze CN, Nduka FO. Spatiotemporal and seasonal transmission dynamics of Schistosoma haematobium and snail infectivity in Ase River catchment, Delta State, Nigeria. J Parasit Dis 2024; 48:235-246. [PMID: 38840869 PMCID: PMC11147967 DOI: 10.1007/s12639-024-01656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/12/2024] [Indexed: 06/07/2024] Open
Abstract
Bulinus are intermediate snail hosts of Schistosoma haematobium. Despite their vectorial role, the transmission dynamics and infectivity of these intermediate snail hosts remain understudied in the Ase River. This longitudinal study evaluated the geospatial and seasonal transmission patterns and infectivity of three S. haematobium vectors between November 2020 and October 2022 in the Ase River catchment, Delta State, Nigeria. Eleven (11) geospatial water contact coordinates were mapped for monthly spatiotemporal collection of Bulinus species along the Ase River and its catchment, for two years. Snail sampling was performed for 45 min at each study site using scooping/hand-picking techniques and subsequently counted, identified and recorded. Snails of the Bulinus genus were individually placed in a beaker containing distilled water and exposed to light to shed cercariae which were identified to be human schistosome type. The number of infected snails for each month and season was also documented to analyze the spatiotemporal and seasonal transmission dynamics of infectivity. Out of the 2345 Bulinus snails collected, a total of 41.45% were found to be infected with S. haematobium. The monthly infectivity of Bulinus snails varied significantly (P < 0.05) throughout the study period (P = < 0.0001; F = 23.11; df = 11). Further analysis showed a strong significant association (χ2 = 23.57; df = 11; p = 0.015) between the study years. The Principal Component Analysis (PCA) results suggest that Bulinus infectivity within the Ase River catchment area was primarily associated with the months of February and January. B. truncatus consistently had the highest transmission potential, followed by B. globosus and B. senegalensis. ANOVA confirms that the monthly/study site infectivity and transmission potential in B. truncates, B. globosus and S. senegalensis were statistically, significant (P < 0.05). These results demonstrated a clear distinction in the patterns and relationships between the different months in terms of snail infectivity and seasonal transmission potential. This understanding will help in the continuous monitoring and targeted interventions to control schistosomiasis transmission in Ase River.
Collapse
Affiliation(s)
- E. E. Ito
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
- Department of Animal and Environmental Biology, Delta State University, Abraka, Nigeria
| | - C. N. Eze
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - F. O. Nduka
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
2
|
Mudavanhu A, Schols R, Goossens E, Nhiwatiwa T, Manyangadze T, Brendonck L, Huyse T. One Health monitoring reveals invasive freshwater snail species, new records, and undescribed parasite diversity in Zimbabwe. Parasit Vectors 2024; 17:234. [PMID: 38773521 PMCID: PMC11110352 DOI: 10.1186/s13071-024-06307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.
Collapse
Affiliation(s)
- Aspire Mudavanhu
- Department of Biological Sciences, Bindura University of Science Education, Bindura, Zimbabwe.
