1
|
Park S, Cho JH, Kim JH, Kim JA. Histone lysine methylation modifiers controlled by protein stability. Exp Mol Med 2024:10.1038/s12276-024-01329-5. [PMID: 39394462 DOI: 10.1038/s12276-024-01329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/13/2024] Open
Abstract
Histone lysine methylation is pivotal in shaping the epigenetic landscape and is linked to cell physiology. Coordination of the activities of multiple histone lysine methylation modifiers, namely, methyltransferases and demethylases, modulates chromatin structure and dynamically alters the epigenetic landscape, orchestrating almost all DNA-templated processes, such as transcription, DNA replication, and DNA repair. The stability of modifier proteins, which is regulated by protein degradation, is crucial for their activity. Here, we review the current knowledge of modifier-protein degradation via specific pathways and its subsequent impact on cell physiology through epigenetic changes. By summarizing the functional links between the aberrant stability of modifier proteins and human diseases and highlighting efforts to target protein stability for therapeutic purposes, we aim to promote interest in defining novel pathways that regulate the degradation of modifiers and ultimately increase the potential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sungryul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, South Korea.
| | - Jung-Ae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, South Korea.
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| |
Collapse
|
2
|
Shi TH, Sugishita H, Gotoh Y. Crosstalk within and beyond the Polycomb repressive system. J Cell Biol 2024; 223:e202311021. [PMID: 38506728 PMCID: PMC10955045 DOI: 10.1083/jcb.202311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
The development of multicellular organisms depends on spatiotemporally controlled differentiation of numerous cell types and their maintenance. To generate such diversity based on the invariant genetic information stored in DNA, epigenetic mechanisms, which are heritable changes in gene function that do not involve alterations to the underlying DNA sequence, are required to establish and maintain unique gene expression programs. Polycomb repressive complexes represent a paradigm of epigenetic regulation of developmentally regulated genes, and the roles of these complexes as well as the epigenetic marks they deposit, namely H3K27me3 and H2AK119ub, have been extensively studied. However, an emerging theme from recent studies is that not only the autonomous functions of the Polycomb repressive system, but also crosstalks of Polycomb with other epigenetic modifications, are important for gene regulation. In this review, we summarize how these crosstalk mechanisms have improved our understanding of Polycomb biology and how such knowledge could help with the design of cancer treatments that target the dysregulated epigenome.
Collapse
Affiliation(s)
- Tianyi Hideyuki Shi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sugishita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Alavattam KG, Esparza JM, Hu M, Shimada R, Kohrs AR, Abe H, Munakata Y, Otsuka K, Yoshimura S, Kitamura Y, Yeh YH, Hu YC, Kim J, Andreassen PR, Ishiguro KI, Namekawa SH. ATF7IP2/MCAF2 directs H3K9 methylation and meiotic gene regulation in the male germline. Genes Dev 2024; 38:115-130. [PMID: 38383062 PMCID: PMC10982687 DOI: 10.1101/gad.351569.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.
Collapse
Affiliation(s)
- Kris G Alavattam
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jasmine M Esparza
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Mengwen Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Anna R Kohrs
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Hironori Abe
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasuhisa Munakata
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Kai Otsuka
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Saori Yoshimura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Yu-Han Yeh
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Yueh-Chiang Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Paul R Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan;
| | - Satoshi H Namekawa
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA;
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| |
Collapse
|
4
|
Jourdeuil K, Neilson KM, Cousin H, Tavares ALP, Majumdar HD, Alfandari D, Moody SA. Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. Front Cell Dev Biol 2023; 11:1274788. [PMID: 37854072 PMCID: PMC10579616 DOI: 10.3389/fcell.2023.1274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.
Collapse
Affiliation(s)
- Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Andre L. P. Tavares
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
5
|
Alavattam KG, Esparza JM, Hu M, Shimada R, Kohrs AR, Abe H, Munakata Y, Otsuka K, Yoshimura S, Kitamura Y, Yeh YH, Hu YC, Kim J, Andreassen PR, Ishiguro KI, Namekawa SH. ATF7IP2/MCAF2 directs H3K9 methylation and meiotic gene regulation in the male germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560314. [PMID: 37873266 PMCID: PMC10592865 DOI: 10.1101/2023.09.30.560314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
H3K9 tri-methylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that, in male meiosis, ATF7IP2 amasses on autosomal and X pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global upregulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.
