1
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O’Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610280. [PMID: 39257810 PMCID: PMC11384015 DOI: 10.1101/2024.08.29.610280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here we characterize assembled centromeres in the Eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence this epigenetic feature is conserved in the absence of satellite arrays; nevertheless, we report a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, large structural variations define HLE centromeres and distinguish them from other gibbons. Combined with differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, we propose that a "perfect storm" of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M. Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
3
|
Shi G, Pang Q, Lin Z, Zhang X, Huang K. Repetitive Sequence Stability in Embryonic Stem Cells. Int J Mol Sci 2024; 25:8819. [PMID: 39201503 PMCID: PMC11354519 DOI: 10.3390/ijms25168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Qianwen Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Zhancheng Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Xinyi Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Pradhan SK, Lozoya T, Prorok P, Yuan Y, Lehmkuhl A, Zhang P, Cardoso MC. Developmental Changes in Genome Replication Progression in Pluripotent versus Differentiated Human Cells. Genes (Basel) 2024; 15:305. [PMID: 38540366 PMCID: PMC10969796 DOI: 10.3390/genes15030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
DNA replication is a fundamental process ensuring the maintenance of the genome each time cells divide. This is particularly relevant early in development when cells divide profusely, later giving rise to entire organs. Here, we analyze and compare the genome replication progression in human embryonic stem cells, induced pluripotent stem cells, and differentiated cells. Using single-cell microscopic approaches, we map the spatio-temporal genome replication as a function of chromatin marks/compaction level. Furthermore, we mapped the replication timing of subchromosomal tandem repeat regions and interspersed repeat sequence elements. Albeit the majority of these genomic repeats did not change their replication timing from pluripotent to differentiated cells, we found developmental changes in the replication timing of rDNA repeats. Comparing single-cell super-resolution microscopic data with data from genome-wide sequencing approaches showed comparable numbers of replicons and large overlap in origins numbers and genomic location among developmental states with a generally higher origin variability in pluripotent cells. Using ratiometric analysis of incorporated nucleotides normalized per replisome in single cells, we uncovered differences in fork speed throughout the S phase in pluripotent cells but not in somatic cells. Altogether, our data define similarities and differences on the replication program and characteristics in human cells at different developmental states.
Collapse
Affiliation(s)
- Sunil Kumar Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Teresa Lozoya
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Yue Yuan
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China;
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Peng Zhang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China;
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| |
Collapse
|
5
|
van Bueren MAE, Janssen A. The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair (Amst) 2024; 133:103592. [PMID: 37976899 DOI: 10.1016/j.dnarep.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Eukaryotic nuclei are constantly being exposed to factors that break or chemically modify the DNA. Accurate repair of this DNA damage is crucial to prevent DNA mutations and maintain optimal cell function. To overcome the detrimental effects of DNA damage, a multitude of repair pathways has evolved. These pathways need to function properly within the different chromatin domains present in the nucleus. Each of these domains exhibit distinct molecular- and bio-physical characteristics that can influence the response to DNA damage. In particular, chromatin domains highly enriched for repetitive DNA sequences, such as nucleoli, centromeres and pericentromeric heterochromatin require tailored repair mechanisms to safeguard genome stability. Work from the past decades has led to the development of innovative imaging tools as well as inducible DNA damage techniques to gain new insights into the impact of these repetitive chromatin domains on the DNA repair process. Here we summarize these tools with a particular focus on Double-Strand Break (DSB) repair, and discuss the insights gained into our understanding of the influence of chromatin domains on DSB -dynamics and -repair pathway choice.