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium
| | - Emilie Goossens
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Tamuka Nhiwatiwa
- Department of Fisheries and Ocean Sciences, School of Agriculture and Fisheries, University of Namibia, Henties Bay, Namibia
| | - Tawanda Manyangadze
- Department of Geosciences, School of Geosciences, Disaster and Development, Faculty of Science and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Luc Brendonck
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
3
|
Sokouri EA, Ahouty Ahouty B, N'Djetchi M, Abé IA, Yao BGFD, Konan TK, MacLeod A, Noyes H, Nyangiri O, Matovu E, Koffi M. Impact of environmental factors on Biomphalaria pfeifferi vector capacity leading to human infection by Schistosoma mansoni in two regions of western Côte d'Ivoire. Parasit Vectors 2024; 17:179. [PMID: 38581062 PMCID: PMC10996162 DOI: 10.1186/s13071-024-06163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT: BACKGROUND: Intestinal schistosomiasis remains a worrying health problem, particularly in western Côte d'Ivoire, despite control efforts. It is therefore necessary to understand all the factors involved in the development of the disease, including biotic and abiotic factors. The aim of this study was to examine the factors that could support the maintenance of the intermediate host and its vectorial capacity in western Côte d'Ivoire. METHODS Data on river physicochemical, microbiological, and climatic parameters, the presence or absence of snails with Schistosoma mansoni, and human infections were collected between January 2020 and February 2021. Spearman rank correlation tests, Mann-Whitney, analysis of variance (ANOVA), and an appropriate model selection procedure were used to analyze the data. RESULTS The overall prevalence of infected snails was 56.05%, with infection reaching 100% in some collection sites and localities. Of 26 sites examined, 25 contained thermophilic coliforms and 22 contained Escherichia coli. Biomphalaria pfeifferi was observed in environments with lower land surface temperature (LST) and higher relative air humidity (RAH), and B. pfeifferi infection predominated in more acidic environments. Thermal coliforms and E. coli preferred higher pH levels. Lower maximum LST (LST_Max) and higher RAH and minimum LST (LST_Min) were favorable to E. coli, and lower LST_Max favored coliforms. The presence of B. pfeifferi was positively influenced by water temperature (T °C), LST_Min, RAH, and precipitation (Pp) (P < 0.05) and negatively influenced by pH, total dissolved solids (TDS), electrical conductivity (EC), LST_Max, and mean land surface temperature (LST). The parameters pH, TDS, EC, LST_Min, LST, and Pp had a positive impact on snail infection, while LST_Max had a negative impact on infection. Only pH had a positive effect on coliform and E. coli abundance. Of the 701 people examined for human schistosomiasis, 73.13% were positive for the point-of-care circulating cathodic antigen (POC-CCA) test and 12.01% for the Kato-Katz (KK) test. A positive correlation was established between human infections and the abundance of Biomphalaria (r2 = 0.879, P = 0.04959). CONCLUSIONS The results obtained reflect the environmental conditions that are conducive to the maintenance of S. mansoni infection in this part of the country. To combat this infection as effectively as possible, it will be necessary not only to redouble efforts but also to prioritize control according to the level of endemicity at the village level.
Collapse
Affiliation(s)
- Edwige A Sokouri
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Bernardin Ahouty Ahouty
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Martial N'Djetchi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Innocent A Abé
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Ble Gbacla Flora Dominique Yao
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Thomas Konan Konan
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Annette MacLeod
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Liverpool, UK
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Oscar Nyangiri
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Mathurin Koffi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire.
| |
Collapse
|
4
|
Ayob N, Burger RP, Belelie MD, Nkosi NC, Havenga H, de Necker L, Cilliers DP. Modelling the historical distribution of schistosomiasis-transmitting snails in South Africa using ecological niche models. PLoS One 2023; 18:e0295149. [PMID: 38033142 PMCID: PMC10688899 DOI: 10.1371/journal.pone.0295149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Schistosomiasis is a vector-borne disease transmitted by freshwater snails and is prevalent in rural areas with poor sanitation and no access to tap water. Three snail species are known to transmit schistosomiasis in South Africa (SA), namely Biomphalaria pfeifferi, Bulinus globosus and Bulinus africanus. In 2003, a predicted prevalence of 70% was reported in tropical climates in SA. Temperature and rainfall variability can alter schistosomiasis-transmitting snails' development by increasing or decreasing their abundance and geographical distribution. This study aimed to map the historical distribution of schistosomiasis from 1950 to 2006 in SA. The snail sampling data were obtained from the historical National Snail Freshwater Collection (NFSC). Bioclimatic variables were extracted using ERA 5 reanalysis data provided by the Copernicus Climate Change Service. In this study, we used 19 bioclimatic and four soil variables. The temporal aggregation was the mean climatological period pre-calculated over the 40-year reference period with a spatial resolution of 0.5° x 0.5°. Multicollinearity was reduced by calculating the Variance Inflation Factor Core (VIF), and highly correlated variables (> 0.85) were excluded. To obtain an "ensemble" and avoid the integration of weak models, we averaged predictions using the True Skill Statistical (TSS) method. Results showed that the ensemble model achieved the highest Area Under the Curve (AUC) scores (0.99). For B. africanus, precipitation-related variables contributed to determining the suitability for schistosomiasis. Temperature and precipitation-related variables influenced the distribution of B. globosus in all three models. Biomphalaria pfeifferi showed that Temperature Seasonality (bio4) contributed the most (47%) in all three models. According to the models, suitable areas for transmitting schistosomiasis were in the eastern regions of South Africa. Temperature and rainfall can impact the transmission and distribution of schistosomiasis in SA. The results will enable us to develop future projections for Schistosoma in SA based on climate scenarios.