Collapse
Affiliation(s)
- Kris G. Alavattam
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- These authors contributed equally to this work
| | - Jasmine M. Esparza
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- These authors contributed equally to this work
| | - Mengwen Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- These authors contributed equally to this work
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
- These authors contributed equally to this work
| | - Anna R. Kohrs
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Hironori Abe
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yasuhisa Munakata
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Kai Otsuka
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Saori Yoshimura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Yu-Han Yeh
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
| | - Yueh-Chiang Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1, Yayoi, Tokyo, 113-0032, Japan
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Kei-ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Satoshi H. Namekawa
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| |
Collapse
|
6
|
Shao Q, Zhang Y, Liu Y, Shang Y, Li S, Liu L, Wang G, Zhou X, Wang P, Gao J, Zhou J, Zhang L, Wang S. ATF7IP2, a meiosis-specific partner of SETDB1, is required for proper chromosome remodeling and crossover formation during spermatogenesis. Cell Rep 2023; 42:112953. [PMID: 37542719 DOI: 10.1016/j.celrep.2023.112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
Meiotic crossovers are required for the faithful segregation of homologous chromosomes and to promote genetic diversity. However, it is unclear how crossover formation is regulated, especially on the XY chromosomes, which show a homolog only at the tiny pseudoautosomal region. Here, we show that ATF7IP2 is a meiosis-specific ortholog of ATF7IP and a partner of SETDB1. In the absence of ATF7IP2, autosomes show increased axis length and more crossovers; however, many XY chromosomes lose the obligatory crossover, although the overall XY axis length is also increased. Additionally, meiotic DNA double-strand break formation/repair may also be affected by altered histone modifications. Ultimately, spermatogenesis is blocked, and male mice are infertile. These findings suggest that ATF7IP2 constraints autosomal axis length and crossovers on autosomes; meanwhile, it also modulates XY chromosomes to establish meiotic sex chromosome inactivation for cell-cycle progression and to ensure XY crossover formation during spermatogenesis.
Collapse
Affiliation(s)
- Qiqi Shao
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China
| | - Yanan Zhang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China
| | - Yanlei Liu
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China
| | - Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Si Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Lin Liu
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China
| | - Guoqiang Wang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Ping Wang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China
| | - Jinmin Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China; Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Shunxin Wang
- Center for Reproductive Medicine, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Graham-Paquin AL, Saini D, Sirois J, Hossain I, Katz MS, Zhuang QKW, Kwon SY, Yamanaka Y, Bourque G, Bouchard M, Pastor WA. ZMYM2 is essential for methylation of germline genes and active transposons in embryonic development. Nucleic Acids Res 2023; 51:7314-7329. [PMID: 37395395 PMCID: PMC10415128 DOI: 10.1093/nar/gkad540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
ZMYM2 is a transcriptional repressor whose role in development is largely unexplored. We found that Zmym2-/- mice show embryonic lethality by E10.5. Molecular characterization of Zmym2-/- embryos revealed two distinct defects. First, they fail to undergo DNA methylation and silencing of germline gene promoters, resulting in widespread upregulation of germline genes. Second, they fail to methylate and silence the evolutionarily youngest and most active LINE element subclasses in mice. Zmym2-/- embryos show ubiquitous overexpression of LINE-1 protein as well as aberrant expression of transposon-gene fusion transcripts. ZMYM2 homes to sites of PRC1.6 and TRIM28 complex binding, mediating repression of germline genes and transposons respectively. In the absence of ZMYM2, hypermethylation of histone 3 lysine 4 occurs at target sites, creating a chromatin landscape unfavourable for establishment of DNA methylation. ZMYM2-/- human embryonic stem cells also show aberrant upregulation and demethylation of young LINE elements, indicating a conserved role in repression of active transposons. ZMYM2 is thus an important new factor in DNA methylation patterning in early embryonic development.