Collapse
Affiliation(s)
- Marit A E van Bueren
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
6
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
7
|
Arroyo M, Hastert FD, Zhadan A, Schelter F, Zimbelmann S, Rausch C, Ludwig AK, Carell T, Cardoso MC. Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation. Nat Commun 2022; 13:5173. [PMID: 36056023 PMCID: PMC9440122 DOI: 10.1038/s41467-022-32799-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/15/2022] [Indexed: 01/26/2023] Open
Abstract
Oxidation of the epigenetic DNA mark 5-methylcytosine by Tet dioxygenases is an established route to diversify the epigenetic information, modulate gene expression and overall cellular (patho-)physiology. Here, we demonstrate that Tet1 and its short isoform Tet1s exhibit distinct nuclear localization during DNA replication resulting in aberrant cytosine modification levels in human and mouse cells. We show that Tet1 is tethered away from heterochromatin via its zinc finger domain, which is missing in Tet1s allowing its targeting to these regions. We find that Tet1s interacts with and is ubiquitinated by CRL4(VprBP). The ubiquitinated Tet1s is then recognized by Uhrf1 and recruited to late replicating heterochromatin. This leads to spreading of 5-methylcytosine oxidation to heterochromatin regions, LINE 1 activation and chromatin decondensation. In summary, we elucidate a dual regulation mechanism of Tet1, contributing to the understanding of how epigenetic information can be diversified by spatio-temporal directed Tet1 catalytic activity.
Collapse
Affiliation(s)
- María Arroyo
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian D. Hastert
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.425396.f0000 0001 1019 0926Section AIDS and newly emerging pathogens, Paul Ehrlich Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Andreas Zhadan
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian Schelter
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - Susanne Zimbelmann
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Cathia Rausch
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.16008.3f0000 0001 2295 9843Present Address: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Anne K. Ludwig
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.5253.10000 0001 0328 4908Present Address: Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Carell
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - M. Cristina Cardoso
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Abstract
Over the course of a human lifespan, genome integrity erodes, leading to an increased abundance of several types of chromatin changes. The abundance of DNA lesions (chemical perturbations to nucleotides) increases with age, as does the number of genomic mutations and transcriptional disruptions caused by replication or transcription of those lesions, respectively. At the epigenetic level, precise DNA methylation patterns degrade, likely causing increasingly stochastic variations in gene expression. Similarly, the tight regulation of histone modifications begins to unravel. The genomic instability caused by these mechanisms allows transposon element reactivation and remobilization, further mutations, gene dysregulation, and cytoplasmic chromatin fragments. This cumulative genomic instability promotes cell signaling events that drive cell fate decisions and extracellular communications known to disrupt tissue homeostasis and regeneration. In this Review, we focus on age-related epigenetic changes and their interactions with age-related genomic changes that instigate these events.
Collapse
Affiliation(s)
- Carolina Soto-Palma
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Christopher D. Faulk
- Institute on the Biology of Aging and Metabolism
- Department of Animal Science, and
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Datta S, Patel M, Kashyap S, Patel D, Singh U. Chimeric chromosome landscapes of human somatic cell cultures show dependence on stress and regulation of genomic repeats by CGGBP1. Oncotarget 2022; 13:136-155. [PMID: 35070079 PMCID: PMC8765472 DOI: 10.18632/oncotarget.28174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Genomes of somatic cells in culture are prone to spontaneous mutations due to errors in replication and DNA repair. Some of these errors, such as chromosomal fusions, are not rectifiable and subject to selection or elimination in growing cultures. Somatic cell cultures are thus expected to generate background levels of potentially stable chromosomal chimeras. A description of the landscape of such spontaneously generated chromosomal chimeras in cultured cells will help understand the factors affecting somatic mosaicism. Here we show that short homology-associated non-homologous chromosomal chimeras occur in normal human fibroblasts and HEK293T cells at genomic repeats. The occurrence of chromosomal chimeras is enhanced by heat stress and depletion of a repeat regulatory protein CGGBP1. We also present evidence of homologous chromosomal chimeras between allelic copies in repeat-rich DNA obtained by methylcytosine immunoprecipitation. The formation of homologous chromosomal chimeras at Alu and L1 repeats increases upon depletion of CGGBP1. Our data are derived from de novo sequencing from three different cell lines under different experimental conditions and our chromosomal chimera detection pipeline is applicable to long as well as short read sequencing platforms. These findings present significant information about the generation, sensitivity and regulation of somatic mosaicism in human cell cultures.