Collapse
Affiliation(s)
- Nisa Ayob
- Unit for Environmental Sciences and Management, North-West University, Mafikeng Campus, Mafikeng, South Africa
| | - Roelof P. Burger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Monray D. Belelie
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Ncobile C. Nkosi
- Unit for Environmental Sciences and Management, North-West University, Mafikeng Campus, Mafikeng, South Africa
| | - Henno Havenga
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Lizaan de Necker
- South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Dirk P. Cilliers
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| |
Collapse
|
5
|
Siama A, Eteme Enama S, Kalmobe J, Abah S, Foutchou A, Njan Nloga AM. Abundance, Distribution, and Diversity of Freshwater Snail and Prevalences of Their Infection by Cercaria of Fasciola gigantica and Schistosoma spp at Mayo-Vreck River, Far North Region of Cameroon. J Trop Med 2023; 2023:9527349. [PMID: 37900305 PMCID: PMC10611546 DOI: 10.1155/2023/9527349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Malacological and parasitological studies were conducted from April 2020 to March 2021 to determine the abundance and distribution of molluscs and cercariae of Schistosoma spp and Fasciola gigantica. Collected molluscs are exposed to strong light to induce cercarial release. Mollusc densities were higher at station 1 (Gamak) than in station 8 (Patakai), with Bellamya unicolor and Biomphalaria pfeifferi more abundant and Bulinus truncatus, B. tropicus, and B. globosus less abundant. The overall prevalence of cercariae (19.87%) is higher in station 3 (Yaye orchard), station 9 (Gougni), station 4 (Madiogo), station 5 (Madiogo pasture), and station 6 (Ziam 3). It varies significantly between 15.76% in station 8 and 25.77% in station 3, between 8.48% in B. truncatus and 25.53% in B. globosus, and between 19.27% for cercariae of Schistosoma spp and 21.60% for those of F. gigantica. Cercarial emissions in L. natalensis and B. pfeifferi were higher in hot and cold dry seasons; on the other hand, cercarial emissions in B. globosus were higher in hot dry seasons (31.48%) and rainy seasons (23.38%). Emissions of cercariae from S. haematobium are related to areas of human activity and defecation, while those of F. gigantica in L. natalensis, Schistosoma haematobium in B. tropicus, and S. mansoni in B. pfeifferi are related to grazing areas. Mayo-Vreck is a site that favors the endemicity of fascioliasis and human schistosomiasis.
Collapse
Affiliation(s)
- Augustin Siama
- Department of Parasitology and Parasitic Pathology, School of Sciences and Veterinary Medicine, University of Ngaoundere, Ngaoundere, Cameroon
| | - Serges Eteme Enama
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Justin Kalmobe
- Department of Parasitology and Parasitic Pathology, School of Sciences and Veterinary Medicine, University of Ngaoundere, Ngaoundere, Cameroon
| | - Samuel Abah
- Special Mission of Tse-Tse Flies Eradication, Ngaoundere, Cameroon
| | - Angele Foutchou
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | | |
Collapse
|
6
|
Wepnje GB, Peters MK, Green AE, Nkuizin TE, Kenko DBN, Dzekashu FF, Kimbi HK, Anchang-Kimbi JK. Seasonal and environmental dynamics of intra-urban freshwater habitats and their influence on the abundance of Bulinus snail host of Schistosoma haematobium in the Tiko endemic focus, Mount Cameroon region. PLoS One 2023; 18:e0292943. [PMID: 37856526 PMCID: PMC10586688 DOI: 10.1371/journal.pone.0292943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Urogenital schistosomiasis (UGS) caused by Schistosoma haematobium is endemic in the South West Region of Cameroon. An understanding of the abundance and distribution of the Bulinus snail, intermediate host can inform strategic snail control programmes at a local scale. This study investigated seasonal dynamics and environmental factors influencing occurrence and abundance of freshwater snail intermediate hosts in Tiko, a semi-urban endemic focus in the Mount Cameroon area. A longitudinal malacological field survey was conducted between December 2019 and December 2020 in the Tiko municipality. Snails were collected for one year monthly at 12 different human water contact sites along a stretch of the Ndongo stream using a standardized sampling technique. Freshwater snails were identified using shell morphological features. In addition, water temperature, pH, electrical conductivity, total dissolved solutes, salinity, water depth, width and flow velocity were measured, and vegetation cover as well as substrate type were determined. Bayesian regression models were used to identify the main environmental factors affecting the occurrence and abundance of Bulinus intermediate host. In total, 2129 fresh water snails were collected during the study period. Physa (51.4%) was the most abundant genus followed by Melanoides (28.6%) then, Bulinus (15.5%), Lymnaea (4.2%), Indoplanorbis (0.2%) and Potadoma (0.1%). Seasonality in abundance was significant in Bulinus sp as well as other genera, with greater numbers in the dry season (peaks between December and February). Water temperature, a rocky or sandy substrate type associated positively with Bulinus sp, meanwhile a higher water flow rate and medium vegetation negatively influenced the snail intermediate host population. These findings underscore the importance of timing behavioural and snail control interventions against schistosomiasis as well as increase vigilance of other trematode diseases in the study area. The continuous spread of planorbid snail hosts is a major concern.