Collapse
Affiliation(s)
- Adda-Lee Graham-Paquin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Megan S Katz
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
- Canadian Center for Computational Genomics,McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Al Adhami H, Vallet J, Schaal C, Schumacher P, Bardet AF, Dumas M, Chicher J, Hammann P, Daujat S, Weber M. Systematic identification of factors involved in the silencing of germline genes in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:3130-3149. [PMID: 36772830 PMCID: PMC10123117 DOI: 10.1093/nar/gkad071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
In mammals, many germline genes are epigenetically repressed to prevent their illegitimate expression in somatic cells. To advance our understanding of the mechanisms restricting the expression of germline genes, we analyzed their chromatin signature and performed a CRISPR-Cas9 knock-out screen for genes involved in germline gene repression using a Dazl-GFP reporter system in mouse embryonic stem cells (mESCs). We show that the repression of germline genes mainly depends on the polycomb complex PRC1.6 and DNA methylation, which function additively in mESCs. Furthermore, we validated novel genes involved in the repression of germline genes and characterized three of them: Usp7, Shfm1 (also known as Sem1) and Erh. Inactivation of Usp7, Shfm1 or Erh led to the upregulation of germline genes, as well as retrotransposons for Shfm1, in mESCs. Mechanistically, USP7 interacts with PRC1.6 components, promotes PRC1.6 stability and presence at germline genes, and facilitates DNA methylation deposition at germline gene promoters for long term repression. Our study provides a global view of the mechanisms and novel factors required for silencing germline genes in embryonic stem cells.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Celia Schaal
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Paul Schumacher
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.,Karlsruhe Institute of Technology (KIT), IAB, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Sylvain Daujat
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| |
Collapse
|
9
|
Methyltransferase Setdb1 Promotes Osteoblast Proliferation by Epigenetically Silencing Macrod2 with the Assistance of Atf7ip. Cells 2022; 11:cells11162580. [PMID: 36010655 PMCID: PMC9406310 DOI: 10.3390/cells11162580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Bone loss caused by mechanical unloading is a threat to prolonged space flight and human health. Epigenetic modifications play a crucial role in varied biological processes, but the mechanism of histone modification on unloading-induced bone loss has rarely been studied. Here, we discovered for the first time that the methyltransferase Setdb1 was downregulated under the mechanical unloading both in vitro and in vivo so as to attenuate osteoblast proliferation. Furthermore, we found these interesting processes depended on the repression of Macrod2 expression triggered by Setdb1 catalyzing the formation of H3K9me3 in the promoter region. Mechanically, we revealed that Macrod2 was upregulated under mechanical unloading and suppressed osteoblast proliferation through the GSK-3β/β-catenin signaling pathway. Moreover, Atf7ip cooperatively contributed to osteoblast proliferation by changing the localization of Setdb1 under mechanical loading. In summary, this research elucidated the role of the Atf7ip/Setdb1/Macrod2 axis in osteoblast proliferation under mechanical unloading for the first time, which can be a potential protective strategy against unloading-induced bone loss.
Collapse
|
10
|
Butz S, Schmolka N, Karemaker ID, Villaseñor R, Schwarz I, Domcke S, Uijttewaal ECH, Jude J, Lienert F, Krebs AR, de Wagenaar NP, Bao X, Zuber J, Elling U, Schübeler D, Baubec T. DNA sequence and chromatin modifiers cooperate to confer epigenetic bistability at imprinting control regions. Nat Genet 2022; 54:1702-1710. [PMID: 36333500 PMCID: PMC9649441 DOI: 10.1038/s41588-022-01210-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Genomic imprinting is regulated by parental-specific DNA methylation of imprinting control regions (ICRs). Despite an identical DNA sequence, ICRs can exist in two distinct epigenetic states that are memorized throughout unlimited cell divisions and reset during germline formation. Here, we systematically study the genetic and epigenetic determinants of this epigenetic bistability. By iterative integration of ICRs and related DNA sequences to an ectopic location in the mouse genome, we first identify the DNA sequence features required for maintenance of epigenetic states in embryonic stem cells. The autonomous regulatory properties of ICRs further enabled us to create DNA-methylation-sensitive reporters and to screen for key components involved in regulating their epigenetic memory. Besides DNMT1, UHRF1 and ZFP57, we identify factors that prevent switching from methylated to unmethylated states and show that two of these candidates, ATF7IP and ZMYM2, are important for the stability of DNA and H3K9 methylation at ICRs in embryonic stem cells.