Collapse
Affiliation(s)
- Subhamoy Datta
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Manthan Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
| | - Sukesh Kashyap
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Divyesh Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
- Current address: Research Programs Unit, Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Biomedicum, Helsinki 00290, Finland
| | - Umashankar Singh
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
10
|
Ben Yamin B, Ahmed-Seghir S, Tomida J, Despras E, Pouvelle C, Yurchenko A, Goulas J, Corre R, Delacour Q, Droin N, Dessen P, Goidin D, Lange SS, Bhetawal S, Mitjavila-Garcia MT, Baldacci G, Nikolaev S, Cadoret JC, Wood RD, Kannouche PL. DNA polymerase zeta contributes to heterochromatin replication to prevent genome instability. EMBO J 2021; 40:e104543. [PMID: 34533226 PMCID: PMC8561639 DOI: 10.15252/embj.2020104543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The DNA polymerase zeta (Polζ) plays a critical role in bypassing DNA damage. REV3L, the catalytic subunit of Polζ, is also essential in mouse embryonic development and cell proliferation for reasons that remain incompletely understood. In this study, we reveal that REV3L protein interacts with heterochromatin components including repressive histone marks and localizes in pericentromeric regions through direct interaction with HP1 dimer. We demonstrate that Polζ/REV3L ensures progression of replication forks through difficult‐to‐replicate pericentromeric heterochromatin, thereby preventing spontaneous chromosome break formation. We also find that Rev3l‐deficient cells are compromised in the repair of heterochromatin‐associated double‐stranded breaks, eliciting deletions in late‐replicating regions. Lack of REV3L leads to further consequences that may be ascribed to heterochromatin replication and repair‐associated functions of Polζ, with a disruption of the temporal replication program at specific loci. This is correlated with changes in epigenetic landscape and transcriptional control of developmentally regulated genes. These results reveal a new function of Polζ in preventing chromosome instability during replication of heterochromatic regions.
Collapse
Affiliation(s)
- Barbara Ben Yamin
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Sana Ahmed-Seghir
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Junya Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Emmanuelle Despras
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Caroline Pouvelle
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Andrey Yurchenko
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jordane Goulas
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Raphael Corre
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Quentin Delacour
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | | | - Philippe Dessen
- Bioinformatics Core Facility, Gustave Roussy, Villejuif, France
| | - Didier Goidin
- Life Sciences and Diagnostics Group, Agilent Technologies France, Les Ulis, France
| | - Sabine S Lange
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sarita Bhetawal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Giuseppe Baldacci
- Institut Jacques Monod, UMR7592, CNRS and University of Paris, Paris, France
| | - Sergey Nikolaev
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Patricia L Kannouche
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| |
Collapse
|
11
|
Kim P, Tan H, Liu J, Yang M, Zhou X. FusionAI: Predicting fusion breakpoint from DNA sequence with deep learning. iScience 2021; 24:103164. [PMID: 34646994 PMCID: PMC8501764 DOI: 10.1016/j.isci.2021.103164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/16/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Identifying the molecular mechanisms related to genomic breakage is an important goal of cancer mechanism studies. Among diverse locations of structural variants, fusion genes, which have the breakpoints in the gene bodies and are typically identified from the split reads of RNA-seq data, can provide a highlighted structural variant resource for studying the genomic breakages with expression and potential pathogenic impacts. In this study, we developed FusionAI, which utilizes deep learning to predict gene fusion breakpoints based on DNA sequence and let us identify fusion breakage code and genomic context. FusionAI leverages the known fusion breakpoints to provide a prediction model of the fusion genes from the primary genomic sequences via deep learning, thereby helping researchers a more accurate selection of fusion genes and better understand genomic breakage.