Collapse
Affiliation(s)
- Godlove Bunda Wepnje
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | - Marcell K. Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Adeline Enjema Green
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | - Tingmi Emparo Nkuizin
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Fairo F. Dzekashu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Helen Kuokuo Kimbi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Bamenda, Bambili, Cameroon
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Judith Kuoh Anchang-Kimbi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| |
Collapse
|
7
|
Rasoamanamihaja CF, Rakotoarivelo RA, Edosoa G, Rasamoelina T, Montresor A, Marchese V, Fusco D. Schistosomiasis elimination in Madagascar: challenges and opportunities for implementing the new WHO guidelines. BMJ Glob Health 2023; 8:e012598. [PMID: 37580102 PMCID: PMC10432657 DOI: 10.1136/bmjgh-2023-012598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/01/2023] [Indexed: 08/16/2023] Open
Abstract
Madagascar is one of the countries with the highest burden of schistosomiasis worldwide. The release from the WHO of the new 2021-2030 neglected tropical disease (NTD) roadmap alongside with the schistosomiasis guidelines sets the ambitious goal of eliminating schistosomiasis as a public health problem worldwide. In Madagascar, implementation barriers exist. This paper has the objective of identifying strengths, weaknesses, opportunities and threats in order to build on their basis practices and policies that can help the country to align with the international global health agenda and reach the ambitious goal set by the WHO.
Collapse
Affiliation(s)
| | | | - Glenn Edosoa
- World Health Organization, Antananarivo, Madagascar
| | | | | | - Valentina Marchese
- Infectious Diseases Epidemiology, Bernhard-Nocht-Institut fur Tropenmedizin, Hamburg, Germany
- German Center for Infection Research Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Daniela Fusco
- Infectious Diseases Epidemiology, Bernhard-Nocht-Institut fur Tropenmedizin, Hamburg, Germany
- German Center for Infection Research Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| |
Collapse
|
8
|
Tong Y, Tang L, Xia M, Li G, Hu B, Huang J, Wang J, Jiang H, Yin J, Xu N, Chen Y, Jiang Q, Zhou J, Zhou Y. Identifying determinants for the seropositive rate of schistosomiasis in Hunan province, China: A multi-scale geographically weighted regression model. PLoS Negl Trop Dis 2023; 17:e0011466. [PMID: 37440524 DOI: 10.1371/journal.pntd.0011466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Schistosomiasis is of great public health concern with a wide distribution and multiple determinants. Due to the advances in schistosomiasis elimination and the need for precision prevention and control, identifying determinants at a fine scale is urgent and necessary, especially for resource deployment in practice. Our study aimed to identify the determinants for the seropositive rate of schistosomiasis at the village level and to explore their spatial variations in local space. METHODOLOGY The seropositive rates of schistosomiasis were collected from 1714 villages or communities in Human Province, and six spatial regression models including ordinary least squares (OLS), spatial lag model (SLM), spatial error model (SEM), geographically weighted regression (GWR), robust GWR (RGWR) and multiscale GWR (MGWR) were used to fit the data. PRINCIPAL/FINDINGS MGWR was the best-fitting model (R2: 0.821, AICc:2727.092). Overall, the nearest distance from the river had the highest mean negative correlation, followed by proportion of households using well water and the annual average daytime surface temperature. The proportions of unmodified toilets showed the highest mean positive correlation, followed by the snail infested area, and the number of cattle. In spatial variability, the regression coefficients for the nearest distance from the river, annual average daytime surface temperature and the proportion of unmodified toilets were significant in all villages or communities and varied little in local space. The other significant determinants differed substantially in local space and had significance ratios ranging from 41% to 70%, including the number of cattle, the snail infested area and the proportion of households using well water. CONCLUSIONS/SIGNIFICANCE Our study shows that MGWR was well performed for the spatial variability of schistosomiasis in Hunan province. The spatial variability was different for different determinants. The findings for the determinants for the seropositive rate and mapped variability for some key determinants at the village level can be used for developing precision intervention measure for schistosomiasis control.