Collapse
Affiliation(s)
- Stefan Butz
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nina Schmolka
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Present Address: Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ino D. Karemaker
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Rodrigo Villaseñor
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland ,grid.5252.00000 0004 1936 973XPresent Address: Division of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Isabel Schwarz
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Silvia Domcke
- grid.482245.d0000 0001 2110 3787Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Faculty of Science, University of Basel, Basel, Switzerland ,grid.34477.330000000122986657Present Address: Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Esther C. H. Uijttewaal
- grid.473822.80000 0005 0375 3232Institute of Molecular Biotechnology Austria (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julian Jude
- grid.14826.390000 0000 9799 657XResearch Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Florian Lienert
- grid.482245.d0000 0001 2110 3787Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Faculty of Science, University of Basel, Basel, Switzerland
| | - Arnaud R. Krebs
- grid.482245.d0000 0001 2110 3787Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland ,grid.4709.a0000 0004 0495 846XPresent Address: European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Nathalie P. de Wagenaar
- grid.5477.10000000120346234Division of Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Science Faculty, Utrecht University, Utrecht, the Netherlands
| | - Xue Bao
- grid.5477.10000000120346234Division of Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Science Faculty, Utrecht University, Utrecht, the Netherlands
| | - Johannes Zuber
- grid.14826.390000 0000 9799 657XResearch Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Ulrich Elling
- grid.473822.80000 0005 0375 3232Institute of Molecular Biotechnology Austria (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dirk Schübeler
- grid.482245.d0000 0001 2110 3787Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Faculty of Science, University of Basel, Basel, Switzerland
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland. .,Division of Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Science Faculty, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Mochizuki K, Sharif J, Shirane K, Uranishi K, Bogutz AB, Janssen SM, Suzuki A, Okuda A, Koseki H, Lorincz MC. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat Commun 2021; 12:7020. [PMID: 34857746 PMCID: PMC8639735 DOI: 10.1038/s41467-021-27345-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Silencing of a subset of germline genes is dependent upon DNA methylation (DNAme) post-implantation. However, these genes are generally hypomethylated in the blastocyst, implicating alternative repressive pathways before implantation. Indeed, in embryonic stem cells (ESCs), an overlapping set of genes, including germline "genome-defence" (GGD) genes, are upregulated following deletion of the H3K9 methyltransferase SETDB1 or subunits of the non-canonical PRC1 complex PRC1.6. Here, we show that in pre-implantation embryos and naïve ESCs (nESCs), hypomethylated promoters of germline genes bound by the PRC1.6 DNA-binding subunits MGA/MAX/E2F6 are enriched for RING1B-dependent H2AK119ub1 and H3K9me3. Accordingly, repression of these genes in nESCs shows a greater dependence on PRC1.6 than DNAme. In contrast, GGD genes are hypermethylated in epiblast-like cells (EpiLCs) and their silencing is dependent upon SETDB1, PRC1.6/RING1B and DNAme, with H3K9me3 and DNAme establishment dependent upon MGA binding. Thus, GGD genes are initially repressed by PRC1.6, with DNAme subsequently engaged in post-implantation embryos.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Kenjiro Shirane
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
13
|