Collapse
Affiliation(s)
- Pora Kim
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hua Tan
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiajia Liu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- College of Electronic and Information Engineering, Tongji University, Shanghai, Shanghai 201804, China
| | - Mengyuan Yang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Hausmann F, Kurtz S. DeepGRP: engineering a software tool for predicting genomic repetitive elements using Recurrent Neural Networks with attention. Algorithms Mol Biol 2021; 16:20. [PMID: 34425870 PMCID: PMC8381506 DOI: 10.1186/s13015-021-00199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Repetitive elements contribute a large part of eukaryotic genomes. For example, about 40 to 50% of human, mouse and rat genomes are repetitive. So identifying and classifying repeats is an important step in genome annotation. This annotation step is traditionally performed using alignment based methods, either in a de novo approach or by aligning the genome sequence to a species specific set of repetitive sequences. Recently, Li (Bioinformatics 35:4408-4410, 2019) developed a novel software tool dna-brnn to annotate repetitive sequences using a recurrent neural network trained on sample annotations of repetitive elements. RESULTS We have developed the methods of dna-brnn further and engineered a new software tool DeepGRP. This combines the basic concepts of Li (Bioinformatics 35:4408-4410, 2019) with current techniques developed for neural machine translation, the attention mechanism, for the task of nucleotide-level annotation of repetitive elements. An evaluation on the human genome shows a 20% improvement of the Matthews correlation coefficient for the predictions delivered by DeepGRP, when compared to dna-brnn. DeepGRP predicts two additional classes of repeats (compared to dna-brnn) and is able to transfer repeat annotations, using RepeatMasker-based training data to a different species (mouse). Additionally, we could show that DeepGRP predicts repeats annotated in the Dfam database, but not annotated by RepeatMasker. DeepGRP is highly scalable due to its implementation in the TensorFlow framework. For example, the GPU-accelerated version of DeepGRP is approx. 1.8 times faster than dna-brnn, approx. 8.6 times faster than RepeatMasker and over 100 times faster than HMMER searching for models of the Dfam database. CONCLUSIONS By incorporating methods from neural machine translation, DeepGRP achieves a consistent improvement of the quality of the predictions compared to dna-brnn. Improved running times are obtained by employing TensorFlow as implementation framework and the use of GPUs. By incorporating two additional classes of repeats, DeepGRP provides more complete annotations, which were evaluated against three state-of-the-art tools for repeat annotation.
Collapse
Affiliation(s)
- Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Stefan Kurtz
- ZBH - Center for Bioinformatics, MIN-Fakultät, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| |
Collapse
|
13
|
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. Int J Mol Sci 2021; 22:ijms22094764. [PMID: 33946274 PMCID: PMC8125245 DOI: 10.3390/ijms22094764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.
Collapse
|
14
|
Rausch C, Weber P, Prorok P, Hörl D, Maiser A, Lehmkuhl A, Chagin VO, Casas-Delucchi CS, Leonhardt H, Cardoso MC. Developmental differences in genome replication program and origin activation. Nucleic Acids Res 2021; 48:12751-12777. [PMID: 33264404 PMCID: PMC7736824 DOI: 10.1093/nar/gkaa1124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.