Collapse
Affiliation(s)
- Yixin Tong
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Ling Tang
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Meng Xia
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Guangping Li
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Benjiao Hu
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Junhui Huang
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Jiamin Wang
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Honglin Jiang
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Jiangfan Yin
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Ning Xu
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Qingwu Jiang
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Jie Zhou
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Yibiao Zhou
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| |
Collapse
|
9
|
Nwoko OE, Manyangadze T, Chimbari MJ. Spatial and seasonal distribution of human schistosomiasis intermediate host snails and their interactions with other freshwater snails in 7 districts of KwaZulu-Natal province, South Africa. Sci Rep 2023; 13:7845. [PMID: 37188748 DOI: 10.1038/s41598-023-34122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
The spatial and seasonal distribution, abundance, and infection rates of human schistosomiasis intermediate host snails and interactions with other freshwater snails, water physicochemical parameters, and climatic factors was determined in this study. A longitudinal malacology survey was conducted at seventy-nine sites in seven districts in KwaZulu-Natal province between September 2020 and August 2021. Snail sampling was done simultaneously by two trained personnel for fifteen minutes, once in three months. A total of 15,756 snails were collected during the study period. Eight freshwater snails were found: Bulinus globosus (n = 1396), Biomphalaria pfeifferi (n = 1130), Lymnaea natalensis (n = 1195), Bulinus tropicus (n = 1722), Bulinus forskalii (n = 195), Tarebia granifera (n = 8078), Physa acuta (n = 1579), and Bivalves (n = 461). The infection rates of B. globosus and B. pfeifferi are 3.5% and 0.9%, respectively. In our study, rainfall, pH, type of habitats, other freshwater snails and seasons influenced the distribution, abundance, and infection rates of human schistosomiasis intermediate host snails (p-value < 0.05). Our findings provide useful information which can be adopted in designing and implementing snail control strategies as part of schistosomiasis control in the study area.
