1
|
Zhang D, Qi Y, Inuzuka H, Liu J, Wei W. O-GlcNAcylation in tumorigenesis and its implications for cancer therapy. J Biol Chem 2024; 300:107709. [PMID: 39178944 PMCID: PMC11417186 DOI: 10.1016/j.jbc.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
2
|
Ma X, Fu H, Sun C, Wu W, Hou W, Zhou Z, Zheng H, Gong Y, Wu H, Qin J, Lou H, Li J, Tang TS, Guo C. RAD18 O-GlcNAcylation promotes translesion DNA synthesis and homologous recombination repair. Cell Death Dis 2024; 15:321. [PMID: 38719812 PMCID: PMC11078974 DOI: 10.1038/s41419-024-06700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.
Collapse
Affiliation(s)
- Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hui Fu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenyi Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Wei Wu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Zibin Zhou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Hui Zheng
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifei Gong
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Honglin Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junying Qin
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Tie-Shan Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Caixia Guo
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Ma B, Khan KS, Xu T, Xeque Amada J, Guo Z, Huang Y, Yan Y, Lam H, Cheng ASL, Ng BWL. Targeted Protein O-GlcNAcylation Using Bifunctional Small Molecules. J Am Chem Soc 2024; 146:9779-9789. [PMID: 38561350 PMCID: PMC11009946 DOI: 10.1021/jacs.3c14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Protein O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of the homeostasis of O-GlcNAcylation has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of the O-GlcNAcylation challenging. To address this, we have developed heterobifunctional small molecules, named O-GlcNAcylation TArgeting Chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in living cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 in cellulo by recruiting FKBP12F36V-fused O-GlcNAc transferase (OGT), with temporal, magnitude, and reversible control. Overall, the OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.
Collapse
Affiliation(s)
- Bowen Ma
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Khadija Shahed Khan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Tongyang Xu
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Josefina Xeque Amada
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Zhihao Guo
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Yunpeng Huang
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Yu Yan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
| | - Henry Lam
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong
| | - Alfred Sze-Lok Cheng
- School
of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Billy Wai-Lung Ng
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Sha Tin, Hong Kong
- Li Ka
Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong
Kong
| |
Collapse
|
4
|
Wu C, Li J, Lu L, Li M, Yuan Y, Li J. OGT and OGA: Sweet guardians of the genome. J Biol Chem 2024; 300:107141. [PMID: 38447797 PMCID: PMC10981121 DOI: 10.1016/j.jbc.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The past 4 decades have witnessed tremendous efforts in deciphering the role of O-GlcNAcylation in a plethora of biological processes. Chemists and biologists have joined hand in hand in the sweet adventure to unravel this unique and universal yet uncharted post-translational modification, and the recent advent of cutting-edge chemical biology and mass spectrometry tools has greatly facilitated the process. Compared with O-GlcNAc, DNA damage response (DDR) is a relatively intensively studied area that could be traced to before the elucidation of the structure of DNA. Unexpectedly, yet somewhat expectedly, O-GlcNAc has been found to regulate various DDR pathways: homologous recombination, nonhomologous end joining, base excision repair, and translesion DNA synthesis. In this review, we first cover the recent structural studies of the O-GlcNAc transferase and O-GlcNAcase, the elegant duo that "writes" and "erases" O-GlcNAc modification. Then we delineate the intricate roles of O-GlcNAc transferase and O-GlcNAcase in DDR. We envision that this is only the beginning of our full appreciation of how O-GlcNAc regulates the blueprint of life-DNA.
Collapse
Affiliation(s)
- Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China.
| | - Jiaheng Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Lingzi Lu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyuan Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
5
|
Dupas T, Lauzier B, McGraw S. O-GlcNAcylation: the sweet side of epigenetics. Epigenetics Chromatin 2023; 16:49. [PMID: 38093337 PMCID: PMC10720106 DOI: 10.1186/s13072-023-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.