Collapse
Affiliation(s)
- Cathia Rausch
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Patrick Weber
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - David Hörl
- Department of Biology II, LMU Munich, 81377 Munich, Germany
| | - Andreas Maiser
- Department of Biology II, LMU Munich, 81377 Munich, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Vadim O Chagin
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
15
|
Zhang J, Bellani MA, James RC, Pokharel D, Zhang Y, Reynolds JJ, McNee GS, Jackson AP, Stewart GS, Seidman MM. DONSON and FANCM associate with different replisomes distinguished by replication timing and chromatin domain. Nat Commun 2020; 11:3951. [PMID: 32769987 PMCID: PMC7414851 DOI: 10.1038/s41467-020-17449-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Duplication of mammalian genomes requires replisomes to overcome numerous impediments during passage through open (eu) and condensed (hetero) chromatin. Typically, studies of replication stress characterize mixed populations of challenged and unchallenged replication forks, averaged across S phase, and model a single species of “stressed” replisome. Here, in cells containing potent obstacles to replication, we find two different lesion proximal replisomes. One is bound by the DONSON protein and is more frequent in early S phase, in regions marked by euchromatin. The other interacts with the FANCM DNA translocase, is more prominent in late S phase, and favors heterochromatin. The two forms can also be detected in unstressed cells. ChIP-seq of DNA associated with DONSON or FANCM confirms the bias of the former towards regions that replicate early and the skew of the latter towards regions that replicate late. Eukaryotic replisomes are multiprotein complexes. Here the authors reveal two distinct stressed replisomes, associated with DONSON and FANCM, displaying a bias in replication timing and chromatin domain.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ryan C James
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | | | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gavin S McNee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
16
|
Chagin VO, Reinhart B, Becker A, Mortusewicz O, Jost KL, Rapp A, Leonhardt H, Cardoso MC. Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus 2019; 10:231-253. [PMID: 31744372 PMCID: PMC6949026 DOI: 10.1080/19491034.2019.1688932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive heterochromatin is considered as a functionally inert genome compartment, important for its architecture and stability. How such stable structure is maintained is not well understood. Here, we apply four different visualization schemes to label it and investigate its dynamics during DNA replication and repair. We show that replisomes assemble over the heterochromatin in a temporally ordered manner. Furthermore, heterochromatin undergoes transient decompaction locally at the active sites of DNA synthesis. Using selective laser microirradiation conditions that lead to damage repaired via processive DNA synthesis, we measured similarly local decompaction of heterochromatin. In both cases, we could not observe large-scale movement of heterochromatin to the domain surface. Instead, the processive DNA synthesis machinery assembled at the replication/repair sites. Altogether, our data are compatible with a progression of DNA replication/repair along the chromatin in a dynamic mode with localized and transient decompaction that does not globally remodels the whole heterochromatin compartment.
Collapse
Affiliation(s)
- Vadim O. Chagin
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Britta Reinhart
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annette Becker
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - K. Laurence Jost
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - M. Cristina Cardoso
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
17
|
Fontana R, Ranieri M, La Mantia G, Vivo M. Dual Role of the Alternative Reading Frame ARF Protein in Cancer. Biomolecules 2019; 9:E87. [PMID: 30836703 PMCID: PMC6468759 DOI: 10.3390/biom9030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
The CDKN2a/ARF locus expresses two partially overlapping transcripts that encode two distinct proteins, namely p14ARF (p19Arf in mouse) and p16INK4a, which present no sequence identity. Initial data obtained in mice showed that both proteins are potent tumor suppressors. In line with a tumor-suppressive role, ARF-deficient mice develop lymphomas, sarcomas, and adenocarcinomas, with a median survival rate of one year of age. In humans, the importance of ARF inactivation in cancer is less clear whereas a more obvious role has been documented for p16INK4a. Indeed, many alterations in human tumors result in the elimination of the entire locus, while the majority of point mutations affect p16INK4a. Nevertheless, specific mutations of p14ARF have been described in different types of human cancers such as colorectal and gastric carcinomas, melanoma and glioblastoma. The activity of the tumor suppressor ARF has been shown to rely on both p53-dependent and independent functions. However, novel data collected in the last years has challenged the traditional and established role of this protein as a tumor suppressor. In particular, tumors retaining ARF expression evolve to metastatic and invasive phenotypes and in humans are associated with a poor prognosis. In this review, the recent evidence and the molecular mechanisms of a novel role played by ARF will be presented and discussed, both in pathological and physiological contexts.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michela Ranieri
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Girolama La Mantia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|