Valencia-Morales MDP, Sanchez-Flores A, Colín-Castelán D, Alvarado-Caudillo Y, Fragoso-Bargas N, López-González G, Peña-López T, Ramírez-Nava M, de la Rocha C, Rodríguez-Ríos D, Lund G, Zaina S. Somatic Genetic Mosaicism in the Apolipoprotein E-null Mouse Aorta. Thromb Haemost 2021; 121:1541-1553. [PMID: 33677828 DOI: 10.1055/a-1414-4840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In addition to genetic and epigenetic inheritance, somatic variation may contribute to cardiovascular disease (CVD) risk. CVD-associated somatic mutations have been reported in human clonal hematopoiesis, but evidence in the atheroma is lacking. To probe for somatic variation in atherosclerosis, we sought single-nucleotide private variants (PVs) in whole-exome sequencing (WES) data of aorta, liver, and skeletal muscle of two C57BL/6J coisogenic male ApoE null/wild-type (WT) sibling pairs, and RNA-seq data of one of the two pairs. Relative to the C57BL/6 reference genome, we identified 9 and 11 ApoE null aorta- and liver-specific PVs that were shared by all WES and RNA-seq datasets. Corresponding PVs in WT sibling aorta and liver were 1 and 0, respectively, and not overlapping with ApoE null PVs. Pyrosequencing analysis of 4 representative PVs in 17 ApoE null aortas and livers confirmed tissue-specific shifts toward the alternative allele, in addition to significant deviations from mendelian allele ratios. Notably, all aorta and liver PVs were present in the dbSNP database and were predominantly transition mutations within atherosclerosis-related genes. The majority of PVs were in discrete clusters approximately 3 Mb and 65 to 73 Mb away from hypermutable immunoglobin loci in chromosome 6. These features were largely shared with previously reported CVD-associated somatic mutations in human clonal hematopoiesis. The observation that SNPs exhibit tissue-specific somatic DNA mosaicism in ApoE null mice is potentially relevant for genetic association study design. The proximity of PVs to hypermutable loci suggests testable mechanistic hypotheses.
Collapse
Affiliation(s)
- María Del Pilar Valencia-Morales
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
- Department of Developmental Genetics and Molecular Physiology, "Unidad Universitaria de Secuenciación Masiva y Bioinformática", Biotechnology Institute, UNAM, Cuernavaca, Mexico
| | - Alejandro Sanchez-Flores
- "Unidad Universitaria de Secuenciación Masiva y Bioinformática", Biotechnology Institute, UNAM, Cuernavaca, Mexico
| | | | | | | | - Gladys López-González
- Bachelor's Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Tania Peña-López
- Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Magda Ramírez-Nava
- Bachelor's Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Carmen de la Rocha
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| |
Collapse
|
14
|
Yuan L, Sun B, Xu L, Chen L, Ou W. The Updating of Biological Functions of Methyltransferase SETDB1 and Its Relevance in Lung Cancer and Mesothelioma. Int J Mol Sci 2021; 22:ijms22147416. [PMID: 34299035 PMCID: PMC8306223 DOI: 10.3390/ijms22147416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
SET domain bifurcated 1 (SETDB1) is a histone H3 lysine 9 (H3K9) methyltransferase that exerts important effects on epigenetic gene regulation. SETDB1 complexes (SETDB1-KRAB-KAP1, SETDB1-DNMT3A, SETDB1-PML, SETDB1-ATF7IP-MBD1) play crucial roles in the processes of histone methylation, transcriptional suppression and chromatin remodelling. Therefore, aberrant trimethylation at H3K9 due to amplification, mutation or deletion of SETDB1 may lead to transcriptional repression of various tumour-suppressing genes and other related genes in cancer cells. Lung cancer is the most common type of cancer worldwide in which SETDB1 amplification and H3K9 hypermethylation have been indicated as potential tumourigenesis markers. In contrast, frequent inactivation mutations of SETDB1 have been revealed in mesothelioma, an asbestos-associated, locally aggressive, highly lethal, and notoriously chemotherapy-resistant cancer. Above all, the different statuses of SETDB1 indicate that it may have different biological functions and be a potential diagnostic biomarker and therapeutic target in lung cancer and mesothelioma.
Collapse
Affiliation(s)
| | | | | | | | - Wenbin Ou
- Correspondence: ; Tel./Fax: +86-571-86843303
| |
Collapse
|