Collapse
Affiliation(s)
- Onyekachi Esther Nwoko
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Tawanda Manyangadze
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- Geosciences Department, School of Geosciences, Disaster and Development, Faculty of Science and Engineering, Bindura University of Science Education, Bag 1020, Bindura, Zimbabwe
| | - Moses John Chimbari
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- Department of Behavioural Science, Medical and Health Sciences, Great Zimbabwe University, P.O Box 1235, Masvingo, Zimbabwe
| |
Collapse
|
10
|
Nwoko OE, Manyangadze T, Chimbari MJ. Spatial distribution, abundance, and infection rates of human schistosome-transmitting snails and related physicochemical parameters in KwaZulu-Natal (KZN) province, South Africa. Heliyon 2022; 9:e12463. [PMID: 36793949 PMCID: PMC9922783 DOI: 10.1016/j.heliyon.2022.e12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the spatial distribution, abundance, and infection rates of human schistosome-transmitting snails and related physicochemical parameters and environmental factors in 11 districts in KwaZulu-Natal (KZN) province, South Africa, from December 2020-February 2021. Snail sampling was carried out in 128 sites by two people for 15 min using scooping and handpicking methods. Geographical information system (GIS) was used to map surveyed sites. In situ measurements of physicochemical parameters were recorded, while remote sensing was used to obtain measurements for climatic factors required to achieve the study's objective. Cercarial shedding and snail-crushing methods were used to detect snail infections. Kruskal-Wallis test was used to test the differences in snail abundance among snail species, districts, and habitat types. A negative binomial generalized linear mixed model was used to identify the physicochemical parameters and environmental factors influencing the abundance of snail species. A total of 734 human schistosome-transmitting snails were collected. Bu. globosus were significantly more abundant (n = 488) and widely distributed (found in 27 sites) compared to B. pfeifferi (n = 246) found in 8 sites. Bu. globosus and B. pfeifferi had infection rates of 3.89% and 2.44%, respectively. Dissolved oxygen and normalized difference vegetation index showed a statistically positive relationship, while normalized difference wetness index showed a statistically negative relationship with the abundance of Bu. globosus. However, there was no statistically significant relationship between B. pfeifferi abundance, physicochemical parameters, and climatic factors. Our study described the current distribution, abundance, and infection status of human schistosome-transmitting snails in KZN province, which will contribute to informing control measure policies for schistosomiasis.
Collapse
Affiliation(s)
- Onyekachi Esther Nwoko
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa,Corresponding author.
| | - Tawanda Manyangadze
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa,Geography Department, Faculty of Science and Engineering, Bindura University of Science Education, Bag 1020, Bindura, Zimbabwe
| | - Moses John Chimbari
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa,Department of Behavioural Science, Medical and Health Sciences, Great Zimbabwe University, P.O Box 1235, Masvingo, Zimbabwe
| |
Collapse
|
11
|
Hailegebriel T, Nibret E, Munshea A. Distribution and seasonal abundance of Biomphalaria snails and their infection status with Schistosoma mansoni in and around Lake Tana, northwest Ethiopia. Sci Rep 2022; 12:17055. [PMID: 36224227 PMCID: PMC9556671 DOI: 10.1038/s41598-022-21306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
Biomphalaria snails, namely B. pfeifferi and B. sudanica, are the principal intermediate hosts for Schistosoma mansoni infection in Ethiopia. Epidemiological studies of Biomphalaria snails and their infection status with S. mansoni is vital for public health planning. This study aimed to assess the spatial and seasonal abundance of Biomphalaria snails as well as their infection status with S. mansoni around Lake Tana, northwest Ethiopia. Malacological survey was conducted from January 2021 to December 2021 in ten different collection sites in and around Lake Tana. Snail collection was performed for 20 min from each collection site seasonally (four times in a year) using a standard scoop and handpicking from aquatic vegetation. All collected snails were carefully examined based on their morphological features and all live Biomphalaria snails were subjected to cercariae shedding experiment. Descriptive statistics were used to determine the prevalence of S. mansoni infection and its relationship with snail collection sites and seasons. A total of 3886 freshwater snails were collected from ten collection sites around Lake Tana. Out of the total snails collected, 1606 (41.3%; 95% CI 39.77-42.89%) were Biomphalaria spp. The highest (374) and the lowest numbers (98) of Biomphalaria snails were collected from Shinne River and Qunzela Lakeshore, respectively. Out of the 1375 live Biomphalaria snails, 14.4% (95% CI 12.59-16.37%) snails shed cercariae, but only 4.87% (95% CI 3.79-6.15%) were cercariae of S. mansoni. The infection prevalence of S. mansoni ranged from 10.59% at the Cherechera site to 1.49% at Gumara River. Biomphalaria snail infections with S. mansoni cercariae were observed throughout the season, the highest and the lowest infection rates being in the spring and summer seasons. Significant differences in the prevalence of S. mansoni infection in Biomphalaria snails were observed across study sites and seasons (p < 0.05). Biomphalaria snails were the most abundant freshwater snails found in nearly all of snail collection sites throughout the year. It was revealed that nearly five percent of Biomphalaria snails were infected with S. mansoni cercariae. This study highlights the importance of appropriate snail control strategies to support the ongoing prevention and control of schistosomiasis around Lake Tana.