Collapse
Affiliation(s)
- Thomas Dupas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Benjamin Lauzier
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada
- Nantes Université, CNRS, INSERM, L'institut du Thorax, 44000, Nantes, France
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
6
|
Liu T, Wang H, Chen Y, Wan Z, Du Z, Shen H, Yu Y, Ma S, Xu Y, Li Z, Yu N, Zhang F, Cao K, Cai J, Zhang W, Gao F, Yang Y. SENP5 promotes homologous recombination-mediated DNA damage repair in colorectal cancer cells through H2AZ deSUMOylation. J Exp Clin Cancer Res 2023; 42:234. [PMID: 37684630 PMCID: PMC10486113 DOI: 10.1186/s13046-023-02789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/06/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neoadjuvant radiotherapy has been used as the standard treatment of colorectal cancer (CRC). However, radiotherapy resistance often results in treatment failure. To identify radioresistant genes will provide novel targets for combined treatments and prognostic markers. METHODS Through high content screening and tissue array from CRC patients who are resistant or sensitive to radiotherapy, we identified a potent resistant gene SUMO specific peptidase 5 (SENP5). Then, the effect of SENP5 on radiosensitivity was investigated by CCK8, clone formation, comet assay, immunofluorescence and flow cytometric analysis of apoptosis and cell cycle to investigate the effect of SENP5 on radiosensitivity. SUMO-proteomic mass spectrometry combined with co-immunoprecipitation assay were used to identify the targets of SENP5. Patient-derived organoids (PDO) and xenograft (PDX) models were used to explore the possibility of clinical application. RESULTS We identified SENP5 as a potent radioresistant gene through high content screening and CRC patients tissue array analysis. Patients with high SENP5 expression showed increased resistance to radiotherapy. In vitro and in vivo experiments demonstrated that SENP5 knockdown significantly increased radiosensitivity in CRC cells. SENP5 was further demonstrated essential for efficient DNA damage repair in homologous recombination (HR) dependent manner. Through SUMO mass spectrometry analysis, we characterized H2AZ as a deSUMOylation substrate of SENP5, and depicted the SUMOylation balance of H2AZ in HR repair and cancer resistance. By using PDO and PDX models, we found targeting SENP5 significantly increased the therapeutic efficacy of radiotherapy. CONCLUSION Our findings revealed novel role of SENP5 in HR mediated DNA damage repair and cancer resistance, which could be applied as potent prognostic marker and intervention target for cancer radiotherapy.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hang Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhijie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhipeng Du
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Shen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yue Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shengzhe Ma
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ying Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhuqing Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Nanxi Yu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangxiao Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
7
|
Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Oncol 2021; 12:54. [PMID: 35201498 PMCID: PMC8777512 DOI: 10.1007/s12672-021-00450-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
8
|
Colino-Sanguino Y, Clark SJ, Valdes-Mora F. The H2A.Z-nuclesome code in mammals: emerging functions. Trends Genet 2021; 38:273-289. [PMID: 34702577 DOI: 10.1016/j.tig.2021.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
H2A.Z is a histone variant that provides specific structural and docking-side properties to the nucleosome, resulting in diverse and specialised molecular and cellular functions. In this review, we discuss the latest studies uncovering new functional aspects of mammalian H2A.Z in gene transcription, including pausing and elongation of RNA polymerase II (RNAPII) and enhancer activity; DNA repair; DNA replication; and 3D chromatin structure. We also review the recently described role of H2A.Z in embryonic development, cell differentiation, neurodevelopment, and brain function. In conclusion, our cumulative knowledge of H2A.Z over the past 40 years, in combination with the implementation of novel molecular technologies, is unravelling an unexpected and complex role of histone variants in gene regulation and disease.
Collapse
Affiliation(s)
- Yolanda Colino-Sanguino
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, University of NSW Sydney, Sydney, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Lin CH, Liao CC, Chen MY, Chou TY. Feedback Regulation of O-GlcNAc Transferase through Translation Control to Maintain Intracellular O-GlcNAc Homeostasis. Int J Mol Sci 2021; 22:ijms22073463. [PMID: 33801653 PMCID: PMC8037101 DOI: 10.3390/ijms22073463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Protein O-GlcNAcylation is a dynamic post-translational modification involving the attachment of N-acetylglucosamine (GlcNAc) to the hydroxyl groups of Ser/Thr residues on numerous nucleocytoplasmic proteins. Two enzymes are responsible for O-GlcNAc cycling on substrate proteins: O-GlcNAc transferase (OGT) catalyzes the addition while O-GlcNAcase (OGA) helps the removal of GlcNAc. O-GlcNAcylation modifies protein functions; therefore, dysregulation of O-GlcNAcylation affects cell physiology and contributes to pathogenesis. To maintain homeostasis of cellular O-GlcNAcylation, there exists feedback regulation of OGT and OGA expression responding to fluctuations of O-GlcNAc levels; yet, little is known about the molecular mechanisms involved. In this study, we investigated the O-GlcNAc-feedback regulation of OGT and OGA expression in lung cancer cells. Results suggest that, upon alterations in O-GlcNAcylation, the regulation of OGA expression occurs at the mRNA level and likely involves epigenetic mechanisms, while modulation of OGT expression is through translation control. Further analyses revealed that the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) contributes to the downregulation of OGT induced by hyper-O-GlcNAcylation; the S5A/S6A O-GlcNAcylation-site mutant of 4E-BP1 cannot support this regulation, suggesting an important role of O-GlcNAcylation. The results provide additional insight into the molecular mechanisms through which cells may fine-tune intracellular O-GlcNAc levels to maintain homeostasis.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Chen-Chung Liao
- Metabolomics-Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan;
- Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Mei-Yu Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Correspondence: (M.-Y.C.); (T.-Y.C.); Tel.: +886-2-2826-7269 (M.-Y.C.); +886-2-2875-7022 (T.-Y.C.)
| | - Teh-Ying Chou
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Correspondence: (M.-Y.C.); (T.-Y.C.); Tel.: +886-2-2826-7269 (M.-Y.C.); +886-2-2875-7022 (T.-Y.C.)
| |
Collapse
|
10
|
Nutrient regulation of the flow of genetic information by O-GlcNAcylation. Biochem Soc Trans 2021; 49:867-880. [PMID: 33769449 DOI: 10.1042/bst20200769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023]
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (PTM) that is actively added to and removed from thousands of intracellular proteins. As a PTM, O-GlcNAcylation tunes the functions of a protein in various ways, such as enzymatic activity, transcriptional activity, subcellular localization, intermolecular interactions, and degradation. Its regulatory roles often interplay with the phosphorylation of the same protein. Governed by 'the Central Dogma', the flow of genetic information is central to all cellular activities. Many proteins regulating this flow are O-GlcNAc modified, and their functions are tuned by the cycling sugar. Herein, we review the regulatory roles of O-GlcNAcylation on the epigenome, in DNA replication and repair, in transcription and in RNA processing, in protein translation and in protein turnover.