Collapse
Affiliation(s)
- Tamirat Hailegebriel
- grid.442845.b0000 0004 0439 5951Department of Biology, College of Science, Bahir Dar University, Bahir Dar, Ethiopia ,grid.442845.b0000 0004 0439 5951Institute of Biotechnology (IOB), Bahir Dar University, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- grid.442845.b0000 0004 0439 5951Department of Biology, College of Science, Bahir Dar University, Bahir Dar, Ethiopia ,grid.442845.b0000 0004 0439 5951Institute of Biotechnology (IOB), Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshea
- grid.442845.b0000 0004 0439 5951Department of Biology, College of Science, Bahir Dar University, Bahir Dar, Ethiopia ,grid.442845.b0000 0004 0439 5951Institute of Biotechnology (IOB), Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
12
|
Species Diversity, Distribution, and Abundance of Freshwater Snails in KwaZulu-Natal, South Africa. WATER 2022. [DOI: 10.3390/w14142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disease distribution is correlated to the distribution of the freshwater snails which in turn is influenced by the physicochemical status of the habitats. This study aimed to evaluate freshwater snail species diversity, abundance, and distribution in KwaZulu-Natal (KZN) province, South Africa, between December 2020 to February 2021. A total of 4576 freshwater snails consisting of 8 species were collected from 127 sites in 11 districts. Tarebia granifera snails were the most abundant (n = 2201), while bivalves (n = 95) were the least abundant. The highest and least Shannon–Weiner Simpson’s diversity indices were recorded in Ugu and iLembe districts, respectively. A negative relationship was observed between rainfall, Bulinus tropicus, Lymnaea natalensis, bivalves, and Physa acuta, while temperature had a positive relationship with B. globosus, B. pfeifferi, and T. granifera. A positive relationship was observed between B. globosus and B. pfeifferi (r = 0.713, p < 0.05). Snail presence constitutes potential health and economic risks to humans and animals in contact with the waterbody. Hence, our study described the current distribution, abundance, and species diversity of freshwater snails in the KZN province with insights into the possibilities of snail-based biological control for schistosomes intermediate host snails.
Collapse
|
13
|
Systematic Review and Meta-Analysis on the Infection Rates of Schistosome Transmitting Snails in Southern Africa. Trop Med Infect Dis 2022; 7:tropicalmed7050072. [PMID: 35622699 PMCID: PMC9145527 DOI: 10.3390/tropicalmed7050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Efforts to interrupt and eliminate schistosomiasis as a public health problem have increased in several Southern African countries. A systematic review was carried out on the infection rates of snails that cause schistosomiasis in humans. The searches were conducted in PubMed, Web of Science, and Scopus databases, using the PRISMA guidelines from inception to 24 February 2022. The study quality was assessed by using the Joanna Briggs Institute prevalence critical appraisal checklist. Pooled infection rates were estimated by using an inverse variance heterogeneity model, while heterogeneity was determined by using Cochran’s Q test and Higgins i2 statistics. A total of 572 articles were screened, but only 28 studies were eligible for inclusion based on predetermined criteria. In the selected studies, 82,471 Bulinus spp. and 16,784 Biomphalaria spp. snails were screened for cercariae. The pooled infectivity of schistosome intermediate host snails, Biomphalaria spp., and Bulinus spp. were 1%, 2%, and 1%, respectively. Snail infection rates were higher in the 1900s compared to the 2000s. A Luis Furuya–Kanamori index of 3.16 indicated publication bias, and a high level of heterogeneity was observed. Although snail infectivity in Southern Africa is relatively low, it falls within the interval of common snail infection rates, thus indicating the need for suitable snail control programs that could interrupt transmission and achieve elimination.