Collapse
|
11
|
Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet 2020; 11:605263. [PMID: 33329753 PMCID: PMC7719714 DOI: 10.3389/fgene.2020.605263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked β-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
13
|
Hayakawa K, Nishitani K, Tanaka S. Kynurenine, 3-OH-kynurenine, and anthranilate are nutrient metabolites that alter H3K4 trimethylation and H2AS40 O-GlcNAcylation at hypothalamus-related loci. Sci Rep 2019; 9:19768. [PMID: 31875008 PMCID: PMC6930210 DOI: 10.1038/s41598-019-56341-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Epigenetic mechanisms can establish and maintain mitotically stable patterns of gene expression while retaining the DNA sequence. These mechanisms can be affected by environmental factors such as nutrients. The importance of intracellular dosages of nutrient metabolites such as acetyl coenzyme A and S-adenosylmethionine, which are utilized as donors for post-translational modifications, is well-known in epigenetic regulation; however, the significance of indirect metabolites in epigenetic regulation is not clear. In this study, we screened for metabolites that function as epigenetic modulators. Because the expression of genes related to hypothalamic function is reportedly affected by nutritional conditions, we used a neural cell culture system and evaluated hypothalamic-linked loci. We supplemented the culture medium with 129 metabolites separately during induction of human-iPS-derived neural cells and used high-throughput ChIP-qPCR to determine the epigenetic status at 37 hypothalamus-linked loci. We found three metabolites (kynurenine, 3-OH-kynurenine, and anthranilate) from tryptophan pathways that increased H3K4 trimethylation and H2AS40 O-GlcNAcylation, resulting in upregulated gene expression at most loci, except those encoding pan-neural markers. Dietary supplementation of these three metabolites and the resulting epigenetic modification were important for stability in gene expression. In conclusion, our findings provide a better understanding of how nutrients play a role in epigenetic mechanisms.
Collapse
Affiliation(s)
- Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan. .,Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Kenta Nishitani
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Li Z, Chen Y, Tang M, Li Y, Zhu WG. Regulation of DNA damage-induced ATM activation by histone modifications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00004-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Miura T, Nishihara S. The Functions of <i>O</i>-GlcNAc in Pluripotent Stem Cells. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1954.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Taichi Miura
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| |
Collapse
|
16
|
Miura T, Nishihara S. The Functions of <i>O</i>-GlcNAc in Pluripotent Stem Cells. TRENDS GLYCOSCI GLYC 2019; 31:E69-E75. [DOI: 10.4052/tigg.1954.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Taichi Miura
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| |
Collapse
|
17
|
Asahina Y, Kawakami T, Hojo H. Glycopeptide Synthesis Based on a TFA-Labile Protection Strategy and One-Pot Four-Segment Ligation for the Synthesis of O-Glycosylated Histone H2A. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuya Asahina
- Institute for Protein Research; Osaka University; Yamadaoka 3-2, Suita Osaka 565-0871 Japan
| | - Toru Kawakami
- Institute for Protein Research; Osaka University; Yamadaoka 3-2, Suita Osaka 565-0871 Japan
| | - Hironobu Hojo
- Institute for Protein Research; Osaka University; Yamadaoka 3-2, Suita Osaka 565-0871 Japan
| |
Collapse
|
18
|
Liu C, Li J. O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage Response. Front Endocrinol (Lausanne) 2018; 9:415. [PMID: 30105004 PMCID: PMC6077185 DOI: 10.3389/fendo.2018.00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023] Open
Abstract
The addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) to and from the Ser and Thr residues of proteins is an emerging post-translational modification. Unlike phosphorylation, which requires a legion of kinases and phosphatases, O-GlcNAc is catalyzed by the sole enzyme in mammals, O-GlcNAc transferase (OGT), and reversed by the sole enzyme, O-GlcNAcase (OGA). With the advent of new technologies, identification of O-GlcNAcylated proteins, followed by pinpointing the modified residues and understanding the underlying molecular function of the modification has become the very heart of the O-GlcNAc biology. O-GlcNAc plays a multifaceted role during the unperturbed cell cycle, including regulating DNA replication, mitosis, and cytokinesis. When the cell cycle is challenged by DNA damage stresses, O-GlcNAc also protects genome integrity via modifying an array of histones, kinases as well as scaffold proteins. Here we will focus on both cell cycle progression and the DNA damage response, summarize what we have learned about the role of O-GlcNAc in these processes and envision a sweeter research future.
Collapse
|