Collapse
|
14
|
Trienekens SCM, Faust CL, Besigye F, Pickering L, Tukahebwa EM, Seeley J, Lamberton PHL. Variation in water contact behaviour and risk of Schistosoma mansoni (re)infection among Ugandan school-aged children in an area with persistent high endemicity. Parasit Vectors 2022; 15:15. [PMID: 34991702 PMCID: PMC8734346 DOI: 10.1186/s13071-021-05121-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Annual mass drug administration with praziquantel has reduced schistosomiasis transmission in some highly endemic areas, but areas with persistent high endemicity have been identified across sub-Saharan Africa, including Uganda. In these areas many children are rapidly reinfected post treatment, while some children remain uninfected or have low-intensity infections. The aim of this mixed-methods study was to better understand variation in water contact locations, behaviours and infection risk in school-aged children within an area with persistent high endemicity to inform additional control efforts. METHODS Data were collected in Bugoto, Mayuge District, Uganda. Two risk groups were identified from a longitudinal cohort, and eight children with no/low-intensity infections and eight children with reinfections were recruited. Individual structured day-long observations with a focus on water contact were conducted over two periods in 2018. In all identified water contact sites, four snail surveys were conducted quarterly over 1 year. All observed Biomphalaria snails were collected, counted and monitored in the laboratory for Schistosoma mansoni cercarial shedding for 3 weeks. RESULTS Children came into contact with water for a range of purposes, either directly at the water sources or by coming into contact with water collected previously. Although some water contact practices were similar between the risk groups, only children with reinfection were observed fetching water for commercial purposes and swimming in water sources; this latter group of children also came into contact with water at a larger variety and number of sites compared to children with no/low-intensity infection. Households with children with no/low-intensity infections collected rainwater more often. Water contact was observed at 10 sites throughout the study, and a total of 9457 Biomphalaria snails were collected from these sites over four sampling periods. Four lake sites had a significantly higher Biomphalaria choanomphala abundance, and reinfected children came into contact with water at these sites more often than children with no/low-intensity infections. While only six snails shed cercariae, four were from sites only contacted by reinfected children. CONCLUSIONS Children with reinfection have more high-risk water contact behaviours and accessed water sites with higher B. choanomphala abundance, demonstrating that specific water contact behaviours interact with environmental features to explain variation in risk within areas with persistent high endemicity. Targeted behaviour change, vector control and safe water supplies could reduce reinfection in school-aged children in these settings.
Collapse
Affiliation(s)
- Suzan C. M. Trienekens
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Health & Wellbeing, College of Social Sciences, University of Glasgow, Glasgow, UK
| | - Christina L. Faust
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Fred Besigye
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Lucy Pickering
- Institute of Health & Wellbeing, College of Social Sciences, University of Glasgow, Glasgow, UK
| | | | - Janet Seeley
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Poppy H. L. Lamberton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Bulinus senegalensis and Bulinus umbilicatus Snail Infestations by the Schistosoma haematobium Group in Niakhar, Senegal. Pathogens 2021; 10:pathogens10070860. [PMID: 34358010 PMCID: PMC8308860 DOI: 10.3390/pathogens10070860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/28/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022] Open
Abstract
Thorough knowledge of the dynamics of Bulinus spp. infestation could help to control the spread of schistosomiasis. This study describes the spatio-temporal dynamics of B. senegalensis and B. umbilicatus infestation by the Schistosoma haematobium group of blood flukes in Niakhar, Senegal. Molecular identification of the S. haematobium group was performed by real-time PCR, targeting the Dra 1 gene in 810 samples of Bulinus spp. collected during the schistosomiasis transmission season in 2013. In addition to Dra 1 PCR, a rapid diagnostic-PCR was performed on a sub-group of 43 snails to discriminate S. haematobium, S. bovis, and S. mattheei. Out of 810 snails, 236 (29.1%) were positive for Dra 1 based on the PCR, including 96.2% and 3.8% of B. senegalensis and B. umbilicatus, respectively. Among the sub-group, 16 samples were confirmed to be S. haematobium while one was identified as a mixture of S. haematobium and S. bovis. Snails infestations were detected in all villages sampled and infestation rates ranged from 15.38% to 42.11%. The prevalence of infestation was higher in the north (33.47%) compared to the south (25.74%). Snail populations infestations appear early in the rainy season, with a peak in the middle of the season, and then a decline towards the end of the rainy season. Molecular techniques showed, for the first time, the presence of S. bovis in the Bulinus spp. population of Niakhar. The heterogeneity of snail infestations at the village level must be taken into account in mass treatment strategies. Further studies should help to improve the characterizations of the schistosome population.
Collapse
|